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Abstract 
This report documents enhancements made to the Transportation Energy & Mobility Pathway 
Options™ (TEMPO) model to project spatially, demographically, and temporally resolved 
national-scale electric vehicle (EV) charging load profiles and describes three scenarios and 
corresponding data sets created for the National Renewable Energy Laboratory’s (NREL’s) 
demand-side grid (dsgrid) project in support of bulk power systems modeling. In brief, TEMPO 
was enhanced to disaggregate national and annual energy demand projections into household- 
and county-level projections of passenger EV hourly charging load profiles (8760 profiles), 
accounting for consumer, travel, and temperature variations that impact EV energy demand. In 
alignment with NREL’s forward-looking grid modeling, three scenarios for EV adoption 
covering 2020–2050 were created—Annual Energy Outlook (AEO) Reference Case, 
Electrification Futures Study (EFS) High Electrification, and All EV Sales by 2035—and 
associated data sets have been included in the dsgrid platform for public use. 
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Executive Summary 
Vehicle electrification is increasing in speed and scale, with widespread light-duty vehicle 
(LDV) electrification moving from a question of “if” to “when” and “where.” Vehicle 
electrification will increase electricity consumption by a substantial but manageable amount, 
with multiple studies projecting that full electrification of the light-duty vehicle stock would 
account for 13%–29% of future aggregate U.S. load (Mai et al. 2018; Fox-Penner, Gorman, and 
Hatch 2018; Milovanoff et al. 2020). However, for energy system planning and design, “when 
and where electric vehicle (EV) charging occurs will be as critical as how much electricity is 
needed” (Muratori and Mai 2020), especially in the transitional medium-term horizon.  

Significant spatial and temporal heterogeneity in EV loads across the United States is expected 
due to variations in travel behavior, vehicle ownership preferences (e.g., pickup trucks or 
compact sedans), and technology adoption. Spatiotemporal differences in EV energy use also 
arise from weather impacts. For example, the energy used by the same EV to drive a mile can 
change by up to 50%–100% in very cold temperatures. Overall, these factors combine to result in 
major spatial and temporal variations in EV electricity demand, which heavily impacts charging 
needs and implications for the electricity system. In addition, patterns in these factors are 
expected to change in future scenarios. This report describes how the Transportation Energy & 
Mobility Pathway Options™ (TEMPO) model was enhanced to project spatially, 
demographically, and temporally resolved passenger EV charging demand. 

TEMPO is a comprehensive transportation demand model from the National Renewable Energy 
Laboratory (NREL) used to explore long-term scenarios of energy use across the entire U.S. 
transportation sector (Muratori, Jadun, et al. 2021). TEMPO simulates travel demand, household 
vehicle ownership, mode choice, and technology choice, for both passenger travel and freight 
transport. TEMPO models heterogeneous passenger travel demand, vehicle ownership, travel 
mode choice, and technology preferences and choices by categorizing U.S. households according 
to socio-demographics and geographic characteristics. Here we document the methodologies and 
assumptions used to enhance TEMPO’s resolution, which was previously limited to the national 
scale and annual level, in order for TEMPO to simulate spatially, demographically, and 
temporally resolved household EV charging loads. This process is organized into four steps: 

1. Spatially disaggregating and harmonizing TEMPO’s demographically resolved 
household and vehicle input data to enable county-level TEMPO simulations for 
households and their passenger light-duty EVs for the contiguous United States, projected 
through 2050. 

2. Capturing spatially and temporally resolved effects of temperature on EV energy use for 
a specific weather year. 

3. Developing spatially resolved vehicle electrification scenarios that determine the extent 
of EV adoption in each county. 

4. Simulating week-long trip energy consumption schedules, applying charging strategies, 
and generating hourly EV charging load profiles for different scenarios. 

Using these enhancements, TEMPO generated annual hourly load projections for household EV 
charging for all counties in the contiguous United States, projected through 2050 for a set of 
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vehicle electrification scenarios. The resulting data sets have been included in the NREL 
demand-side grid (dsgrid)1 repository. The scenarios are: 

A. AEO Reference Case, aligned with passenger light-duty EV adoption in the Reference 
Case in the 2018 U.S. Energy Information Administration (EIA) Annual Energy Outlook 
(AEO) (EIA 2019), which was used to calibrate the TEMPO model. 

B. EFS High Electrification, with passenger light-duty EV adoption in line with the High 
Electrification scenario in the Electrification Futures Study (EFS) (Mai et al. 2018). 

C. All EV Sales by 2035, assuming U.S. average passenger light-duty EV sales reaching 
50% in 2030 and 100% in 2035, in line with various announced targets. 

For each scenario, annual hourly charging profiles are provided for every other year from 2020 
through 2050, differentiated by county, household type, and vehicle type. 

This report explains TEMPO’s county-level disaggregation methodology, incorporation of 
spatiotemporally specific temperature impacts, development of disaggregate EV sales scenarios, 
and simulation of EV charging load profiles. It then summarizes aggregate results from all 
scenarios and focuses on detailed results from the All EV Sales by 2035 scenario, demonstrating 
TEMPO’s capabilities in simulating when, where, and how much household EVs will be charged 
in the United States. Figures ES-1 and ES-2 highlight the EV charging load results generated by 
TEMPO for this report. 

 
Figure ES-1. Aggregate U.S. annual and peak hourly EV load under three scenarios 

 
1 https://www.nrel.gov/analysis/dsgrid.html 
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Figure ES-2. State-level per-capita EV charging load profiles for an average weekday for the All EV Sales by 2035 scenario for projected 
year 2035 under the immediate and ubiquitous charging strategy, for the contiguous United States, with seasonal variation shown by 

line color (blue for winter and orange for summer) and U.S. annual average in black dashes 
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1. Introduction 
Vehicle electrification is increasing in speed and scale, with widespread light-duty vehicle 
electrification moving from a question of “if” to “when” and “where.” Vehicle electrification 
will increase electricity consumption by a substantial but manageable amount, with multiple 
studies projecting that full electrification of the light-duty vehicle stock would account for 13%–
29% of future aggregate U.S. load (Mai et al. 2018; Fox-Penner, Gorman, and Hatch 2018; 
Milovanoff et al. 2020). However, for energy system planning and design, “when and where 
electric vehicle (EV) charging occurs will be as critical as how much electricity is needed” 
(Muratori and Mai 2020), especially in the transitional medium-term horizon.  

Significant spatial and temporal heterogeneity in EV loads across the United States is expected 
due to variations in travel behavior, vehicle ownership preferences (e.g., pickup trucks or cars), 
and technology adoption. Spatiotemporal differences in EV energy use also arise from weather 
impacts. For example, the energy used by the same EV to drive a mile can change by up to 50%–
100% in very cold temperatures. Overall, these factors combine to result in major spatial and 
temporal variations in EV electricity demand, which heavily impacts charging needs and 
implications for the electricity system. In addition, patterns in these factors are expected to 
change as electrified transportation technologies and infrastructure mature.  

Previous literature has clearly illustrated and demonstrated significant spatial and temporal 
heterogeneity in EV energy use2 (Tamayao et al. 2015; Yuksel and Michalek 2015; Wu et al. 
2019; Miller, Arbabzadeh, and Gençer 2020; Desai et al. 2020; Parker et al. 2021; Yang et al. 
2021; Vega-Perkins et al. 2023) due to factors such as temperature, household demographics and 
travel behavior, and vehicle type. However, most only present data and analysis for 
representative consumers, vehicles, scenarios, and/or cases—for example, for 16 regions, for 
four seasons, or for intermediate or representative metrics such as energy or emissions per EV or 
per mile—rather than projections for absolute values such as total electric load in each county. In 
addition, most studies focus on annual energy use, typically in connection with calculating 
economics of adoption or emissions benefit, while some derive hourly energy use patterns from 
assumed and static timing of charging. None produce hourly charging load data comprehensively 
for differentiated household types in every U.S. county from bottom-up simulation of 
heterogeneous household travel demand, vehicle ownership, transportation mode choice, 
technology adoption, and flexible charging. Additionally, while aggregate charging load impacts 
at the national level have been produced by top-down approaches, integrated assessment 
modeling, and other large-scale modeling efforts (e.g., the Energy Information Administration 
(EIA’s) Annual Energy Outlook (AEO) (EIA 2019), National Renewable Energy Laboratory’s 
(NREL’s) Electrification Future Study [Mai et al. 2018]), we are unaware of corresponding 
spatially, demographically, and temporally disaggregated load projections that add up to national 
totals. The work described in this report enhances the Transportation Energy & Mobility 

 
2 Most studies have focused on the heterogeneity of emissions and costs associated with EV energy use, because 
they are also heavily spatially and temporally dependent with when, where, and how the energy is procured and 
consumed. Many studies have also focused on heterogeneity in both EV and non-EV energy use, affordability, and 
vulnerability (Zhou, Aeschliman, and Gohlke 2021; Liu and Kontou 2022). Here, we focus on spatially, 
demographically, and temporally differentiated EV energy consumption and charging loads, and defer to other 
modeling tools for detailed emissions and cost modeling. 
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Pathway Options (TEMPO) model to enable and create comprehensive bottom-up projections of 
highly resolved charging loads from simulation of representative households across the entire 
United States. The data resolution has been designed to integrate with bulk power system 
investment and operational models, in addition to enabling detailed analysis of EV charging 
loads.  

This report describes how TEMPO was enhanced to project spatially, demographically, and 
temporally resolved household EV charging demand in future scenarios. Heterogeneity in many 
drivers of transportation demand, options, and choice are expected to contribute to heterogeneity 
in energy use and EV charging load profiles. In the TEMPO model, we disaggregated four major 
categories of inputs to the county level: 

i. Household and demographics data that are most relevant to transportation demand by 
county, captured by the unique combinations and proportions of TEMPO’s 60 household 
bins in each county. Each bin has unique estimates of trip behavior and mode choice 
affecting passenger miles traveled and vehicle miles traveled (VMT), vehicle ownership, 
and preferences such as those related to fuel economy and technology choice.  

ii. Vehicle-related data such as stock, fuel type and technology, fuel economy, and vehicle 
class (e.g., midsize cars, pickup trucks) preferences by county. Each bin and county have 
unique distributions of these characteristics and attributes that affect vehicle availability, 
usage decisions, and the energy intensity of vehicle usage. 

iii. Vehicle energy efficiency affected by temperature, by county, month, and hour. 
iv. Vehicle electrification scenarios based on historical and existing EV adoption by county 

and future goals. 
 
Table 1 summarizes the subset of TEMPO inputs that were disaggregated in this work. Appendix 
A and Table A-1 document other TEMPO inputs that were not disaggregated for this project but 
could be in the future. The methodologies and assumptions used for this enhanced resolution are 
documented in Sections 2.2–2.5. With these TEMPO enhancements, we are able to simulate 
highly resolved household travel behavior and EV ownership and use in every county. Then, 
Section 2.6 discusses how TEMPO was enhanced to simulate week-long trip energy 
consumption schedules, apply charging strategies, and generate hourly household EV charging 
load profiles for different scenarios. Finally, Section 3 presents summarized results from all 
scenarios and then focuses on detailed results from the All EV Sales by 2035 scenario, 
demonstrating TEMPO’s capabilities in simulating spatially, demographically, and temporally 
resolved household electric vehicle charging load scenarios for the contiguous United States. 
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Table 1. TEMPO Data Inputs Disaggregated by County 

 
TEMPO Data Input 

National 
Model 
Resolution 

Data Source County-Level Model 
Resolution Data Source Projected 

Evolution 

H
ou

se
ho

ld
 

Household count per TEMPO 
bin (household income, 
household composition, and 
urbanity) [# households/bin] 

60 bins, 
national 

National 
Household 
Travel Survey 
(NHTS) 
(FHWA 2017) 

60 bins for each of 3,143 U.S. 
counties 

American Community 
Survey (ACS)/Public Use 
Microdata Sample (PUMS) 
(2019), Claritas (2021) 

Annual Energy 
Outlook (AEO) 
(2019) 

Ve
hi

cl
e 

Household vehicle ownership  
[# vehicles/households] 

60 bins, 
national 

NHTS (2017), 
AEO (2019) 

60 bins for each of 3,143 U.S. 
counties 

ACS/PUMS (2019), Polk 
(2018) AEO (2019) 

Household vehicle stock, by 
size class, technology/fuel, 
and vintage 

National NHTS (2017), 
AEO (2019) 

County-specific (3,143 U.S. 
counties) 

ACS/PUMS (2019), Polk 
(2018) AEO (2019) 

Household vehicle size class 
distributions 

60 bins, 
national 

NHTS (2017), 
AEO (2019) 

Bin- (60) and county- (3,143) 
specific, via county household 
counts and vehicle ownership 

NHTS (2017), Polk (2018) AEO (2019) 

Household vehicle energy 
efficiency, by size class and 
technology/fuel [kWh/mi] 

National AEO (2019), 
Annual 
Technology 
Baseline (ATB) 
(2020), U.S. 
Environmental 
Protection 
Agency (EPA) 
(2019) 

Bin- (60) and county- (3,143) 
specific, via county household 
counts and vehicle ownership 

NHTS (2017), ACS/PUMS 
(2019), Polk (2018), AEO 
(2019), EPA (2019) 

ATB (2020) 

Temporal: 
annual 
average 

Temporal: 
Location- (geographic centroid of 
county population), season- 
(monthly average), and trip-time- 
(hour) specific temperature, 
affecting energy efficiency 

Temperature: 
NWS/MesoWest via 
ComStock (Liu et al. 2023);  
Energy efficiency: EVI-Pro 
(NREL 2016), Yuksel and 
Michalek (2015), Geotab 
(2020) 

Weather year 2012 

Ve
hi

cl
e 

El
ec

tr
ifi

ca
tio

n 

EV sales share, by technology 
type [EVs/vehicles] National 

Scenario-
specific: 
AEO (2019), 
Mai et al. 
(2018) (EFS), 
Biden (2021) 

County-specific (3,143 U.S. 
counties) Polk (2021) 

CARB (ACC II), 
anticipated 
participation from 
states that currently 
follow CA ACC I 
(ZEV) via Section 
177 of Clean Air Act, 
and Biden 2021 goal 
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2. Methods and Model Development 
2.1 TEMPO Overview 
TEMPO is a comprehensive transportation demand model that generates long-term scenarios of 
U.S. mobility energy use and emissions (Muratori, Jadun, et al. 2021). TEMPO fills a critical 
modeling gap by enabling national assessment of emerging transportation technologies and 
behaviors and cross-sectoral integrated studies (Muratori et al. 2020). TEMPO models the entire 
U.S. domestic passenger and freight mobility systems across all travel modes, including walking, 
biking, public transport, light-duty personal travel, mobility as a service (MaaS), and domestic 
aviation passenger modes, as well as air, rail, truck, and ship freight modes. However, the scope 
of this project is limited to household travel demand and household-owned passenger light-duty 
vehicles.  

TEMPO models heterogeneous passenger travel demand by categorizing U.S. households 
according to socio-demographics and geographic characteristics. For each nationally 
representative household type, TEMPO estimates household-level, activity-based travel demand 
and consumer preferences for travel mode, vehicle ownership, vehicle size class, and drivetrain 
technology. TEMPO then characterizes available options for each trip and household by 
attributes such as cost and time and system-level variables such as travel mode and infrastructure 
availability. Then, for samples of representative households, TEMPO simulates decisions 
regarding trip mode choice, vehicle purchase, technology adoption, and vehicle 
refueling/charging. The impacts of these simulated decisions are aggregated into vehicle sales, 
vehicle stock, energy use, and emissions metrics. 

TEMPO was originally developed to run at the national and annual level using household, travel, 
vehicle, and energy data binned by household income, urbanity, and household size, and with no 
explicit spatial resolution. However, significant variations in factors affecting mobility demand 
and choices exist across U.S. counties, such as household and vehicle characteristics and 
consumer preferences. Table 1 reviews how data for these factors were disaggregated and 
harmonized to enable county-level simulations for the entire United States. 

At its core, TEMPO derives nationally representative household-based travel demand and 
attributes from the 2017 National Household Travel Survey (NHTS) (FHWA 2017). For county-
level projections of travel demand, TEMPO leverages the nationally representative household-
bin-specific travel behavior derived from NHTS and applies it to every county based on each 
county’s household mix (i.e., the distribution of households in each of the TEMPO household 
types/bins). This draws from geographically specific data on households from the American 
Community Survey (ACS) 2014–2018 Public Use Microdata Sample (PUMS) (U.S. Census 
Bureau 2019) and proprietary Claritas data (Claritas 2021) on urbanicity to capture differences in 
household attributes, mobility behavior, and technology adoption. The details of this process are 
described in Section 2.2. 

Spatial heterogeneity and differences across counties apply to vehicle-related data as well, with 
different levels of vehicle stock, vehicle size class, and technology preferences across different 
counties. Base year (2017) vehicle ownership and stock by household bin and county were 
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drawn from both ACS/PUMS (U.S. Census Bureau 2019) and Polk vehicle registration data (IHS 
Markit 2018) at the county level instead of the national level. Other vehicle attributes were 
disaggregated by applying the nationally representative NHTS distributions to the ACS/PUMS 
household counts for each county. The details of this process are described in Section 2.3. 

Temperature affects the energy efficiency of EVs; Section 2.4 addresses how vehicle energy 
efficiency in TEMPO was adjusted to account for location-specific seasonal temperature. 
Adoption of EVs significantly varies across the country and over projected years; Section 2.5 
discusses one of TEMPO’s approaches in determining disaggregated EV adoption for the 
simulated scenarios in this report. Finally, EV charging occurs at instances throughout days and 
weeks; Section 2.6 describes the assignment of charging amounts and times for each vehicle and 
household in each county according to simulated trip schedules, charging constraints, 
preferences, and behaviors. 

2.2 Disaggregating Household Counts for Each TEMPO Household 
Bin to the County Level 

In TEMPO, households are classified along three dimensions: income (low, middle, high), 
household composition (no driver, single driver, small driver household, large driver household), 
and urbanity (rural, small town, second city, suburban, urban). NHTS (2017) data were used to 
develop unique travel demand profiles (trip length, frequency, vehicle occupancy distributions, 
mode preferences) for each of these 60 bins3 (Muratori, Jadun, et al. 2021). Figure 1 shows 
national household counts in each household bin. 

 
3 TEMPO’s 60 household bins arise from the combination of 3 income bins (low, household income <$50,000; 
middle, $50,000–125,000; high, >$125,000) × 4 household composition bins (No Driver; Driver, Single [1-person 
household]; Driver, Small [2-person household]; Driver, Large [3+]) × 5 urbanity bins (Urban, Suburban, Second 
City, Small Town, Rural). 
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Figure 1. National household counts by TEMPO household bin as of 2017. 

Data from NHTS (2017). Each colored segment represents one of 60 TEMPO household bins.  

A number of households are sampled to represent each bin in TEMPO simulations and then 
weighted by the number of households in that bin divided by the number of samples to produce 
nationally representative results, leveraging unique travel behavior and patterns estimated for 
each household bin based on NHTS households. For example, in TEMPO, No Driver households 
have very different travel behavior than other types of households and are weighted according to 
their counts, reflecting their prevalence in the United States. 

To estimate household counts by TEMPO household bin (three-way joint distributions) for every 
county, two-way joint income and composition household counts at the census tract level were 
constructed via iterative proportional fitting (IPF) using data from ACS5 (2014–2018)4 
supplemented by PUMS data,5 building on methodology used in the Low-Income Energy 

 
4 Because the NHTS (2017) data were collected between 2016 and 2017, the time frame of the ACS5 2014–2018 
data set is the closest match, though data for some census areas in this data set will be from 2014 and others will be 
from 2018, creating some inherent mismatches to the NHTS data. 
5 The ACS5 data are used to inform the 1D distributions of households in each income and composition bin at the 
tract level, while PUMS data informs the 2D distribution of households in each income and composition bin at the 
PUMA level. These are combined using IPF with ACS5 data as enforced marginal totals and PUMS microdata as 
seed data. 
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Affordability Data (LEAD) Tool (Ma et al. 2019). The third dimension (i.e., urbanity) was then 
added based on data at the census block group level from Claritas, a firm specializing in 
marketing and customer segmentation that provided the same definitions for the NHTS. Figure 2 
summarizes the distribution of urbanicity across the United States.  

  
Figure 2. Summary of Claritas urbanicity data plotted against raw population density (population 

per square mile). 
The black dashed lines are Claritas’ publicly stated approximate cutoffs for urbanicity bins. The proprietary Claritas 

definitions include manual assignment based on other factors such as geographic contiguity, particularly to 
distinguish between “suburban” and “second city,” which had the same population density cutoffs but were 

determined based on neighbors and access.6  

These urbanicity data were aggregated to produce urbanity distributions within each census tract 
and then combined with the tract-level income and composition data and further aggregated to 
generate joint distributions7 of households in every bin for every county.  

To illustrate the variety of household counts in different U.S. counties, Figure 3 and Figure 4 
show the resulting household counts for selected counties, and Figure 5 maps out the 
heterogeneity across the contiguous United States. For those familiar with U.S. geography, the 
trends seen in the figures likely confirm expectations. The sheer amount of heterogeneity seen 
across these transportation-relevant characteristics suggests that most county-level TEMPO 
results are unlikely to resemble the national averages given by the national-scale TEMPO model. 
Furthermore, even counties that are nominally similar (like all-urban New York and San 
Francisco) have different breakdowns in terms of income and number of drivers, as well as 
characteristics of the mobility systems and travel options (e.g., public transit speed and 

 
6 Attempts at replicating Claritas’ definitions based on ACS population density data and GIS analysis were blocked 
by proprietary definitions, a lack of transparent methodology, and a lack of validation data. Assignment of urbanity 
based solely on publicly available data was generally valid but noticeably different in inspected areas. 
7 Also known as cross-tabulation by multiple variables. 
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availability) that differentiate TEMPO’s findings in terms of vehicle adoption, trip modalities, 
and energy use (with the caveat that public transit availability inputs in TEMPO have not yet 
been made more geographically specific than urbanity). 

This derived set of household data is used as the 2017 baseline for TEMPO and scaled to match 
the NHTS and U.S. Energy Information Administration (EIA) national totals. TEMPO then uses 
national household8 growth projections from EIA AEO and applies them uniformly to every 
county and bin. This means that TEMPO does not project growth in household counts differently 
for different household bins or counties and does not project changes to the distribution of 
household income, sizes, or urbanicity in individual counties over time. For example, TEMPO 
does not currently account for population migration between counties or from/to the United 
States; changing demographics such as rising or falling real incomes by county; changes in 
household sizes, drivers, or ages differing by county; or urbanization or densification.  

 
8 A potential future source of population data and projections is LandScan, which may help improve the resolution 
of population projections across the United States. While changes in demographics within each county may not be 
captured by LandScan if the data are not demographically distinguished, changes in U.S. demographics overall may 
be captured if LandScan projects higher population increases in areas of certain demographics—for example, in 
urban areas or richer areas, thereby representing more urban households in the future or more households being 
higher income in the future. We stress that this would likely only capture part of the actual demographic trend 
because the household bin distributions remain fixed at the county and national levels and we do not have 
comprehensive projections how these distributions will shift in the future, particularly at the necessary geographic 
resolution. 
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Figure 3. Household counts by TEMPO household bin for selected U.S. counties as of 2017. 

Data derived from ACS/PUMS (2018). Every county is represented by a unique mix of household counts in each of 
the 60 TEMPO household bins. TEMPO samples from each bin in every county, allowing the model to consider both 

household-bin-specific and county-specific factors affecting trips and choices.  
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Figure 4. Household counts by TEMPO household bin for selected U.S. counties, ordered by 

population density, as of 2017. 
Data derived from ACS/PUMS (2018). Every county is represented by a unique mix of household counts in each of 

the 60 TEMPO household bins. TEMPO samples from each bin in every county, allowing the model to consider both 
household-bin-specific and county-specific factors affecting trips and choices.  
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Figure 5. Proportions of households in selected urbanity, household composition, and income 
bins in each county in the United States as of 2017 (TEMPO baseline calibration year). 

Many counties exclusively contain rural-classified households. Most counties have very few households with no 
drivers. Many counties across the United States have large proportions of households classified as low-income. 

The household data derived from ACS/PUMS using IPF were validated by comparing aggregate 
results to the NHTS and AEO data, checking the national totals first, then by household 
dimension, and then by each bin. Figure 6 shows minor discrepancies in totals between data 
sources, which we concluded to fall within a reasonable margin of error due to definitions, such 
as driver status, year of survey, and inherent uncertainty from survey results.  
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Figure 6. Total number of U.S. households across each of TEMPO’s three household bin 

dimensions, with comparison between TEMPO national distributions (red, data from NHTS) and 
TEMPO county distributions (blue, data based on ACS/PUMS/Claritas), aggregated to the 

national level. 

2.3 Disaggregating Vehicle-Related Data  
Besides household composition variability, there are also significant county-level differences in 
vehicle ownership and vehicle class preferences. At the national level, TEMPO uses NHTS 
(2017), Polk (IHS Markit 2018), AEO (EIA 2019),9 and ATB (NREL 2020) for base year (2017) 
data on light-duty vehicle ownership, stock, and attributes (fuel/technology type, size class, and 
energy efficiency). Future projections for these data are also taken from the same sources to 

 
9 In addition, AEO reports composite test cycle fuel economy in mpg-equivalent—i.e., the ratings in the EPA Fuel 
Economy Guide, but calculates actual energy use accounting for on-road actual use with degradation factors. Details 
in EPA 420-R-06-017. In this work, the energy adjustment due to temperature incorporates both a temperature 
dependency and a real-world efficiency adjustment relative to the EPA rating. 
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create a reference scenario and scenarios with different technology costs and fuel prices. 
Additional scenarios are created by exogenously changing parameters related to energy 
efficiency and sales shares by technology. Analysis of these different possible futures 
demonstrates the relationship between key input variables and outcomes in terms of mobility, 
energy use, costs, and emissions. 

To create county-level TEMPO, we estimated household-bin- and county-specific discrete 
distributions of vehicle ownership from the ACS/PUMS-derived vehicle ownership data. This 
allows for better county specificity and larger sample sizes than applying NHTS bin-specific 
distributions.10 While this shifts the data source for vehicle ownership from NHTS, a 
transportation-focused survey, to ACS, a broader demographics survey, we found that the overall 
mean vehicle ownership based on ACS was aligned with that from NHTS. However, in both the 
aggregated NHTS national total and ACS county totals (survey data), vehicle counts were on 
average about 11% lower than those in AEO and Polk vehicle registration data,11 potentially 
reflecting survey bias or some mismatch in definitions of household vehicles. TEMPO addresses 
this by scaling its ACS-derived vehicle ownership discrete distributions (shifting of means) to 
match12 AEO/Polk vehicle count totals in each county for 2017 (the TEMPO calibration year). 
Finally, projections to 2050 were created by scaling these disaggregated vehicle ownership 
distributions based on the EIA AEO trend in vehicle ownership.13  

Vehicle size class and energy efficiency distributions were also disaggregated into county- and 
household-bin-specific distributions. We applied NHTS (national) size class distributions to ACS 
(county) household counts to maintain household bin integrity and consistency so that 
appropriate travel behaviors were matched with their likely vehicle owners and vehicle 
attributes. Although using detailed Polk registration data about vehicles would result in better 
county specificity (with directly observed county-specific data providing greater fidelity), it 
requires assumptions that enforce all types of households in a county having the same county-
specific distribution of vehicles, which could assign the wrong types of vehicles to many 

 
10 An alternative simpler approach that would maintain household bin specificity and national model alignment 
would be to apply the NHTS (national) bin-specific vehicle ownership distributions to the ACS-derived county-level 
household bin counts. However, this would likely cause some loss of county-specific variation that is not explained 
by TEMPO’s household bin classification. 
11 Total 2017 registered non-fleet light-duty vehicles from Polk: 238 million, compared to total 2017 household-
owned vehicles derived from ACS: 212 million.  
12 We also find several small outlier counties with very high (up to 9) and very low (0.5) registered vehicles per 
household based on Polk data, which likely reflect anomalies or quirks in registration behavior or data issues. We re-
estimate the vehicle counts and distributions for these outlier counties based on that expected from NHTS and ACS 
data. 
13 AEO’s projection of vehicle ownership is roughly a constant 0.8 vehicles per capita for 2017–2050. 
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households.14 Further disaggregation of size classification and energy efficiency is limited by 
data availability.15  

We then created projections to 2050 for vehicle size class and fuel economy by scaling these 
disaggregated starting points using the national projected trends in size from EIA AEO (EIA 
2019) and projected trends in fuel economy from NREL’s Annual Technology Baseline (ATB) 
Mid and Advanced trajectories (NREL 2020). Similar to the projections for household data, the 
projections for vehicle data were scaled uniformly. These attributes are disaggregated and 
calibrated to the heterogeneity observed in 2017, and then their values are projected forward 
uniformly by the national trend from EIA AEO and NREL ATB.16 For example, EIA projects a 
continued national shift away from compact cars toward SUVs. TEMPO builds on the existing 
distribution in preferences seen across individual household bins and counties and projects a 
nation-wide shift in vehicle size preference from compact cars toward SUVs for every household 
bin and county.17 In both EFS and All EV Sales by 2035 scenarios, vehicle energy efficiency are 
based on the NREL ATB 2020 Advanced trajectories.18 In addition, vehicle energy efficiency is 
further adjusted from rated values according to temperature, as described in the next chapter. 

Figure 7 and Figure 8 show the disaggregated vehicle data based on the aforementioned methods 
for 2017 and reflect the heterogeneity in vehicle ownership and size classes across the United 
States represented in TEMPO. 

 
14 Polk ZIP code/county-level data about size class distributions and make-model information that can be associated 
with EPA-based fuel economy statistics could be used for county-specific detail, but household bin information 
would be lost because the vehicle characteristics would be applied uniformly to the mix of household bins in the 
county. The trade-off considered is whether county disaggregation or household-bin disaggregation captures the 
heterogeneity in household vehicle characteristics and attributes. 
15 For example, we use EIA AEO’s estimated real-world energy efficiency performance adjusted from test cycle 
results, but this varies in reality according to finer heterogeneity in driving and road conditions, road grade, and 
city/highway driving. These conditions can be expected to differ by urbanity and county, but is not captured in this 
work. 
16 That is, we do not project that certain household bins, counties, or vehicle types will change in vehicle ownership 
levels, vehicle size preferences, or vehicle fuel economy differently than others.  
17 Building on this example: Some household bins and counties already have few compact cars and many SUVs. The 
national trends in vehicle size class preferences are uniformly applied as rates of change so that the aggregated 
projections of all households and counties align with the national projection. This results in maintained growth in 
relative SUV share in these household bins and counties, as opposed to an alternative assumption where there is 
potential saturation in these bins and counties and relatively more growth in other bins and counties.  
18 However, note that the original EFS study used projections from Jadun et al. (2017) and Moawad et al. (2016), 
reflecting lower EV energy efficiencies (and resulting in higher load per EV-mile) than was simulated in TEMPO, 
even in the “EFS” scenario. See Scenario Results Summary section for discussion of impact on results. 
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Figure 7. Average vehicle ownership per household by U.S. county as of 2017, based on 

ACS/PUMS household microdata and Polk registration data 
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Figure 8. Proportions of vehicle size class across U.S. counties in 2017 based on Polk registration 

data. 
Consumers in different areas of the United States have adopted vehicles of different sizes. TEMPO uses these data 

to set the baseline for county-specific vehicle size class distributions, which enables projection of consumer 
preferences based on existing heterogeneity in size class preferences. Vehicle size class mix affects county-specific 

vehicle electrification rates and vehicle energy use. 
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2.4 Accounting for the Effect of Temperature on EV Loads 
Vehicle energy use depends on ambient temperature because of impacts on heating and cooling 
energy use and equipment performance (Miller, Arbabzadeh, and Gençer 2020; NREL 2016; 
Yuksel and Michalek 2015). EVs are disproportionately affected by temperature compared to 
conventional internal combustion engine vehicles, due to the sensitivity of batteries and direct-
current fast charging (DCFC) chargers to temperature, lack of engine waste heat to reuse for 
cabin heating, and the relative efficiency of the electric drivetrain, which magnifies the heating 
and cooling load portion of total vehicle energy consumption. For example, the energy used by 
the same EV to drive a mile can change by up to 50% at temperature extrema (NREL 2016; 
Geotab 2020), heavily impacting vehicle range, charging needs and resulting loads, cost of 
driving, and consumer experience. This means using national annual average fuel economy and 
energy efficiency metrics can obscure variation in vehicle energy use in different locations and at 
different times of day and seasons of the year, which is of particular interest to the NREL 
demand-side grid (dsgrid) project and for grid planning and operational studies more broadly. 
Therefore, in addition to disaggregating TEMPO inputs spatially by county, TEMPO was 
modified to capture region- and season-specific effects on vehicle energy use and charging.  

TEMPO adjusts vehicle energy efficiency and DCFC charger efficiency as a function of ambient 
temperature based on vehicle test data (Yuksel and Michalek 2015; NREL 2016)19 and DCFC 
charger test data (INL 2016) reflecting energy use under different temperature conditions. These 
data and relationships are consistent with those used in EVI-Pro (NREL 2016) and have been 
validated against recent 2020 data from Geotab20 (Geotab 2020). Summaries of these 
relationships are shown in Figure 9 through Figure 11. 

 
19 In the National Economic Value Assessment of Plug-In Electric Vehicles (NREL 2016), temperature-based EV 
energy consumption adjustment was based on Yuksel and Michalek (2015)’s fit to FleetCarma/Geotab data shown 
as “CMU Leaf Fit” and on NREL-collected data on a Ford Fusion. 
20 Geotab (2020) describes their data sample as “5.2 million trips taken by 4,200 EVs representing 102 different 
make/model/year combinations from model years 2010–2019”. Geotab’s data disclaimer: “Temperature-range curve 
is derived by Geotab from >4000 connected light duty EVs. Rated range refers to EPA 5-cycle test. This data is 
subject to change as additional data is collected and analyzed. Please refer to Geotab.com for the most up-to-date 
tools and analysis. v.1.0 May 2020” 
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Figure 9. Battery-electric vehicle (BEV) (“CMU Leaf”) and internal combustion engine vehicle 

(“NREL Fusion”) energy efficiency adjustment for different ambient temperatures based on NREL 
2016, Yuksel and Michalek 2015, and Fleetcarma (Geotab) 2014 data 

 
Figure 10. BEV energy efficiency adjustment in TEMPO and EVI-Pro (black dashes) compared to 

Geotab (2020) data (colored lines for average, 90th, and 10th percentiles) 21 

 
21 We note that the current TEMPO and EVI-Pro BEV energy efficiency adjustment (black dashes) deviates from 
the median (50th percentile) of the Geotab (2020) data (blue line), especially at lower temperatures, and therefore 
underestimates energy consumption at these low temperatures. In upcoming model releases, we plan to recalibrate 
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Figure 11. Effective DCFC charger efficiency for three different ambient temperatures. 

Source: INL 2016 

For consistency with dsgrid and other participating models (ResStock and ComStock), we use 
exogenous county-specific data for a specific weather year, 2012, from MesoWest/National 
Weather Service weather station aggregates collected by the ComStock team (Liu et al. 2023). 
From these data, TEMPO extracts a snapshot of average ambient temperatures for each hour of 
the day for every month and county for the 2012 weather year. For each trip or charging event, 
TEMPO calculates and applies an adjustment to vehicle and charger energy consumption 
according to this temperature at the time of day (hour), month, and county (weather station 
closest to county population centroid) of the event. This directly increases (or reduces) the 
electric load from charging EVs at these locations and times. While EV adoption and use 
decisions may also be indirectly affected by temperature impacts, TEMPO currently only 
considers the direct impact of temperature on EV load via adjusted energy intensity. Figure 12 
shows ambient temperatures across the United States at two example points in time and their 
associated adjustment to energy consumption. 

 
these adjustments to reflect the best available information on BEV performance in low-temperature conditions. 
However, recent and rapid technological changes in reconfigured and improved air conditioning/heat pump systems 
in new EVs are expected to mitigate some of the additional energy use at temperature extrema. 
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Figure 12. Ambient temperatures (left) and impact on BEV energy consumption (right) across the 
United States for January 2012, 8 a.m., and July 2012, 5 p.m., reflective of spatial, temporal, and 

seasonal variation in weather conditions.  
Data from Liu et al. 2023. 

To further demonstrate the range and variation in energy efficiency adjustment due to 
temperature, Figure 13 shows this simulated adjustment factor for each month and weather 
station location in the United States. The national median trend (black line in Figure 13) has EV 
energy consumption per mile at its highest in the winter, lowest in the spring and fall shoulder 
seasons, and around or just higher than the EPA rating during the summer months. However, 
each U.S. county has its own weather patterns, and “average” or “median” weather can therefore 
be misleading. Following the colored lines for four selected locations in the United States, we 
see very different EV energy consumption patterns. A location such as Minneapolis-St. Paul 
(blue line) can be considered to have similar temperature impacts on EV energy consumption as 
predicted by the U.S. median (black line), with higher energy use in winter months and slightly 
higher than rated energy use in the summer too. However, this is only one type of weather 
pattern in the United States; in a location such as Sacramento (yellow line), we see larger 
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summer and smaller winter peaks, while in a location such as Phoenix (orange line), we see very 
large increases in energy consumption during summer months and no increases in the winter. In 
a location such as Los Angeles (green line), we see a year-round EV energy consumption below 
the EPA-rated value due to milder weather conditions compared to those in the EPA test cycles. 
These distinct variations in weather patterns and their impact on energy use are incorporated into 
TEMPO’s county-level simulation results. 

 

Figure 13. Adjustments to EV energy consumption in TEMPO based on weather year 2012 
temperatures. 

The data for all 975 U.S. weather stations used in this study (from Liu et al. 2023) are shown in grey. The national 
median pattern is shown in black. Lines for four selected locations (colored lines) demonstrate distinct seasonal 

patterns, which are used to adjust EV energy consumption with location specificity.  
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2.5 Developing Vehicle Electrification Scenarios 
The future is already here; it’s just not very evenly distributed.  

– William Gibson 

TEMPO has the capability to project vehicle electrification endogenously using a utility-based 
technology choice logit algorithm (Muratori, Jadun, et al. 2021), or to apply sales shares based 
on exogenously defined scenarios. Exogenous sales shares are uniformly applied to all vehicle 
size classes.22 For this report, we simulated three exogenous passenger light-duty EV adoption 
scenarios, shown in Figure 14: 

A. AEO Reference Case, with EV adoption aligned with the Reference Case in the 2018 EIA 
Annual Energy Outlook (AEO) (EIA 2019), which was used to calibrate the TEMPO 
model. 

B. EFS High Electrification, with EV adoption in line with the High Electrification scenario 
in the NREL Electrification Futures Studies (EFS) (Mai et al. 2018).  

C. All EV Sales by 2035, assuming U.S.-average EV sales reaching 50% in 2030 and 100% 
in 2035, in line with various announced targets. 

 
Figure 14. Projected national technology sales shares for each EV adoption scenario 

In the AEO Reference Case scenario, mobility evolution and technology adoption were 
calibrated to align with the EIA AEO 2018 Reference Case. The EIA AEO Reference Case is a 
baseline projection that assumes no new policies and static technology, reflecting “business-as-
usual” conditions that should not be mistaken for a scenario representative of what is likely to 
happen in the future (EIA 2019). In the EFS High Electrification scenario, EV adoption results 
from “a combination of technology advancements, policy support, and consumer enthusiasm that 

 
22 We note that as of 2023, EVs still do not yet exist in every vehicle size class and segment, but also note rapid 
growth in EV model options in recent years, globally and in the United States. 
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enables transformational change in electrification” in line with that assumed in the NREL EFS 
(Mai et al. 2018) High Electrification scenario. This is characterized by advanced EV cost and 
performance improvements and strong EV policies. The High Electrification county-specific 
projections represent pathways and outcomes consistent with the national EFS scenario rather 
than precise projections of the future for each county. In the All EV Sales by 2035 scenario, 
national EV adoption reaches 50% in 2030, aligned with the national goal announced in a 2021 
Biden Administration Executive Order,23 and 100% by 2035, a target roughly aligned with 
announced commitments of several major automakers and “ICE Phase-Out” targets of sub-
national governments and global coalitions, including the 2035 timeline set in the zero-emission 
vehicle (ZEV) state mandates regulating manufacturer fleet composition in California and 
several other U.S. states that have announced they will follow with the same ambition (New 
York, Washington, Massachusetts, Oregon, and Vermont).24 In this scenario, plug-in hybrid 
electric vehicles (PHEVs) are assumed to be 20%–30% of the total EV sales share in the 2025–
2035 transition time frame before tapering off to 0% by 2045, based on expert opinion and latest 
trends in BEV technology, infrastructure, and policies.  

While exogenous scenarios and projections are defined at the national level, EV sales and stock 
data disaggregated to the county level are only available for historical data. In other words, the 
national-level scenarios do not project where EV sales may be lower or higher than the national 
average in future years. We disaggregate projected EV adoption by county by anchoring each 
county’s EV sales share for the base year to county-level vehicle registration data from Polk in 
the base year25 and then applying the exogenously defined national-level growth rate trends 
uniformly across all counties. This approach captures the current heterogeneity in EV adoption 
observed across U.S. counties and extends this into the future, assuming similar positioning of 
counties in terms of EV adoption either leading or lagging the national average growth trend. 
Counties in states with ZEV regulations aligned with California26 are also assumed to lead the 
national average growth trend (i.e., grow faster and earlier than the national average).  

 
23 “50% clean car sales by 2030” https://www.whitehouse.gov/briefing-room/statements-releases/2021/08/05/fact-
sheet-president-biden-announces-steps-to-drive-american-leadership-forward-on-clean-cars-and-trucks/ 
24 Section 177 of the Clean Air Act allows other states to adopt California’s vehicle emissions standards. As of 2023, 
five states (Washington, Massachusetts, New York, Oregon, and Vermont) have adopted standards equivalent to the 
most recent (finalized in 2022) California Air Resources Board Advanced Clean Cars II (ACC II) program, which 
will require manufacturers to sell 100% ZEV by 2035. https://cleantechnica.com/2022/12/23/canada-joins-
california-oregon-washington-vermont-in-clean-transportation-push/.  In addition, internationally, countries such as 
Canada (2035), the UK (2035), Norway (2025), France (2040), Netherlands (2030), and Austria (2030) have 
announced 100% ZEV targets, either via fleet composition regulation and credit compliance or GHG standards. 
https://theicct.org/phase-out-map-ldv/. 
25 While TEMPO’s base simulation year is 2017, it is possible and useful for exogenous EV sales share projections 
to be anchored and calibrated to the most recent EV sales data (e.g., 2022). We expect to regularly update these 
scenarios of EV sales, given the rapid pace of change in EV adoption across the United States. 
26 As of 2023, states that have joined California in its Low-Emission Vehicle (LEV) and ACC I ZEV program were 
Connecticut, Maine, Maryland, Massachusetts, New Jersey, New York, Oregon, Rhode Island, and Vermont. 
Several other states (Colorado, Minnesota, Nevada, Virginia, and New Mexico) have legislated or previously 
indicated political intentions to join in future years. Delaware, Pennsylvania, and Washington, D.C., have so far 
followed the California LEV standards but not the ZEV program. Roughly, these states account for 20%–40% of the 
U.S. new vehicle sales market. https://ww2.arb.ca.gov/sites/default/files/2022-
05/%C2%A7177_states_05132022_NADA_sales_r2_ac.pdf, https://www.c2es.org/document/us-state-clean-vehicle-
 

https://www.whitehouse.gov/briefing-room/statements-releases/2021/08/05/fact-sheet-president-biden-announces-steps-to-drive-american-leadership-forward-on-clean-cars-and-trucks/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/08/05/fact-sheet-president-biden-announces-steps-to-drive-american-leadership-forward-on-clean-cars-and-trucks/
https://cleantechnica.com/2022/12/23/canada-joins-california-oregon-washington-vermont-in-clean-transportation-push/
https://cleantechnica.com/2022/12/23/canada-joins-california-oregon-washington-vermont-in-clean-transportation-push/
https://theicct.org/phase-out-map-ldv/
https://ww2.arb.ca.gov/sites/default/files/2022-05/%C2%A7177_states_05132022_NADA_sales_r2_ac.pdf
https://ww2.arb.ca.gov/sites/default/files/2022-05/%C2%A7177_states_05132022_NADA_sales_r2_ac.pdf
https://www.c2es.org/document/us-state-clean-vehicle-policies-and-incentives/
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 Figure 15 show the result of the disaggregation of exogenously specified national sales shares 
into county-level sales shares in each of the three scenarios. In every scenario, by 2022, many 
counties, particularly in states with ZEV regulations, had EV sales shares well over the national 
average of 7%. Although in the AEO scenario, electrification is slow on average (2% to 15% by 
2050), some counties reach 70% EV sales share by 2050, while others stay near zero, reflecting 
high heterogeneity in counties. Similarly, in the EFS and All EV Sales by 2035 scenarios, some 
counties reach 90%+ EV sales shares in 2030, though the national average is only at about 50%–
60%. Figure 16 focuses on the disaggregated exogenous sales shares for the All EV Sales by 
2035 scenario, showing them on a choropleth of the United States. We can see that current and 
near-term (2025) EV sales shares are highly heterogeneous across the United States, with much 
higher sales in ZEV states, and that future 2030 EV sales shares, when the national average hits 
the 50% goal in the Biden administration executive order, would be temporarily concentrated in 
counties with projected leads in sales share while other counties stay lagged in EV sales, 
potentially due to infrastructure, behavioral, cultural, and/or political reasons. However, because 
this scenario follows a path of national sales being 100% EV by 2035, every county is specified 
to reach 100% by 2035 in this scenario, thereby projecting no heterogeneity in sales shares by 
2035. 

 
 Figure 15. Projected ZEV sales shares for all counties (each colored line) in the United States for 

three TEMPO vehicle electrification scenarios. 
Line colors indicate whether the county is in a state with ZEV mandates that regulate fleet composition. Dashed black 

lines represent the exogenously specified national projections to which the county-level sales shares average.  

 
policies-and-incentives/. O'Dea, J., State adoption of clean vehicle standards (updated May 6, 2022). Online at: 
https://docs.google.com/spreadsheets/d/1ihjIzOGLb7cfrvblaNwC74sfFC-LBC26HWDWovgFGuw/edit#gid=0 
 

Rest of US 
 

ZEV State 
 

National 
Average 

https://www.c2es.org/document/us-state-clean-vehicle-policies-and-incentives/
https://docs.google.com/spreadsheets/d/1ihjIzOGLb7cfrvblaNwC74sfFC-LBC26HWDWovgFGuw/edit#gid=0
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Figure 16. TEMPO’s projected ZEV sales shares in 2025 and 2030 for all counties in the 

contiguous United States in the All EV Sales by 2035 scenario. 

All LDV Sales EV by 2035 Scenario, projected year 2025
National average in projected year 2025: 8%

All LDV Sales EV by 2035 Scenario, projected year 2030
National average in projected year 2030: 50%
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2.6 Simulating Week-long Hourly EV Charging Profiles 
TEMPO was previously limited to simulating estimates of annual energy consumption. We 
enhanced TEMPO to generate household EV charging load profiles for each county, based on an 
aggregation of individually simulated households, vehicles, and trips. Appendix B shows further 
detail on how simulated data are processed, from TEMPO’s individual household-level trips to 
EV consumption profiles, EV charging schedules, and the county-level load profile data for 
dsgrid.27 

TEMPO first simulates a household’s mobility needs, then their intra-household and travel mode 
choice given their available options (vehicle and mode availability), and then the associated 
energy use from each trip. For the simulation of temporally resolved charging load profiles, we 
extract the trips that use household EVs and compile week-long hourly trip schedules for each 
EV by building from weekday/weekend and time-specific travel distributions derived from 
NHTS. We start each week on a Monday and simulate 12 week-long travel profiles for each 
year, one representative week per month of the specified weather year, to represent seasonal 
impacts.28  

Then, TEMPO converts these week-long EV trip schedules into envelopes of minimum and 
maximum battery energy required to fulfill that demand. The envelope of each representative 
vehicle is a feasible space for charging behavior, given the state of charge that resulted from 
prior consumption and charging, plus energy needs for upcoming trips. This is illustrated in 
Figure 17, where the top two charts represent TEMPO’s simulated vehicle and energy use, and 
the bottom chart shows the resulting feasible charging envelope.  

TEMPO generates an “immediate” charging profile (also called “as soon as possible”), which is 
the upper bound of the charging envelope, outlined in red in Figure 17. Each vehicle charges as 
soon as plugged in until fully recharged or taken on another trip. Under “immediate” charging 
scenarios, the charging profile closely follows the vehicles’ energy consumption profile as EV 
batteries are charged at the first available charging opportunity. This means drivers in TEMPO 
do not consider any factors, such as electricity prices or charger convenience, that could 
influence their charge timing. In this report, drivers and vehicles in TEMPO are also assumed to 
have ubiquitous access to charging whenever a trip is not in progress, though TEMPO can 
incorporate spatially and temporally disaggregated charging availability to better reflect realistic 
charging access. The current “immediate + ubiquitous” charging strategy provides a simple 
approximation reflecting an easily imagined behavioral pattern in which drivers plug in their EV 
whenever they have ended a trip and there is an EV charger at all parking locations. It is a worst-
case scenario from a demand-side flexibility perspective: EVs do not provide any flexibility, and 
drivers, only considering mobility needs, aim to maintain as high as possible battery state of 
charge at all times (thus minimizing any possible range anxiety). This also represents a minimal 
assumption on charging behavior, one that may be loosely supported by anecdotal information 
on BEV “charging anxiety” and doesn’t require any supply-side information on electricity prices 
or other demand response programs that are used to influence consumer behavior and choices. 
The lower bound of the charging envelope, outlined in green in the bottom chart of Figure 17, 

 
27 Footnote 37 and the dsgrid documentation https://dsgrid.github.io/dsgrid/data_format.html discuss the data format 
of representative weeks for each season, which are then extrapolated to 8760 profiles either in TEMPO or dsgrid. 
28 As opposed to following the actual date-specific hourly weather conditions of the weather year. 

https://dsgrid.github.io/dsgrid/data_format.html
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corresponds to a “delayed” or “as late as possible” charging strategy where the EV is plugged in 
as late and rarely as possible. While there is no behavioral evidence for the realism of such a 
strategy, pairing it with the “immediate” profile can provide bounds on flexibility that EV 
charging can provide to the power system while still meeting all mobility needs.  

 
Figure 17. EV charging envelopes characterize the charging opportunities that are consistent with 

vehicles’ consumption patterns, charging opportunities, and technological capabilities. 
The charging envelopes are bounded in red and green, red being the “immediate” or “as soon as possible” charging 
strategy and green being the hypothetical “delayed” or “as late as possible” charging strategy. These strategies also 
reflect EV batteries being charged to their maximum and minimum state of charge, respectively (maximum due to 

physical and technological constraints, and minimum due to energy needed to support travel demand). 

TEMPO has the ability to generate any charging pattern within this feasible envelope for each 
sampled EV. Other patterns worth exploring in further studies include those that are optimal for 
time-of-use electricity rates and those with centralized or semi-centralized managed charging 
that provide grid services by scheduling the charging (and potentially discharging) of many EVs. 
Determining actual or optimal charging loads within this envelope requires co-simulating 
transportation and power systems, as was done in Hale et al. (2022), where TEMPO was further 
developed to estimate EV charging patterns within the feasible envelope for the purposes of 
maximizing value to the bulk power system. 
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Under the immediate charging strategy, charging rates and sessions are bounded by trip energy 
demands, vehicle battery capacities, and charger capacities. TEMPO currently distinguishes two 
types of charging according to charging location: regular charging, which includes 
residential/workplace/commercial,29 and public DCFC. Both types of charging are further 
differentiated by power level: Level 1 (L1) or Level 2 (L2) for regular charging, and 50 kW or 
150 kW for public DCFC (Table 2). 

While assumed ubiquitous here, limited charging infrastructure availability and charging power 
levels specific to locations and times would impact the feasible envelope by limiting the ability 
of EVs to charge where and when there are fewer chargers available than EVs that could plug in. 
Future charging patterns could reflect trade-offs between overnight charging at home, if 
available, and opportunity charging at workplaces or public locations. Other considerations 
related to charging include range anxiety, responsiveness to prices and participation in demand 
response programs, and ability and willingness to change parking behavior to access charging. 

Finally, one significant limitation of the current TEMPO modeling is that all charging loads are 
assumed to be associated with the household’s home county. While residential charging can be 
safely associated with the household’s home county, some workplaces and/or charging during 
long road trips may be associated with neighboring or farther counties, particularly those 
containing major travel corridors. However, in the immediate and ubiquitous charging scenarios 
considered in this report, most of the charging load is done at local residential, workplace, and 
destination chargers, and all opportunities for charging are used immediately (so even for road 
trips, EVs typically start off fully charged from the previous charging session). Therefore, the 
amount of misallocated charging load here in this current work is limited. This issue should be 
revisited in future work and scenarios where there is more public charging away from home. 

Table 2. Charger Assumptions Used in TEMPO for dsgrid Scenarios 

Charger Type Detail Maximum Charge Rate 

Regular charging Includes residential, workplace, and 
public commercial/community 

95% at 7.2 kW (L2) 
5% at 1.4 kW (L1) 

Public DCFC Used when trips exceed vehicle 
range 

75% at 50 kW 
25% 150 kW 

 
  

 
29 TEMPO currently does not geolocate driving or resting events and therefore does not distinguish between 
residential, workplace, or public charging, with the exception of trips that exceed the electric range of a vehicle, 
which necessitate a charging stop that is assumed to be at a public DCFC station. Simulating trip purpose or 
origin/destination types, possibly informed by NHTS, would allow TEMPO to model more specific charging 
availability and infrastructure needs.  
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3. Results: Charging Load Scenarios 
In this section we provide a high-level summary of the three projections created for this report 
(Section 3.1) and then demonstrate the spatial and temporal heterogeneity in those data by 
focusing on the All EV Sales by 2035 scenario (Section 3.2). 

In general, projecting future EV charging loads is a complex task fraught with many 
uncertainties. A real-world charging profile depends on vehicle characteristics (e.g., energy 
efficiency), travel behavior (e.g., amount of travel, timing, and duration of trips), usage details 
(e.g., outdoor temperature, driving styles), infrastructure availability (e.g., location and types of 
chargers), policy (e.g., electricity tariffs, charger-specific rates, demand response programs), and 
charging behavior (e.g., preferences and decisions made around when and where to charge). 
Because the EV market is currently very small, undergoing rapid technological change, and 
heavily concentrated in limited consumer segments, empirical data are scarce, and in any case 
are not necessarily appropriate for long-term extrapolation. As such, we have simulated feasible, 
rather than likely, charging loads as part of possible scenarios to illustrate plausible outcomes, 
but these should not be viewed as definitive assessments of future loads associated with EV 
charging.  

3.1 Scenario Result Summary 
Because TEMPO is nationally comprehensive and simulates representative households and their 
trips and EVs for every county over representative days, weeks, seasons, and future years, 
TEMPO can produce projections of aggregate U.S. load by summing up all the results. This is 
shown in Figure 18 with total annual energy (TWh/yr) over the projected years and scenarios, 
and peak hourly demand (GWh/h)30 for each month, selected year, and scenario. In the All LDV 
Sales EV by 2035 scenario, the electric load from household-owned EVs reaches 930 TWh/yr. 
This is somewhat higher than the 750 TWh/yr in the EFS scenario here, primarily due to a faster 
acceleration and higher proportion of EV sales over the medium term, reaching 100% by 2035 
(compared to EFS, which projects EVs reaching approximately 65% of light-duty vehicles by 
2035 and reaching 95% only by 2050). In addition, projections of EV energy efficiency have 
changed significantly since the EFS project, with 20-40% less energy used per mile in 2050 than 
in the original EFS modeling inputs, resulting in lower load due to LDV electrification, in both 
scenarios here31, compared to the original EFS scenario results. The 930 TWh/yr load in 2050 in 
the All LDV Sales EV by 2035 scenario would be approximately 19% of future load32, which 
remains within the range of previous estimates (13-29%) of electric load from full LDV 
electrification, as discussed in the Introduction. 

 
30 Hourly load (e.g., in GWh/h) is the finest temporal resolution predicted by TEMPO. The power draw during times 
within an hour could be higher in terms of instantaneous demand—e.g., in instantaneous gigawatts (GW) measured 
over seconds or minutes—but the hourly load is the total electricity demanded in the specified hour. Peak hourly 
load refers to the highest hourly load over all hours of the specified months and years. 
31 Results here reflect a TEMPO scenario with EV adoption in line with the EFS High Electrification scenario, but 
with EV energy efficiency inputs updated since EFS. 
32 Assuming 930 TWh/yr is the only addition to current load 
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Figure 18. Aggregate U.S. annual and peak hourly EV load under three scenarios 

3.2 Spatial and Temporal Heterogeneity in EV Load 
We now focus on showing the simulated results of the All EV Sales by 2035 scenario. First, we 
show the aggregate U.S. charging load profile for average weekdays for every month of the year 
in Figure 19. Weekday EV charging load under ubiquitous and immediate charging behavior 
assumptions has a diurnal pattern with a morning and afternoon peak when substantial numbers 
of vehicles end their trips and start charging. We find aggregate U.S. EV charging load reaches 
peak hourly loads33 of 82 GWh/h in 2036 and 181 GWh/h in 2050 during a weekday evening 
hour34 in the coldest winter and hottest summer months (dark purple and bright orange lines, 
respectively, in Figure 19). Aggregate U.S. EV charging load is generally larger in winter 
months because vehicular heating loads add to vehicle energy consumption; however, vehicular 
cooling loads in the peak afternoon hours in the summer35 appear to be comparable in magnitude 
to heating loads in those hours. Morning peaks are higher in the winter than in the summer. Load 
grows from 2036 to 2050 primarily due to large increases in EV adoption and continued growth 
in vehicle size, vehicle ownership, and population, but the growth is mitigated by improved 
energy efficiency. In this specified scenario and charging strategy, other factors such as 

 
33 Hourly load (e.g., in GWh/h) is the finest temporal resolution predicted by TEMPO. The power draw during times 
within an hour could be higher in terms of instantaneous demand (e.g., in GW), but the hourly load is the total 
electricity demanded in the specified hour. Peak hourly load refers to the highest hourly load over all hours of the 
specified months and years. 
34 TEMPO develops trip and charging schedules in local time, which means the timing of loads across the United 
States depends on location. The aggregate U.S. loads presented here have been aggregated with time offset to 
Central Time. Similarly, in dsgrid, loads are spatiotemporally specified so that time zone can be considered. 
35 Note that TEMPO does not currently consider any seasonal variation in travel or trip behavior. 
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evolution in charging power, vehicle ownership, travel demand, and mode choice contribute 
relatively little to changes in load.  

 
Figure 19. Aggregate U.S. EV charging load profile for an average weekday for the All EV Sales by 

2035 scenario for projected years 2036 and 2050 under the immediate and ubiquitous charging 
strategy, with seasonal variation shown by line color (blue for winter, orange for summer) 

The spatial and temporal resolution enabled by county-level TEMPO provides data for county-
level hourly load profiles. To illustrate the importance of modeling the heterogeneity of charging 
load across the United States, we present the projected 2036 EV charging load profiles at the 
state level for the contiguous United States in Figure 20 and for eight example counties in Figure 
21.  

The spatial heterogeneity in EV load profiles shown in Figure 20 and Figure 21 arises from a 
combination of many factors in TEMPO. Setting aside the inherent differences in population or 
household count between counties, the county-specific charging load on a total, per-capita, or 
per-household basis first depends on factors such as vehicle ownership [vehicles/household] and 
EV adoption levels [% EV], and these factors vary based on the disaggregated household and 
county characteristics and available travel options simulated in TEMPO. These determine the 
number of EVs or EV/capita in a county. Then, the scaled charging load per EV depends on 
vehicle use [VMT/EV],36 which varies by household urbanity/income/size and travel options; 

 
36 TEMPO does not make explicit assumptions about VMT per vehicle or household; rather, TEMPO preserves 
travel needs and demand (as estimated from NHTS) and simulates the adoption and use of new options, assuming 
new options do not induce behavioral changes. TEMPO does simulate households with different VMT, thereby 
allowing for self-selection of households with lower or higher VMT into EV adoption. TEMPO also simulates 
households with a portfolio of vehicles, allowing for shifts in VMT within the household set. TEMPO projections so 
far have not resulted in significant differences in “eVMT” compared to VMT of conventional vehicles. While recent 
studies have found low eVMT based on early (2014–2017) California EV adopters and their residential meter data 
(Burlig et al. 2021) and from limited EV data from the 2017 NHTS, more recent data reflecting modern EV 
capabilities and ranges show that future eVMT is not expected to necessarily differ significantly from typical or 
average VMT. We also note that projections of possible futures to 2050 require extrapolation beyond inputs based 
on existing adopters and behaviors. 
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vehicle and charger energy efficiency [kWh/mi], which varies by vehicle size and type 
(dependent on county and household); weather (varies by county, time, and season); and charger 
type. These factors and their spatial heterogeneity combine to form the spatial patterns of EV 
load shown in Figure 20 and Figure 21. Mathematically, we can decompose EV load into these 
factors with a modified Kaya-style identity: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸 𝐴𝐴𝑙𝑙𝐴𝐴𝑙𝑙 �
𝑘𝑘𝑘𝑘ℎ

𝑦𝑦𝑦𝑦 ∗ 𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴
� 

= 𝐸𝐸𝑉𝑉ℎ𝑐𝑐𝑐𝑐𝐴𝐴𝑉𝑉 𝑙𝑙𝑜𝑜𝐴𝐴𝑉𝑉𝑦𝑦𝑜𝑜ℎ𝑐𝑐𝑐𝑐 �
𝑣𝑣𝑉𝑉ℎ𝑐𝑐𝑐𝑐𝐴𝐴𝑉𝑉𝑜𝑜
𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴 � ∗ 𝐸𝐸𝐸𝐸 𝑜𝑜ℎ𝐴𝐴𝑦𝑦𝑉𝑉 �

𝐸𝐸𝐸𝐸𝑜𝑜
𝑣𝑣𝑉𝑉ℎ𝑐𝑐𝑐𝑐𝐴𝐴𝑉𝑉𝑜𝑜� ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝑉𝑉𝑉𝑉 �

𝑚𝑚𝑐𝑐/𝑦𝑦𝑦𝑦
𝐸𝐸𝐸𝐸

� ∗ 𝐸𝐸𝐸𝐸 𝑉𝑉𝐴𝐴𝑉𝑉𝑦𝑦𝑒𝑒𝑦𝑦 𝑐𝑐𝐴𝐴𝑐𝑐𝑉𝑉𝐴𝐴𝑜𝑜𝑐𝑐𝑐𝑐𝑦𝑦 �
𝑘𝑘𝑘𝑘ℎ
𝑚𝑚𝑐𝑐 �  

This formulation can reveal how the variation in factors dependent on geography and scenario 
impacts total EV load and it is being used in ongoing TEMPO work to analyze the inherent 
heterogeneity and uncertainty in EV load across the United States and in future scenarios.
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Figure 20. State-level per-capita EV charging load profiles for an average weekday for the All EV Sales by 2035 scenario for projected 
year 2036 under the immediate and ubiquitous charging strategy, for the contiguous United States, with seasonal variation shown by 

line color (blue for winter, orange for summer) and U.S. annual average in black dashes. 
The EV load profile variation simulated in TEMPO for this report and the dsgrid project arises from a combination of differences in EV adoption, VMT, vehicle size, 

and climatic impacts on EV efficiency. Northern states with higher rurality and states with higher EV adoption tend to have larger loads.  
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Figure 21. County-level per-capita EV charging load profiles for an average weekday for the All EV 

Sales by 2035 scenario for projected year 2036 under the immediate and ubiquitous charging 
strategy, with seasonal variation in color (blue for winter, orange for summer) and U.S. annual 

average in black dashes. 
 The load profile variation simulated in TEMPO for this report and the dsgrid project arise from a combination of 

differences in EV adoption, VMT, vehicle size, and climatic impacts on EV efficiency. The urbanity and density of a 
county heavily impacts vehicle ownership and use, with New York (containing Manhattan) being a special case. 

Certain counties such as Santa Clara (containing San Jose and Silicon Valley) also have particularly high EV 
adoption. 
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Of note in Figure 21, lower vehicle ownership and use in highly urban counties such as New 
York County, New York (Manhattan), and San Francisco County, California, reduce their 
vehicles per capita and VMT per EV, explaining their relatively lower charging load per capita. 
Higher EV adoption levels in certain states such as California increase their EV share and EV per 
capita. VMT per mi tends to be larger in rural areas, correlated with larger vehicles, and areas 
with more temperature extrema. 

While differences in household mixes and demographics modeled in TEMPO can explain part of 
the difference in EV load, county-specific factors enabled by this work can help produce load 
simulations with better locational specificity. For example, Jefferson County, Colorado, and 
Harris County, Texas, have relatively similar household mixes, as shown from the demographics 
example in Figure 5, resulting in similarities in simulated transportation demand and vehicle 
preferences. However, county-specific factors such as EV adoption, vehicle size mix, and 
temperature effects further differentiate the EV energy usage and load profile in these two 
counties in TEMPO’s county-level simulations beyond household bin mix, as can be seen in the 
middle panels of Figure 21. 

  



36 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

4. Conclusions 
This report documents enhancements made to the TEMPO model to project spatially and 
temporally resolved national-scale passenger EV charging load profiles and summarizes three 
scenarios and corresponding data sets created for the NREL dsgrid project. In brief, TEMPO was 
enhanced from a national and annual model focused on aggregate energy demand to include 
county-level projections of household EV hourly charging load profiles, accounting for 
heterogeneity in consumers, travel, and temperature affecting EV energy demand. In alignment 
with NREL’s forward-looking grid modeling, three scenarios for EV adoption covering 2020–
2050 were created: AEO Reference Case, EFS High Electrification, and All EV Sales by 2035, 
and associated data sets have been included in dsgrid for public use. 

Overall, TEMPO was already a projection model that coupled known relationships between 
demographics, urbanity, mobility demand, transportation mode selection, and vehicle types to 
travel patterns and population projections to create realistic scenarios of transportation energy 
use for the United States. However, geographically resolved hourly charging profiles are 
required to support large-scale capacity expansion (investment) and production cost (operational) 
modeling of bulk power systems. In this work, we enhanced TEMPO to capture the distribution 
of each county’s population across TEMPO’s native 60 household bin resolution, which captures 
urbanity and sociodemographic variables; determined vehicle ownership, attribute, and type 
preferences by county; and used 2012 weather data for 975 locations to capture the impact of 
outdoor temperature on vehicle energy efficiency. We also developed county-disaggregated EV 
adoption scenarios and simple algorithms to simulate representative week-long EV trip and 
charging schedules based on heuristics and assumed charging behavior and infrastructure 
availability. 

Future EV charging load profiles are highly uncertain. TEMPO attempts to model realistic 
mobility demands and transportation mode and technology choices given configurable sets of 
inputs; brackets large uncertainties through the creation of scenarios; and conducts sensitivity, 
benchmarking, and validation analyses so its results can be understood in context, used for cross-
sectoral analyses, and continuously improved. Extending TEMPO to produce county-level, 
hourly charging profiles introduces even more uncertainties—for example, future demographic 
composition and urbanity levels, charging infrastructure build-out, and charging behavior, all of 
which could develop and change differently in different counties over time. In this work we 
make basic assumptions along all of these dimensions: Urbanity of counties is held constant, and 
demographic distributions are held constant while population grows according to national trends. 
In these scenarios, we make the simplifying assumption that all EVs plug in as soon as they park 
and charge (immediate and ubiquitous charging), until their batteries are full or they depart on 
their next trip, whichever comes first (uncoordinated charging). We also assume all charging is 
associated with the household’s home county.  

As described in Section 2.6, TEMPO can simulate EV charging flexibility with bounded 
envelopes in which EV charging can be managed to meet all mobility requirements. However, 
determining actual or optimal charging loads within this envelope requires co-simulating 
transportation and power systems, as was done in Hale et al. (2022), where TEMPO was further 
developed to estimate EV charging patterns within the feasible envelope for the purposes of 
maximizing value to the bulk power system. 
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There is significant work ongoing and more work possible (especially coupled with realistic 
charging infrastructure scenarios) to explore different EV charging behaviors and the nexus 
between transportation electrification and electricity systems transformation, including 
coordination with the grid to provide value to the power system via demand response; scheduled, 
managed, or opportunistic charging; vehicle-to-grid (V2G) services; or direct use of vehicle 
batteries to power loads (V2X) (Hoehne and Chester 2016; Anwar et al. 2021). 

Given this project’s limited scope and simplifying assumptions, future work could include: 

• Incorporation of detailed baseline and projected variation in residential and public parking 
and EV charger infrastructure availability, by county and household bin. 

• Consideration of trip purpose and expected origins/destinations, by hour, to improve 
representation of charging availability, options, behavior, and appropriate charging load 
assignment (i.e., for counties with significant public charging of vehicles from other 
counties). 

• Consideration of short- and long-term travel flexibility and changes in EV usage enabled by 
new technologies, behaviors, business models, and policies such as telecommuting, ride-
hailing, micromobility, e-commerce, and vehicle automation. 

• Developing advanced charging strategies and decisions informed by spatiotemporal-specific 
electricity supply and prices.  

• Improved resolution of charging efficiency, dependent on charging location, type, 
power/speed, and behavior. 

• Enhancement of the representation of county-level vehicle stock and sales, with 
consideration of vehicle age, used vehicles, and county-specific sales, survival/retirement, 
and vehicle transfers. 

• Research to determine the appropriate temporal resolution for capturing weather and seasonal 
impacts and longer-term impacts of climate change on both energy efficiency and travel 
behavior. 

• Subsequent support for multiple weather year and typical meteorological year scenarios. 
• Development and validation of spatially and temporally resolved policies, regulations, 

infrastructure, and prices affecting EV adoption and use. 
• Incorporation of county-level population projections and/or more detailed demographic and 

urbanity projections. 
• Extension to charging loads from electrification of: 

o Non-household light-duty vehicles (e.g., taxi, ride-hailing, mobility-as-a-service fleets). 
o Light-, medium-, and heavy-duty vehicles used for non-household/passenger purposes, 

e.g., freight, service, vocational, work.  
o Other vehicles and travel modes such as buses, transit, micromobility, rail, maritime, 

aviation, and off-road vehicles (e.g., construction, agriculture, mining). 

• Extension to quantify indirect transport electrification electricity needs (i.e., electricity 
consumed to produce hydrogen and other transportation fuels) and their temporal flexibility. 

• Inclusion of other metrics such as activity/service, vehicle sales/stock, costs, emissions, and 
energy demand (not only electricity) projections in the data transferred to and published in 
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dsgrid, which would be helpful in producing normalized metrics and/or in the evaluation of 
remaining electrification potential. 

• Research to compare simulated results against real-world observed EV loads—e.g., Burlig et 
al. (2021), Qiu et al. (2022)—and validate behavioral assumptions and load impacts affecting 
spatial and temporal patterns, such as rebound and response to pricing. 

• Research to compare simulated results against results from other models—e.g., NREL’s EVI-
Pro (NREL 2016); Miller, Arbabzadeh, and Gençer (2020). 

• Validation via comparison of intermediate results such as heterogeneous VMT and fuel 
economy (mpg)—e.g., BTS (2021), Zhou et al. (2021). 

Table A-1 also discusses some of the limitations and potential enhancements of TEMPO’s 
current representation of households, vehicles, infrastructure, economics, and travel behavior. 

Limitations stated, this work developed three scenarios of annual hourly load projections for 
household EV charging for all counties in the contiguous United States projected through 2050. 
We believe this is a first-of-its-kind data set, the value of which is evident when we observe just 
how heterogenous EV adoption, use, and charging is in the simulation results. The spatial and 
temporal heterogeneity in the projections emerges from coupling the on-the-ground 
heterogeneity of today in urbanity, household composition, vehicle preferences, and weather, 
with the TEMPO projections of mobility need, transportation mode choice, and vehicle choice. 
The result is data and supporting modeling tools that can be used today to inform location-
specific grid planning and operational models, as well as comprehensive, scenario-spanning, and 
internally consistent projections of EV adoption, use, and charging load. 
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Appendix A. Disaggregation and Enhancement of 
TEMPO Inputs Possible in Future Work 

Table A-1. TEMPO Data Inputs That Could Be Further Explicitly Spatially Disaggregated or May 
Benefit From Further Enhanced Representation 

 
TEMPO Data 
Input 

Model Resolution Potential Enhancements, Disaggregation, and 
Data Sources  

H
ou

se
ho

ld
 Household counts 60 bins for each of 

3,143 U.S. 
counties 

Enhancements of projections of migration, 
urbanization, household size, and driver licensing are 
possible. Potential data from LandScan. 

Ve
hi

cl
e 

Vehicle stock by 
age/vintage, and 
survival/retirement 
schedule 

National Endogenous vehicle ownership and household-level 
vehicle dropping is a work in progress. 
County-level preferences for “age” (i.e., used vehicles) 
can be inferred from Polk/Experian vehicle registration 
data. 
County-level vehicle survival may vary due to regional 
factors such as salt, heat on battery degradation, 
VMT; vehicle factors such as ownership, 
maintenance, vehicle quality; and demographic 
factors such as income-based preferences. 
County-level stock and regional survival, paired with a 
representation of used vehicle transfers, could better 
represent vehicle stock and sales, but remains a work 
in progress. 

Vehicle energy 
efficiency 

Differentiated by 
size class and 
weather 

Further disaggregation of vehicle energy use possible 
to distinguish preferences for vehicle 
luxury/sport/efficiency, vintage specificity, and driving 
type by urbanity. 
More detailed and alternative weather data could 
further inform vehicle energy use, such as location- 
and season-specific road conditions (Moniot et al. 
2021; Borlaug et al. 2020) 

In
fr

as
tr

uc
tu

re
 

EV charging 
availability (by 
charger type/ 
location type and 
by time) 

Urbanity-specific 
(5) 

In current scenarios and data for dsgrid, ubiquitous L1 
and L2 charging and ubiquitous DCFC availability 
(only used for trips that exceed range) were assumed. 
County-specific residential charging availability data 
available from Ge et al. (2021). 
County-specific estimates of public charging are 
available from the Alternative Fuels Data Center 
(AFDC), EVI-X, early National Electric Vehicle 
Infrastructure (NEVI) plans, and are in development. 
Time-specific trip purpose and locational data 
available from NHTS (2017). 
To inform how much charging load should be 
assigned within or to neighboring or farther counties, 
the U.S. Department of Transportation Highway 
Performance Monitoring System could be used to 
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TEMPO Data 
Input 

Model Resolution Potential Enhancements, Disaggregation, and 
Data Sources  
approximate travel activity within/across counties and 
the likely location of public charging. EVI-X/EVI-
RoadTrip may also be helpful. 
In addition to charging availability, further detail on 
charging efficiencies by charging speed/type, location, 
and behavior may become important with more 
variations on charging scenarios. 

Public transit 
availability (by 
mode and by 
time) 

Urbanity-specific 
(5) 

In current scenarios and data for dsgrid, calibrated to 
NHTS and/or assumed. Data available from BTS and 
NTD, but difficult to disaggregate comprehensively for 
3,143 counties. 

Mobility as a 
service (MaaS) 
and micromobility 
availability (by 
mode) 

Urbanity-specific 
(5) 

In current scenarios and data for dsgrid, calibrated to 
NHTS and/or assumed. 

Ec
on

om
ic

 

Energy prices National, by 
scenario 

Although most demand (e.g., trip frequency and 
length) is configured to be price-inelastic in TEMPO, 
structural differences in regional prices could drive 
differences in behavior and choices. 
Spatially differentiated gasoline and diesel prices 
(e.g., with impact of differences in fuel taxes and 
refining capacity) available from EIA, GasBuddy, 
OPIS (Gohlke 2021). 
Spatially differentiated and temporally specific (e.g., 
time-of-use or hourly prices) electricity rates available 
by utility region in URDB (NREL 2022) or from 
samples and/or historical wholesale market prices.  
General projections available from ATB (NREL 2020) 
and/or NREL Standard Scenarios. 
Vehicle charging costs, especially for future medium-
/heavy-duty vehicle charging, are dependent on 
equipment/infrastructure costs, charging 
situation/type, charge management, capacity 
utilization, and public investment. 

Technology 
(vehicle) costs 

National, by 
scenario 

AEO, ATB, U.S. Department of Energy Office of 
Energy Efficiency and Renewable Energy Vehicle 
Technologies Office targets. 
Dealer incentives, marketing, specialized offerings 
can differ by location, but data would be difficult to 
collect and integrate. 

Prices affected by 
taxes, subsidies, 
incentives, and 
regulations 

National, by 
scenario 

Can be modeled as adjustments to prices.  
Scenarios do not explicitly include ZEV and 
CAFE/GHG regulations requiring manufacturer fleet-
level credit compliance, state and local subsidies, and 
Inflation Reduction Act provisions for clean vehicles, 
clean commercial vehicles, used clean vehicles, clean 
electricity, clean hydrogen, clean fuels, advanced 
energy, and advanced manufacturing. Data available 
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TEMPO Data 
Input 

Model Resolution Potential Enhancements, Disaggregation, and 
Data Sources  
from sources such as AFDC, Dsire, Atlas Public 
Policy EV Hub. 
However, the exogenous vehicle electrification 
scenarios in this report are qualitatively informed by 
these programs and their incentives and ambition. 

Tr
av

el
 B

eh
av

io
r 

Cost and time 
elasticities and 
preferences for 
technologies/fuels 
and modes 

Bin- (60) and 
county- (3,143) 
specific, via 
county household 
counts 

Currently based on literature and/or fitted and 
calibrated with NHTS and AEO and/or with scenario-
based assumptions. 

Temporal: Non-
time-varying 

Trip/travel 
patterns: trip 
counts, trip 
lengths, vehicle 
occupancies 

Bin- (60) and 
county- (3,143) 
specific, via 
county household 
counts 

Currently, distributions fitted to NHTS (2017) trip data, 
with scaling to match aggregate AEO/BTS estimates. 
Adjustments for seasonal/holiday travel could be 
based on Highway Performance Monitoring System 
data, if warranted. 

Temporal: 10 
periods/day, 
weekday/weekend 

VMT by age and 
position in 
household 

N/A Data available from NHTS (2017). Model 
representation in development. 

Sy
st

em
 

Travel time 
intensities (by 
mode) 

Urbanity NHTS, BTS. Localized estimates of congestion could 
be incorporated, if warranted. (could affect energy 
use, mode choice) 

Emission 
intensities (by 
fuel) 

National GREET, EPA (could affect energy taxes/prices, 
regulations, affecting vehicle technology or mode 
choice) 

Non-household 
passenger light-
duty vehicle 
attributes (cost/ 
time intensities, 
stock/fuel 
economy, 
occupancies) 

National Calibrated to NHTS/assumed 
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Appendix B. TEMPO-dsgrid Linkage 
Table B-1 shows the structure and format of TEMPO’s intermediate data files generated in the 
process of simulating charging profiles, and the final data set compiled and submitted to dsgrid. 

While the provided load data are aggregates of individual households and vehicle loads, the 
metadata provided allows for a disaggregation of vehicle size class (compact car, midsize/large 
car, SUV, pickup), vehicle technology type (PHEV25, PHEV50, BEV100, or BEV300), and 
household type (vehicle energy use associated with households in each of TEMPO’s 60 
household bins). This results in 2,016 data points37 per charger type (2) for each simulated 
household type (up to 60), vehicle technology type (4), vehicle size class (4), county (3,143), 
model year (30), and scenario (3). Thus, the total number of simulated data points is 1.095 
trillion, although many values are efficiently stored zeros. 

Table B-1. Structure and Format of TEMPO Intermediate and Output Data Files for dsgrid 

 TEMPO dsgrid 

File name household-
trips.csv a 

household-ev-
profile.csv b 

household-ev- 
charging.csv c 

lookup.parquet d data.parquet e 

Content Trips Consumption Charging Metadata Load data 

Parquet Data ID    √ √ 

Scenario √ √ √ √  

Region (county) √ √ √ √  

Model Year √ √ √ √  

Weather Year 2012 only  

Month   √  √ 

TEMPO Time 
Period/Weekday 

√     

Hour of Week  √ √   

Hour [of Day]     √ 

Day [of Week]     √ 

Household 
Composition Bin 

√ √ √  
 
 

Compiled in new 
“Subsector” 

variable 

 

Household Income 
Bin 

√ √ √ 
 

Urbanity Bin √ √ √ 
 

Vehicle 
Technology 

√ √ √ 
 

Vehicle Class √ √ √ 
 

 
37 2016 data points, from 12 representative weeks of a year × 7 days of week × 24 hours of day, as opposed to 8,760 
or 8,783 data points for every hour in a year. Because TEMPO only simulates representative weeks and seasonal 
impacts (rather than following every hour in a specific weather year), this data format minimizes unnecessary data 
duplication and avoids false precision in the TEMPO data submitted to dsgrid.  
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 TEMPO dsgrid 

File name household-
trips.csv a 

household-ev-
profile.csv b 

household-ev- 
charging.csv c 

lookup.parquet d data.parquet e 

Fuel √ Electricity only  

Mode √ Household passenger (“personal”) light-duty vehicle 
only 

 

Household ID √ √ √   

Vehicle ID √ √ √   

Weighting Factor √ √ √   

Trip Distance √ √ 
   

Trip/Charge 
Duration 

√ √ √   

Trip Energy 
Consumed 

√ √ √ 
  

Charger Energy 
Delivered 

 
 

√ 
  

Charging 
Type/Power 

 
 

√ 
  

Load: L1&L2 [kWh]     √ 

Load: DCFC [kWh]     √ 

a Trip schedules for individual representative EVs from TEMPO simulations. 
b Week-long energy consumption profiles of when and how much energy each EV consumes when driving. 
c Week-long charging profiles of when and how much each EV accumulates energy from charging and what 
charger type was used. 
d Aggregate charging load metadata “lookup” file identifying the household and vehicle type (subsector) and 
specific sample. 
e Aggregate charging load data, reflecting the hourly electricity demand of each household type and vehicle 
type (subsector) for each county (based on weighted sums of week-long profiles and with seasonal 
adjustment based on month and temperature). 

At this time, only the charging load data and metadata are being directly submitted to dsgrid. 
However, dsgrid has been designed to eventually enable submission of other metrics, which 
could include data describing activity, service, stock, costs, energy demand, and emissions, such 
as trips or miles traveled time series, vehicle counts, energy consumption (other than electricity) 
time series, and/or emissions data, which—along with the differentiation across household types, 
vehicle types, and geographies—would support output of a variety of normalized metrics at a 
variety of geographic, temporal, and sub-sectoral resolutions. This would also be important for 
evaluation of remaining electrification potential. 
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