Skip to main content

dsgrid: Demand-Side Grid Model

NREL's demand-side grid (dsgrid) model harnesses decades of sector-specific energy modeling expertise to understand current and future U.S. electricity load for power systems analyses.

The primary purpose of dsgrid is to create comprehensive electricity load data sets at high temporal, geographic, sectoral, and end-use resolution. These data sets enable detailed analyses of current patterns and future projections of end-use loads.

Electricity Load Modeling

Graphic showing the components of the demand-side grid (dsgrid) model, including the spatial resolution across the United States; sectoral resolution incorporating different models for residential; commercial, industrial, and transportation loads; and temporal resolution including yearly and hourly data on electricity load.

The dsgrid platform uses a bottom-up methodology that allows highly resolved analysis of "what if" scenarios of future electricity load. It leverages multiple detailed sectoral energy models to provide hourly time series of load by subsector, end use, and U.S. county. Each dsgrid data set typically covers a full year, which either represents a historical year or a future model-year scenario.

Although dsgrid currently emphasizes electricity load data, its component sector models for residential buildings, commercial buildings, and industry provide information on other fuel use, including natural gas. The data sets can be leveraged to support analysis of numerous demand-side technology-driven changes, such as energy efficiency, electrification, and operational flexibility (i.e., demand response). The electricity use data are time-synchronized with solar and wind data sets and are thus suitable for use in power systems analysis.

Component models include:

Featured Projects

Electrification Futures Study

For NREL's Electrification Futures Study, the dsgrid team developed a high-resolution data set describing contiguous United States electrical load in 2012. The modeling methods and results are described in the dsgrid model documentation. This effort demonstrated the feasibility of high-resolution, bottom-up load modeling for large geographic extents using component models that can capture the impact of large technological change. By modeling a historical year and accounting for distributed generation and system losses (in the distribution and transmission systems), the team was able to quantify model residuals at multiple combinations of geographic, temporal, and sectoral resolution, and thus identify key areas for future improvements.

Los Angeles 100% Renewable Energy Study

NREL has developed a city-scale version of the dsgrid model for the Los Angeles 100% Renewable Energy Study. In this study, NREL is conducting a series of integrated modeling activities for the Los Angeles Department of Water and Power to understand the options and tradeoffs among different approaches to realizing the Los Angeles City Council's goal of meeting 100% of electricity demand with renewable resources. The dsgrid model data are used to inform bulk power system modeling, customer adoption of distributed PV and storage, distribution system modeling, and air quality modeling.

Graphic showing six charts plotting peak day and average daily load profiles for 2045 for three scenarios: moderate, high, and stress.

The above figure summarizes 2045 load shapes for the three LA100 load projections. More information can be found in this summary presentation, as well as this presentation on buildings sector modeling.


The Demand-Side Grid (dsgrid) Model Documentation, NREL Technical Report (2018)

The demand-side grid (dsgrid) model, Presentation (2018)

Demand Response Resource Quantification with Detailed Building Energy Models, Presentation (2016)

Elaine Hale