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Preface

This report is one in a series of Electrification Futures Study (EFS) publications. The EFS is a
multi-year research project to explore widespread electrification in the future energy system of
the United States.

This report documents a new model, the demand-side grid (dsgrid) model, which was developed
for the EFS and in recognition of a general need for a more detailed understanding of electricity
load. dsgrid utilizes a suite of bottom-up engineering models across all major economic
sectors—transportation, residential and commercial buildings, and industry—to develop hourly
electricity consumption profiles for every county in the contiguous United States (CONUS). The
consumption profiles are available by subsector and end use as well as in aggregate. This report
documents a bottom-up modeling assessment of historical (2012) consumption and explains the
key inputs, methodology, assumptions, and limitations of dsgrid.

The EFS is specifically designed to examine electric technology cost advancement and adoption
for end uses across all major economic sectors as well as electricity consumption growth and
load profiles, future power system infrastructure development and operations, and the economic
and environmental implications of electrification. Because of the expansive scope and the multi-
year duration of the study, research findings and supporting data will be published as a series of
reports, with each report released on its own timeframe. Future research to be presented in future
planned EFS publications will rely on dsgrid to analyze the hourly electricity consumption under
scenarios with various levels of electrification. In addition to providing electricity consumption
data for the planned EFS analysis, dsgrid can be used for other analysis outside the EFS research
umbrella.

More information and the supporting data associated with this report, links to other reports in
the EFS study, and information about the broader study are available at www.nrel.gov/efs.
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Executive Summary

Electrical load is the backdrop for all power systems analysis. As a coequal partner in the supply-
demand balance that must be maintained on electrical grids at all times and for all timescales,
load is a major source of variability and uncertainty in grid operations. In the context of our
evolving energy systems, with increasing shares of variable renewable energy, potential
electrification of transport and other end uses, and the emerging ability to control energy use at
the kilowatt-scale using grid-level information, obtaining a deeper understanding of electrical
load is more important now than it has ever been before. Despite this, many studies of future grid
systems understandably continue to place more emphasis on supply-side resources such as
generation and transmission, given that they are fewer in number and are better understood in
terms of cost and performance.

Load forecasting has been at the heart of utility planning for decades, but it is typically done in a
top-down manner that lacks the granularity in time, geography, end use, and technology that is
needed to explore the potential impact of technological shifts. Purely econometric methods that
rely on historical load data combined with projections of economic and demographic parameters
are common. More sophisticated methods include combining econometric techniques with
simple engineering models of a limited number of key end uses. Nonetheless, there is evidence
that these methods may be falling short. For example, Carvallo et al. (2017) find systemic
overestimates of load growth in utility integrated resource plans. These overestimates are
certainly partially explained by the recession that followed the 2008 financial crisis but are
persistent enough to suggest other factors (e.g., energy efficiency adoption and performance)
may have been systematically misestimated. This suggests that more complementary, bottom-up
engineering- or physics-based modeling that incorporates technology and behavioral detail may
be a valuable addition to the load forecasting process.

Analyses exploring future scenarios of the power sector also typically employ relatively simple
scaling of historical loads. To some extent, this is a matter of necessity; renewable integration
studies have demonstrated the importance of modeling systems with significant quantities of
wind or solar generation using time-synchronized load, wind, and solar data. Because it is net-
load that is most important for system operations, these timeseries must all reflect the same
weather as it was experienced simultaneously across the region of interest. Thus, historical
hourly load data are taken from the same year from which the wind and solar data sets are
derived, and a basic scaling factor is applied. For example, MacDonald et al. (2016) project
hourly load in 2030 using a single growth rate assumption of 0.7% applied to all hours. Although
expedient, this methodology is insufficient to capture the impact of significant demand-side
technological change, such as widespread electrification, which could drastically impact load
shapes and demand-side flexibility.

The primary purpose of the demand-side grid model (dsgrid) is to fill these gaps by creating
comprehensive load data sets at a sufficient temporal, geographic, sectoral, and end-use
resolution to enable detailed analyses of current patterns and future projections of end-use load.
Furthermore, the dsgrid platform uses a bottom-up methodology that allows highly resolved
analysis of “what-if” scenarios. dsgrid leverages detailed sectoral energy models to provide
hourly time series of load by subsector, end use, and county covering a full year (see Figure ES-
1). Although dsgrid currently emphasizes electricity load data, its component sector models for
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residential buildings, commercial buildings, and industry provide information on other fuel use,
including natural gas. The data sets can thus be leveraged to support analysis of numerous
demand-side technology-driven changes, such as energy efficiency, electrification, and
operational flexibility (i.e., demand response). The electricity use data are time-synchronized
with solar and wind data sets so as to be suitable for use in power systems analysis.

@ ComsStock IGATE-E  %QAKRIDGE 2 EVI-PRO
| TINREL EPRI | S ' [INREL

demand-side
grid (dsgrid)

/12am  6pm 12pm &pm

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure ES-1. dsgrid provides load data for the contiguous United States at high geographic,
temporal, and sectoral resolution.

This report documents dsgrid and its initial data set, which covers electricity demand in the
contiguous United States (CONUS) for the historical year of 2012. We start with a historical year
to enable model calibration and validation, as well as the development of a mathematical
description of our model residuals that can be applied to future-year “what-if” scenarios to
remove known errors between our bottom-up modeling and historical load shapes. This work is
part of the Electrification Futures Study (EFS),' for which the dsgrid team will be developing
future load snapshots that describe projected year 2050 under baseline and a range of
electrification assumptions.

! www.nrel.gov/efs
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Within dsgrid’s architecture, each sector’s energy use is modeled with separate methodologies.
The core sector models, which provide the most detailed level of modeling available in dsgrid,
cover about 80% of 2012 annual electricity demand (Figure ES-2).? An additional 17% is then
represented with sector-level gap models, which are coarser in both inputs and outputs than the
fully detailed sector models, but nonetheless leverage some of the core data (e.g., load shapes)
and provide hourly demand timeseries resolved at least to the subsector and state level. The
remaining 3% is electricity used for unmodeled commercial subsectors.

100%

Culture/Recreation (2%); Single Family Attached (5%) Agriculture (3%)
Misc. Sales/Service (2%); Other (6%) i Construction (5%)
Laboratory; Vehicle Sales, Maintenance, Storage; Small :‘Illabrltl?ar:n'?:sllggﬁg) 5(572) Mining (796)
Public Order & Safety (5%) — Other Manufacturing (6%)
. Grocery 'f: Convenlenc_e Stores (5%) Apartment Buildings (9%) Wood Products (29%)
75% S — Single Family Detatched (74%) Machinery (29)
Warehouse / Distribution (5%) Computers & Electronics (3%)
Hotel (5%) Nonmetallic Mineral Products (3%) =
Restaurant / Cafeteria (6%) Fabricated Metal Products (4%) 2
50% Education (11%) Transportation Equipment (4%) 2
° _ Plastic & Rubber Products (5%) %
Hospital / Healthcare (11%) Petroleum & Coal Products (7%) 2
Food (7%) I
Retail (15%) Paper (10%) €
25% Pri Metals (139%)
imary Metals
Office (20%) y
Chemicals (18%)
0% . S— :
° Commercial Residential Industrial Transport
(1429 TWh) (1310 TWh) (1331 TWh) (7 TWh)
Subsectors in each category are listed with the percentage .
of electricity they use relative to the sector's electricity use. Detailed Gap Unmodeled

Figure ES-2. dsgrid models about 80% of 2012 U.S. electricity use in detail.

Brief descriptions of the detailed sector methodologies follow:

e Residential and Commercial Buildings: Building loads are estimated using ResStock
and ComStock, which use similar statistical methodologies and OpenStudio modeling
infrastructure to simulate the U.S. single-family detached and commercial building stock
electricity consumption by end-use. These models sample from thousands of probability
distributions to produce hundreds of thousands of EnergyPlus simulations, which are then
weighted to represent subsector building stocks at the county level. This detailed
modeling covers single family homes and commercial buildings mappable to the 16 DOE
commercial “prototype buildings” (Goel et al. 2014).

¢ Industrial Manufacturing: Industrial manufacturing loads are modeled with the
Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E), which uses plant-
level databases, the Manufacturing Energy Consumption Survey, and the Electric Power
Research Institute’s Load Shape Library to construct hourly time series of electricity use
by manufacturing subsector and end use. Because manufacturing processes vary greatly,
IGATE-E does not attempt direct simulation of loads but rather compiles data from

2 That is, 80% of the site demand is from residential buildings, commercial buildings, industry, and transport.
This measure excludes such subsectors as public water supply, municipal wastewater treatment, and exterior
roadway lighting.
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multiple sources and applies statistical techniques to estimate energy consumption down
to the end-use level. Because IGATE-E only models manufacturing, the additional
industrial sectors of agriculture, mining, and construction comprise our industrial gap
model.

e Transportation: Given the focus in this report on constructing a model of historical
electricity use for the year 2012, and the very low deployment of plug-in electric vehicles
in that year, we describe the detailed transportation modeling methods that will be used in
future work to capture EV location and charging; but no detailed sector-level results for
transportation are presented.> When this capability is developed for the EFS future model
year snapshots, on-road plug-in electric vehicle operation will be described using the
Scenario Evaluation and Regional Analysis (SERA) model and the Electric Vehicle
Infrastructure Projection Tool (EVI-Pro). SERA describes vehicle infrastructure
requirements and will be used to disaggregate vehicle adoption to the county level. EVI-
Pro simulates hourly charging profiles based on travel data and charging preference
assumptions (e.g., residential charging as opposed to reliance on public charging). The
historical 2012 data set includes a transportation gap model that describes electricity use
in passenger trains.

While the sector models cover approximately 80% of annual electricity demand, they do not
provide full coverage of all electricity use in the United States, nor do they account for such load
modifiers as distributed generation or transmission and distribution (T&D) losses. The model
therefore incorporates additional data sources and uses them to create gap models, distributed
generation models, and a model of losses (Figure ES-3). The sectoral gap models describe
building types not modeled in detail; electricity used for agriculture, mining and construction;
and electricity used for passenger rail transport. dsgrid additionally contains supplemental gap
models that represent electricity used for municipal water services and outdoor lighting.
Distributed generation from solar photovoltaics, combined heat and power, and other distributed
thermal generators is estimated on hourly, state, and sectoral bases using a variety of data
sources. The distributed generation data combined with historical electricity sector data are key
to enabling the calculation of model residuals and related visualizations used to calibrate and
validate the model. In total, the dsgrid model structure is a confederation of data sets and
programmatic methods that are available to aggregate, disaggregate, visualize, and perform
statistical analysis on an overall description of U.S. electricity demand for one model year.

3 The data visualized in Figure 2 for Transport consists of a small orange sliver topped with a longer blue sliver; the
blue sliver is labeled “Passenger Rail (95%).” The orange sliver represents 381 GWh of electricity used in the U.S.
for light-duty vehicles in 2012 that is not modeled in this version of dsgrid.

xii

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



Historical Calibration Data Sources
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Figure ES-3. dsgrid input data architecture

All acronyms are defined in the acronyms list on page vi.

Data Set Summary

The dsgrid historical snapshot for 2012 is a more highly resolved starting point for power sector
studies than has heretofore been available. Except for the transportation gap model, which is at
the state level, the detailed sectoral models and the sectoral gap models are available at the
county level by subsector and end use. End use breakdowns are provided for the detailed sector
models (residential and commercial buildings, and industrial manufacturing) as well as for the
residential gap model. The detailed building models include hourly data on natural gas and
district heating and cooling use, in addition to electricity. For all fuels, building energy use is
reported across nine end uses: fans, pumps, space heating, space cooling, heat rejection
(commercial only), interior lights, exterior lights, water systems, and interior equipment.
Industrial manufacturing electricity use is reported for the 12 U.S. Energy Information
Administration (EIA) Manufacturing Energy Consumption Survey end uses: conventional boiler
use; process heating; process cooling and refrigeration; machine drive; electrochemical
processes; other process use; facility heating, ventilation, and air conditioning (HVAC); facility
lighting; other facility support; onsite transportation; other nonprocess use; and end use not
reported.
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The data set is summarized at the annual level for the contiguous United States in Table ES-1.
The detailed and gap models described above, plus gap models for roadway and parking outdoor
lighting and for public water supply and wastewater treatment (county-level, based on per-capita
energy use estimates) form the dsgrid-core components. Together with the hourly residuals,*
these components, which are shaded green in Table ES-1, provide an hourly estimate of site
electricity use at the state level. To obtain load profiles that need to be met at the bulk power
level, one can subtract the contribution from distributed generation and then add in the estimate
of T&D losses as appropriate depending on model context. These components are shaded blue.

Table ES-1. Summary of Contiguous U.S. Electricity Use in Terawatt-Hours, Top-Down and
Represented in dsgrid

Component  Component Residential Commercial Industrial Transport Total

Type Name

Top-down Hourly load? 3,910
Derived T&D losses 199
Top-down Annual energy® 1,370 1,350 981 7 3,708
dsgrid Distributed generation 3 31 204 - 237
dsgrid-core  Gap models 218 454 184 6 862
dsgrid-core Detailed sector models 1,169 1,107 893 - 3,170
Derived Total site energy® 1,372 1,381 1,184 7 3,945
Derived Annual sector residuals® -15 -180 107 1 -87
Derived Hourly residuals® -126

@FERC Form 714 and independent system operator (ISO) reporting
®U.S. Energy Information Administration (EIA) Form 861

¢Total site energy is the top-down annual energy plus distributed generation. This is all the load we are expecting
to model with the bottom-up detailed sector and gap models.

4 The sector level residuals are equal to the total site energy minus the gap and detailed sector model components.

¢ The hourly residuals reported in the Total column are the sum of the state-level hourly residuals, which factor in top-
down hourly load, T&D losses, distributed generation, and the dsgrid-core model components.

dsgrid model components necessary to represent site-energy use at the hourly level are shaded green.
Components that may be factored in to estimate bulk power system load are shaded blue-grey.

Although the top-down data do not exist to compute hourly residuals resolved by sector, the top-
down annual energy data available from U.S. Energy Information Administration (EIA) Form
861, along with our sectoral estimate of distributed generation, do provide the means to compute
sectoral residuals on an annual basis. Based on this total site energy estimate, we see from Table
ES-1 that for the contiguous United States, about 35%, 35%, 30%, and 0.2% of site electricity
use is attributable to residential, commercial, industrial, and transportation subsectors
respectively; dsgrid bottom-up estimates capture this energy use within +1% for the residential
sector. For commercial, industrial, and transport, dsgrid estimates fall within + 15%.

Examining the data at this most aggregated level is helpful, but it belies model discrepancies that
are apparent when the data are examined at a finer level of temporal or geographic resolution.

4 The hourly residuals are computed by comparing the bottom-up load data to top-down bulk power system hourly
load data and factoring in T&D losses and distributed generation.
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For example, Figure ES-4 depicts the dsgrid bottom-up load data (detailed sector models and gap
models) and T&D losses alongside the historical hourly load data, and the historical hourly load
data plus our distributed generation estimates. From this, we can see that our bottom-up
modeling is able to capture seasonal load shape changes (e.g., the double-peak common in
winter, and the single afternoon peak common in summer), but it regularly exaggerates the
differences between weekday and weekend energy use, as well as between daytime and
nighttime energy use, the latter especially during cooling season (e.g., summer and spring).
Such discrepancies between the modeled results and the historical data occur because we do not
artificially constrain our bottom-up models with top-down data. The model residuals that result
therefore point to aspects of our bottom-up understanding of demand-side energy systems that
need improvement.

~ 750~
=

3‘&"0& \}" o \}" \"\" -\;\" -\}‘09 -\}\\p -\}\‘\}
I Loss Model Ind. Gaps Res. Gaps
Outdoor Lighting Ind. Sector .| Res. Sector
Municipal Water Com. Gaps — Hist. Hourly + DG
Trans. Gaps Com. Sector  --' Historical Hourly

Figure ES-4. Bottom-up sector model and gap model load in gigawatts (GW) compared to bulk-level
historical hourly load for the entire contiguous United States (CONUS), for four representative weeks

Each week starts on a Sunday, and all data are plotted time-synchronized in Eastern Standard Time.
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An initial effort to understand the information contained in our hourly and sectoral residuals is
shown in Figure ES-5, which depicts energy-weighted average fit statistics at different levels of
geographic, temporal, and sectoral aggregation. The calculation details are provided in the body
of the report, but in all cases, what is shown is 1 minus a measure of relative error (i.e., 1.00
indicates zero error) averaged over geographic units using the total annual site energy estimate in
total or by sector as the weight.

Hourly Electricity Residuals Annual Sectoral Residuals
1.00- 1.00-
0.95- 0.95-
0.90- 0.90-
i 0.85- /\/,A 2 0.85-
L / w
g <
< 0.80- e 0.80-
— Hour Commercial
0.75- — Day 0.75- Residential
: Week — Transportation
) — Season ) — Industrial
0.70 Year 0.70 = Total
0.65- ; : , i 0.65- | ; . . .
5 & £ 2 4 g & 2 g2 9
= = S S = £ =] S S >
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E 3 w0 E =3 wn
S © d ©

Figure ES-5. dsgrid fit statistics for total site energy as a function of geographic, temporal, and
sectoral resolution

At the most aggregated level, dsgrid bottom-up sectoral and gap models capture the expected site load within
a relative error of 4%. At the least aggregated levels for which we calculate residuals, the energy-weighted mean
relative absolute error is about 20% for hourly electricity, and the energy-weighted relative absolute error ranges from
35% (transportation) to less than 10% (residential) for annual energy use by sector.

The levels of geographic resolution are states (48 plus Washington, D.C.), state groups (24 described in the body
of the report), census divisions (9), census regions (4), and the CONUS (1).

First, examining the hourly electricity residuals, we see confirmation of what we saw in Table
ES-1, namely that at the annual level aggregated to all of CONUS, the dsgrid bottom-up models
captures the site energy represented in the historical hourly load data combined with the dsgrid
distributed generation models to within a relative error of 4%. However, if we examine the
model at the most resolved level for which hourly residuals are available (state-level and hourly),
the level of fit drops almost to 80%. Where is most of the fit lost? Temporally, the first large gap
occurs when we go from weeks to days; this likely speaks to the weekday-weekend discrepancy
apparent in Figure ES-4. The daytime-to-nighttime shifts similarly show up in the difference
between the hour and day curves. Geographically, there is a large difference between census
divisions and census regions, and a more modest but significant difference between states and
state groups. For these hourly residuals, which rely on a disaggregation of system load data
reported by independent system operator (ISO) region or FERC Form 714 planning region, a
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significant portion of the error introduced by disaggregating from the state group to the state
level may be attributable to that process (and not to the bottom-up modeling alone).

Examining the sectoral residuals, the relative maturity of the residential modeling is immediately
apparent, as its level of agreement with the total annual energy use reported by state on EIA
Form 861 plus our distributed generation estimates is above 92% at all levels of disaggregation
(down to states). The level of fit for all other sectors is below 85% at the state level, but it

is greater than 80% for the other two main electricity-consuming sectors: commercial and
industrial.

Overall, these results show that we can model U.S. electricity load at high resolution, especially
if we leverage the model residuals computed here to patch the now-revealed discrepancies
between our modeling and historical data. We also know the likely sources of some of these
discrepancies. For commercial buildings, we are aware of inaccuracies and uncertainties related
to count and size of commercial buildings by type, especially for those building types not well
represented in CoStar. In contrast, industrial manufacturing plant locations are fairly well
known,® but because IGATE-E does not directly model the energy use of industrial processes,

it relies on the DOE industrial assessment centers (IAC) database to create estimates of energy
intensity. Relying solely on the IAC Database is problematic because it underrepresents
industries dominated by very large plants and it may be subject to selection bias. Low data
availability further necessitates using energy intensity metrics based on number of employees
rather than other normalization factors that may be better correlated to energy use such as annual
sales. The temporal discrepancies apparent in the hourly residuals are not all that surprising
given this was the sector modeling teams’ first time providing hourly modeling results as an end
product. Demand-side energy research has historically had a much stronger focus on pure energy
efficiency measured on an annual basis than on the temporal specificity required to understand
interactions with the grid. Moving forward, we expect to conduct more hourly and subhourly
calibration at the sectoral, subsectoral, and end-use levels using utility- and facility-scale metered
data to develop stochastic modeling of operational schedules, control set-points, and occupant
behavior.

Looking Forward

dsgrid is a new model designed to provide a solid basis for exploring questions related to future
electricity load and its relationship to grid operations. Because it is a new model, this
documentation represents the beginning of an investigation more so than the end of an analysis.
The model validation documented in this report makes plain the fact that the commercial and
industrial models in particular need more sectoral-level calibration, and that all the models would
benefit from additional temporal calibration. To that end, additional calibration of the building
models to metered data is both ongoing and in various stages of planning as future work. To
make the model usable in the meantime, we are also developing methods to mathematically
summarize the model residuals in a manner that can be applied to dsgrid scenarios built by
modifying the baseline model documented in this report (e.g., to represent load in future years).

3 IGATE-E relies on the MNI database for this information.
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Subsequent stages of the EFS will include developing dsgrid future-year snapshots of 2050
electrical load based on the PATHWAYS outputs for the EFS electrification scenarios (Mai et al.
2018) and evaluating the potential flexibility of those future loads. Under most scenarios, we
expect significant growth in on-road electric vehicle deployment by 2050. For this reason,
transportation, while not a significant part of the dsgrid historical load snapshot documented
here, is anticipatorily included in the methodological documentation.

In addition to the work planned for EFS, the dsgrid data set and modeling framework now exist
as a resource for investigating questions about U.S. electricity load, from regional differences
in coincidence with wind and solar generation, to the potential impact of particular energy
efficiency measures or demand response programs. Some of the underlying data sources are
actually more granular than the county level, so we also anticipate interest in more-localized,
distribution-level modeling. The data on fuel use other than electricity, especially for the
residential and commercial building sectors, could also enable more detailed analysis of
interactions between natural gas, electricity, and water networks.
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1 The Need for a Detailed Model of Electrical Load

Electrical load is the backdrop for all power systems analysis. As a coequal partner in the supply-
demand balance that must be maintained on electrical grids at all times and for all timescales,
load is a major source of variability and uncertainty in grid operations. Load forecasting has been
at the heart of utility planning for decades, but it is typically done in a top-down manner that
lacks the granularity in time, geography, end use, and technology that is needed to explore the
potential impact of technological shifts. Purely econometric methods that rely on historical load
data combined with projections of economic and demographic parameters are common. More
sophisticated methods include combining econometric techniques with simple engineering
models of a limited number of key end uses. Nonetheless, there is evidence that these methods
may be falling short. For example, Carvallo et al. (2017) find systemic overestimates of load
growth in utility integrated resource plans. These overestimates are certainly partially explained
by the recession that followed the 2008 financial crisis but are persistent enough to suggest other
factors (e.g., energy efficiency adoption and performance) may have been systematically
misestimated. Forecasting future load is only going to become more difficult and more important
as new demand-side appliances, control technologies, and other distributed energy resources are
adopted, and as wind and solar generation compose a larger portion of our power supply. This
suggests that more complementary, bottom-up engineering- or physics-based modeling that
incorporates technology and behavioral detail may be a valuable addition to the load forecasting
process.

In the past, U.S. electricity consumption experienced rapid unexpected change coincident with
important electricity sector developments. For instance, the first wave of air conditioning
adoption in the 1960s and 1970s coincided with the construction of many new petroleum-fueled
generators and was swiftly followed by an oil embargo that made the operation of those new
generators significantly more expensive than expected (U.S. EIA 2016; Bhatnagar and Rahman
1986; U.S. EIA 2012). Overall, conditions such as these resulted in the traditional growth-based
treatment of electrical load being insufficient. We thus turned to new approaches, including
energy efficiency and demand response (Hurley, Peterson, and Whited 2013; Alliance to Save
Energy 2013).

The pressures on the power system are arguably greater today. Like air conditioning before it,
electric vehicles are poised to become a new large load for many households and businesses
(McNerney et al. 2016; Banister et al. 2012; Egbue and Long 2012). Heat pumps are also gaining
market share, primarily in the southern United States, but with a growing potential to compete

in cold climates as well (Baxter and Groll 2017; Lapsa and Khowailed 2014). At the same time,
new generation resources such as wind and solar, and complementary resources such as battery
and other forms of energy storage, are coming online and complicating grid planning and
operations. In the meantime, aggressive energy efficiency efforts in the form of utility programs,
state-level goals, and federal appliance standards have proceeded apace. The International
Energy Agency (IEA) estimates that U.S. energy efficiency investments since 1990 have reduced
the total final energy consumption required to provide the same services by up to 7.44
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quadrillion British thermal units (Quads) per year [2,181 terawatt-hours (TWh) per year]® (IEA
2015). Utility planners have sometimes underestimated the future impacts of such energy
efficiency efforts and other causes of low load growth, which has made it more difficult to create
cost-effective plans for satisfying future load while also integrating wind and solar (Kavalec et
al. 2016; Carvallo et al. 2017).

Given the impacts of continued adoption of air conditioning and distributed solar photovoltaics,
the nascent adoption of electric vehicles, and the shift of some economic activity away from
industry and toward more commercial service work, there is some reason to expect that future
load profiles may become peakier (NGA 2016). On the other hand, energy efficiency, energy
storage, and demand response (load scheduling and shifting) technologies, as well as the
emergence of some forms of computing and other miscellaneous electrical loads as a base load
may mitigate this trend such that peak load becomes less of a concern (Schwartz et al. 2017,
Zarakas et al. 2017). Recent data give credence to perhaps both these things happening, with
very different balances being achieved at a regional level. That is, peak and annual load growth
have decoupled in many places but not necessarily in the same direction. For instance, the
northeastern United States has seen peak load growth higher than annual load growth (NGA
2016), while California has been revising its forecasts in the opposite direction (Kavalec et al.
2016). In the South, peak and annual growth rates have been similar in recent years (EIA 2014a).
Because transmission and distribution (T&D) infrastructure are sized to handle peak load (i.e.,
the largest coincident power draw anticipated by system planners or experienced in a given
year), these distinctions are important to capture with regard to both planning and operations.

Though accurately capturing the split between overall and peak load growth remains important,
increasing levels of wind and solar deployment are also moving us beyond this paradigm where
annual demand, peak demand, and coincidence factor’ are sufficient metrics for describing the
state of current and future electricity loads. Recent renewable integration studies clarify that
future power system operations will focus on balancing net load, that is, load minus all variable
generation contributions from wind and solar. For systems with large contributions from solar
photovoltaics (PV), it emerges that the daily minimum net-load point is just as important as the
daily peak (net-)load point, and that many days will have a peak in the morning in addition to
one in the afternoon or evening.® For systems with large contributions from wind, the most
challenging times for system operations are even harder to locate, given the seasonal, weekly,
and diurnal variability of the wind resource.

¢ This statistic includes all energy use, not just use in the electricity sector. For 2014, the IEA estimates the U.S.
“total final consumption” equaled 17,458 TWh and that there would have been an additional 2,181 TWh in the
absence of all energy efficiency investments since 1990. This compares to EIA’s reporting of 2014 primary energy
use and electricity sales to the residential, commercial, industry and transportation sectors of 22,138 TWh in total,
with just 3,764 TWh attributed to electricity sales (which like the total final consumption metric, excludes system
losses) (U.S. EIA 2017).

7 Coincidence factor is calculated over some set of system sub-components, for instance, substations, feeders, or
customers, and is the system peak load divided by the sum of the individual component peaks. The coincidence
factor is 1.0 if all sub-components peak at the same time and otherwise is less than 1.0.

8 Though this is a fairly common pattern in the winter, in areas with high PV penetrations we also see this pattern
emerge in the summer, when traditionally there has been a single clear peak sometime in the afternoon that is
approximately coincident with peak air conditioning loads.

2

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.


http://www.nrel.gov/publications

Renewable integration studies have also demonstrated the importance of modeling systems with
significant quantities of wind or solar generation using time-synchronized load, wind, and solar
data (Holttinen et al. 2017). Because it is net-load that is most important for system operations,
these timeseries must all reflect the same weather as it was experienced simultaneously across
the region of interest. For this reason, renewable integration studies have generally relied on
historical hourly load data taken from the same year from which the wind and solar data sets are
derived. For example, the following description from MacDonald et al. (2016, Supplementary
Information Section 1.3) is typical:

The electric load data was expanded from 2006-2008 to 2030 estimated levels.
To estimate the 2030 load, quarterly gross domestic product figures from the
Bureau of Economic Analysis (72) were applied to the expansion (and
contraction) of the load to 2011, and then a 0.7% per year growth rate (73) was
applied to 2030. The result is a 14% increase in the demand for each hour.

However, we know that this methodology is insufficient to capture the impact of significant
demand-side technological change.

The primary purpose of dsgrid is to create comprehensive electricity load data sets at a sufficient
temporal, geographic, sectoral, and end-use resolution to enable detailed analyses of current and
future projections of end-use load. The data sets can be leveraged to support analysis of demand-
side energy efficiency, electrification, and operational flexibility (i.e., demand response); and
are time-synchronized with solar and wind data sets so as to be suitable for renewable
integration studies.

The initial effort described here is part of the Electrification Futures Study (EFS); thus, our
initial focus is on developing time-synchronous electricity data suitable for studying the impact
of electrified loads on future power systems. This work is proceeding in two stages. What is
documented here is a mesoscale model of current electrical loads built using a variety of
national-level data sets, bottom-up building energy simulations driven by historical-year weather
files, and a detailed accounting of electricity use in industrial manufacturing and transportation.
We focus initially on modeling a historical year of electricity use to enable model validation,
calibration, and development of an error model that can be carried forward into our future-year
data sets.

In the next stage of the EFS, using dsgrid, we will develop future-year snapshots of electrical
load and evaluate the potential flexibility of those future loads. These snapshots will be based on
the EFS electrification scenarios for 2050 as represented in the outputs of the
EnergyPATHWAYS model (Williams et al. 2014). Under most scenarios, we expect significant
growth in electric vehicle deployment by 2050. For this reason, transportation, while not a
significant part of the dsgrid historical load snapshot documented here, is anticipatorily included
in the methodological documentation.

? For more information, see https://www.nrel.gov/analysis/electrification-futures.html.
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1.1 Overview of Load Models Described in the Literature

Previous investigations of these kinds of long-term questions about electricity demand, '
including how electricity demand impacts power system planning and operations in relation to
various societal factors and goals,!! have used models intended to capture an entire energy
system or economy, of which energy demand is a part; load forecasting models used for
electricity system planning'?; models of electricity load flexibility; and sector-specific energy
models. In this section, the authors describe some of the more prominent efforts in each of these
categories. In Section 1.2, we summarize them in relation to the aims of dsgrid.

1.1.1 Energy System and Economy Models
The National Energy Modeling System (NEMS)

NEMS 3 is a modular energy-economy modeling system used to construct the U.S. Energy
Information Administration (EIA) Annual Energy Outlook (AEO) and to conduct other U.S.
energy systems analysis. Four NEMS modules are of primary interest here: Commercial
Demand, Industrial Demand, Residential Demand, and Transportation Sector Demand. Together,
they comprise all the NEMS end-use demand modules. The demand modules all accept as inputs
energy prices and macroeconomic indicators, and they then compute changes in sector demand
based on assumptions about technology cost, equipment standards, tax and other relevant
policies. Energy consumption by fuel type is output at the U.S. census division level. NEMS then
iterates to converge on equilibrium energy prices and quantities (EIA 2009).

The Residential Demand Module and the Commercial Demand Module use the most recent
Residential Energy Consumption Survey (RECS) or Commercial Building Energy Consumption
Survey (CBECS) respectively as their base year and then project residential and commercial
energy use forward several decades. The current end year is 2050. NEMS refers to these as
structural models, that is, they provide an accounting of energy use by tracking building and
appliance stock, including both quantity and performance characteristics, which are influenced
by macroeconomic parameters, energy prices, and technology learning effects. The modules
output energy use by fuel type and end use. For commercial buildings, there is a distinction
between major and minor fuels and end uses. The minor fuels and end uses are modeled in less
detail. Energy efficiency standards, building energy standards, and customer adoption of energy
efficiency and distributed generation technologies (e.g., PV and combined heat and power or
CHP) are some of the main factors captured beyond basic macroeconomic trends (EIA 2017d,
2017e). Residential demand is modeled by tracking housing and appliance stocks (EIA 2017d).
Commercial building energy use is primarily tracked by floor area per building type, overall
energy use intensity (in British thermal units per square feet [kBtu/ft*]), and changes to energy

19 Greening, Boyd, and Roop (2007); FERC (2009); BoBmann and Staffell (2015); Alstone et al. (2016b); Shoreh et
al. (2016); Klingler, Elsland, and Bofimann (2017); Wilson et al. (2017)

1 EIA (2017¢); Williams et al. (2014); Mai et al. (2014); Melaina et al. (2016); California Energy Commission Staff
(2017); Alstone et al. (2017); DOE (2017b)

12 Here, we leave aside purely statistical or econometric models (e.g.., regressions on historical load, population and
economic indicator data coupled with population and economic forecasts), as they are less able to account for the
major technological changes we expect to see over the long term.

13’ NEMS: National Energy Modeling System, https://www.eia.gov/outlooks/aco/info_nems_archive.php
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use intensity, based on equipment efficiency and building shell upgrades. Distributed generation
adoption then reduces the net load seen by the wider energy system (EIA 2017e).

The Industrial Demand Module receives employment data and the value of industrial shipments,
beyond energy price, as additional inputs from the NEMS Integrating Module. These data are
used to adjust the demand from 15 manufacturing and 6 non-manufacturing subsectors. Five

of the manufacturing industries are modeled with detailed process flows (i.e., engineering
representations of individual process steps); two are modeled with detailed end-use accounting;
the energy demand of the remaining eight is based on a simpler end-use accounting and a motor
stock model for machine drive electricity use. Manufacturing industries classified as energy-
intensive are more likely to have a process flow model. All industry, manufacturing and non-
manufacturing is modeled using three end-use components: boilers/steam/cogeneration,
buildings, and process/assembly. We have so far been characterizing the process/assembly
portion, which accounts for about 55% of industrial energy use. Building energy use is a small
(about 4%) component of industrial energy use, and so is not modeled in detail, but it is a simple
function of employment and industrial output per subsector. Process and building heating is
supplied from the boilers/steam/cogeneration module, which consumes fuels to produce steam
and electricity. Existing CHP plants are represented directly, and new ones are built to meet new
thermal energy requirements, and to consume biomass waste products (e.g., in the pulp and paper
industry). The non-manufacturing industrial sectors are modeled with unit energy consumption
parameters per ton of throughput or dollar of shipments, as well as interactions with the
Commercial and Transportation Sector Demand modules. Unit energy consumption is derived
from a variety of data sources specific to agriculture, mining, and construction. The commercial
and transportation demand modules supply parameters concerning construction demand,
commercial building energy intensity, and vehicle fuel efficiencies. Benchmarking for the start
year is done with a combination of EIA Manufacturing Energy Consumption Survey (MECS)
and State Energy Data System (SEDS) data (EIA 2014b).

The Transportation Sector Demand module estimates passenger travel demand across several
transportation modes, and it then uses those estimates along with stock models representing
several vehicle types and their efficiencies by vintage to output energy demand by fuel type and
mode. Transportation modes are quite various; they include private and fleet light-duty vehicles;
aircraft; marine, rail, and truck freight; mass transit; military transportation; and recreational
boating. Light-duty cars and trucks are captured in a stock model, and vehicle miles are
estimated at the household and fleet levels. Fifteen alternate fuel vehicle types are modeled
relative to the baseline of conventional gasoline light-duty vehicles. Aircraft energy use is
primarily modeled based on global macroeconomic indicators and fleet efficiency. The freight
transportation modes are modeled together, and they are responsive to the growth in industrial
output. All other transportation modes are lumped into miscellaneous energy demand
submodule (EIA 2016¢).

Energy-Economic and Integrated Assessment Models (IAMs)

This class of models represents all the physical, economic, and technological systems related to
the global energy system and its greenhouse gas emissions. The level of modeling detail varies
by model, but at their core, these are simulations models used to design and compare “what-if”
scenarios regarding human energy systems and their interactions with physical and climate
systems (e.g., water and land use, and climate change impacts). These models have been used
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extensively to inform national energy strategies and assess long-term options in the context of
international efforts to mitigate climate change impacts (e.g., scenarios used by Edenhofer et al.
[2015]). Given its central role in transformation pathways for global energy systems, the electric
power sector is a major focus of many IAMs. IAMs cover electricity generation to various levels
of detail (Kriegler et al. 2014), projecting long-term energy demand (in TWh consumed) and
capacity requirements (in gigawatts [GW] deployed) based on socioeconomic projections,
technology evolution (e.g., cost and efficiency of supply and demand technologies), and supply-
demand balancing factors (e.g., power plants capacity factors). One IAM many U.S. researchers
are familiar with is the Global Change Assessment Model (GCAM). !4

EnergyPATHWAYS

EnergyPATHWAYS is a stock rollover, multi-decadal energy accounting tool designed for
analysis of energy system transformation.'> It is not a forecasting tool, but it instead simulates
the whole energy economy at high fidelity given user specified decisions and produces energy
demand, service demand, system costs, emissions, and the resulting infrastructure build. The tool
is structured to be reusable for different geographic extents and resolutions, and it has been used
outside the United States in Europe and Mexico.

Our primary interest for dsgrid is the U.S. model, early versions of which were developed by
Williams et al. (2014). In the U.S. model, most demand-side data come from NEMS while
supply side data comes from a variety of sources, including the National Renewable Energy
Laboratory (NREL). For the EFS, more detailed input data than what is available from NEMS
are being used in some cases, which has required extending some model structures. For instance,
electrifiable industrial end uses are being modeled as stocks instead of as exogenously specified
energy requirements, state-level population projections from the University of Virginia
Demographics Research Group are being used instead of census population projections, and
county-level heating and cooling electricity shapes from NREL for the 2010-2012 weather years
replace a single month-hour average heating and cooling shape for the entire United States.

EnergyPATHWAYS models the electricity system with an annual-hourly dispatch, and it
includes storage, flexible load, and electric fuel production, which informs costs, emissions, and
the need for new infrastructure. In addition, the 8,760 hourly load values are assembled bottom-
up from energy demand projections and subsectoral or technology-specific normalized electricity
profiles for different geographies. In this way, it captures the changing load-shape patterns from
electrification, energy efficiency, or growth in service demand.

1.1.2 Load Models and Projections for Electricity System Planning

Renewable Electricity Futures

The Renewable Electricity Futures study (NREL 2012; Hostick et al. 2014) examined a range of
possibilities for the United States power system in 2050. To understand the impact of electricity
load, the project team bracketed future load with low- and high-demand cases and adjusted

sectoral load shapes to account for changes in some building end uses. The High-Demand
Baseline was based on the 2009 AEO, which required extrapolations for 2030-2050. This was

14 “Global Change Assessment Model,” Joint Global Change Research Institute,

http://www.globalchange.umd.edu/gcam/
15 “EnergyPATHWAYS,” Evolved Energy Research, http://energypathways.readthedocs.io/en/latest/

6

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.


http://www.nrel.gov/publications
http://www.globalchange.umd.edu/gcam/
http://energypathways.readthedocs.io/en/latest/

done by continuing electricity intensity trends by households for the residential sector, by unit
floor space for the commercial sector, and per real dollar of shipments for industry. In this case,
only industrial sector electricity intensity was projected to decline—by 35% from 2010 to 2050.
The AEO also provided regional load shape information.

The Low-Demand Baseline modeled more significant changes—primarily energy efficiency
gains in all sectors—and significant vehicle electrification. To estimate load shapes for buildings,
overall efficiency projections (in energy use intensity units; e.g., kilowatt-hour [kWh]/ft*-yr)
were applied to a stock model accounting of new, existing, and retrofitted buildings; the resulting
overall energy use was then allocated to end uses based on regionalized projections of end-use
shares per year that accounted for such expectations as there being less efficiency gains for
miscellaneous electrical loads than for other end uses. These steps were executed in the
Lawrence Berkeley National Laboratory Building End-Use Loads Forecaster spreadsheet model,
whose inputs and outputs are NEMS-formatted end-use load shapes, which are hourly and for
three representative days. Industrial load shapes were primarily adjusted by choosing load factors
that simultaneously fit Electric Power Research Institute (EPRI) load factor data, overall load
duration curve data, and electricity sales by sector. Electric vehicle load curves were adopted
from previous work (Parks, Denholm, and Markel 2007; Markel et al. 2009).

Itron’s Statistically Adjusted End-Use (SAE) Model

The SAE load forecasting approach combines appliance stock models for individual end uses
with an econometric model that maps end-use energy estimates to overall expectations for utility
loads (Enterline and Fox 2010). This model is used to construct long-term estimates of energy
efficiency across 30 end uses, and it has been used in several long-term electricity planning
studies (WECC 2013; Enterline and Fox 2010; Carvallo et al. 2017). Temporally, it provides
seasonal and peak adjustments. Sectorally, it provides technical potential energy efficiency
estimates for existing technologies. Residential and commercial building end uses are modeled
with an equipment stock approach and square footage trends. Data sources include NEMS
output, census data on heating shares by state, the Federal Energy Regulatory Commission
(FERC) demand response potential study (FERC 2009), and additional data on appliance
saturation and efficiency compiled from state and utility-level studies (Wagner and Barbose
2012).

Power System Planners

The California Energy Commission has been regularly compiling load forecasts covering one
decade since the mid-1990s. The projections are a combination of econometric regressions and
some bottom-up analysis by sector. Kavalec et al. (2016) give low-, mid-, and high-demand
forecasts for annual electricity use and non-coincident peak demand over 20 forecast zones, with
detailed analysis of energy efficiency, distributed PV, and energy use by industrial subsector.
Demand response contributions are also tallied. BC Hydro applies a similar method to conduct
their long-term load forecasting (BC Hydro 2012). Of course, all electric utilities must perform
some type of load forecasting; Carvallo et al. (2017) describes the methods used by 11 utilities
and analyzes their performance in terms of historical forecast errors for annual energy and peak
demand. Three of the utilities studied used the SAE approach already reviewed, one used a
bottom-up engineering model, and the rest applied either timeseries or cross-sectional regression.
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Load Shape Models

BoBmann and Staffell (2015) describe two country-level models of future load shapes for
Europe, focusing on results for Germany and Britain. eLOAD!¢ works by decomposing current
load shapes into portions associated with “relevant applications” and the remainder. Thus, end
uses of interest can be modeled differently than the remaining load, to which a basic scaling
factor may be applied. The end uses of interest are modeled in turn using the FORECAST
model,'” which combines a stock accounting approach with stochastic simulation of technology
adoption decisions. DESSTinEE'® is a spreadsheet simulation model grounded more in
macroeconomics; it models the demand for energy services as a function of population and
income. Load shapes are produced from a basic breakdown of current load by end use by
imposing the projected energy demands and weather (in the form of heating degree days) and
forming a model of the residuals between historical load data and simulation results for the
same year.

1.1.3 Models of Electricity Load Flexibility
FERC Demand Response Potential Study

In a study related to load modeling, FERC (2009) estimated the potential percentage drop in peak
load by customer class and state for three beyond-business-as-usual scenarios, which required
estimating the breakdown of peak load by sector and end use. Normalized load shapes by
customer segment in the form of regression models over weather, air conditioning saturation, and
periodicity over multiple frequencies (season, month, day-of-week, hourly) were estimated from
utility hourly load data from 21 states. Temperature-dependent and non-temperature-dependent
loads were distinguished. The only end use modeled in some detail was air conditioning; even

so0, there was no explicit data on the hourly load shape difference between customers with and
without air conditioning. That difference was inferred by regressing over the utility load data and
appliance saturation estimates that were available. These data and the methodology were
adjusted and applied to the Western Interconnection in Satchwell et al. (2013). Overall, this type
of demand response modeling can be characterized as relying heavily on utility reporting and
surveys concerning current demand response programs and load shapes overlaid with minimal
additional information on technology saturation levels.

Demand Response Estimates by Lawrence Berkeley National Laboratory

Work done by Lawrence Berkeley National Laboratory (Olsen et al. 2013) to estimate demand
response resource by sector and end use is in many ways the predecessor to dsgrid. Their
methodology for constructing demand response resource curves starts with estimates of hourly
load by end use, constructed by merging many data sources. Geographically, these estimates
originally covered only the western United States, but they have since been extended to the
whole United States at the resolution of utility-state intersection (Hale, Stoll, and Novacheck
2018). Commercial building loads are estimated using a model of the California commercial
building stock developed from California Commercial End-use Survey data. The load shapes are
derived from building energy simulations across California, which obviously do not cover the

16 eLOAD: electricity LOad curve ADjustment, http://reflex-project.eu/model-coupling/model-eload/

7 FORECAST: FORecasting Energy Consumption Analysis and Simulation Tool, “Methodology,”
http://www.forecast-model.eu/forecast-en/content/methodology.php

18 DESSTinEE: Demand for Energy Services, Supply and Transmission in Europe, https://wiki.openmod-

initiative.org/wiki/DESSTinEE.
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full range of U.S. climates. Therefore, they are further adjusted using a linear regression relating
temperature variability to load variability, in addition to being scaled and offset to match
predicted monthly energy consumption, when applied to other locations. Residential load by end
use is treated similarly. The underlying data set in that case is a residential end-use forecast from
the California Energy Commission for 2020. Several other data sources are used to model
agricultural pumping, data center, municipal lighting, water pumping, refrigerated warehouse,
and manufacturing loads.

In a series of reports, Lawrence Berkeley National Laboratory extends and applies their demand
response estimation methodologies to California (Alstone et al. 2016a, 2017). For that work, they
had access to extensive advanced metering infrastructure and demographic data at the customer
level from the three major investor-owned utilities in California.!® The data were clustered, the
load data were disaggregated by end use using first-order engineering models, and projections
were then made to the study years.

1.1.4 Sectoral Models

Many sector-specific models have been proposed to project electricity consumption at various
levels of spatial and temporal resolution. This includes is a vast body of literature on modeling
building electricity use, both for commercial and residential buildings. Transportation has been
studied quite thoroughly, with different researchers tending to focus on the different subsectors,
led by light-duty vehicles, road shipment of freight, air travel, and public transportation. Publicly
available energy analysis of industrial subsectors and end uses has tended to be less
comprehensive due to the incredibly diverse and business-sensitive nature of industrial activity.

In this section, we summarize notable efforts in each of these areas. In relation to dsgrid, we are
interested in (1) whether these models accurately capture energy use over large geographic
regions, provide sufficient spatial and temporal resolution to be useful in regional or national,
hourly or finer temporal resolution power system models, and (2) whether they can model future
energy use based on capturing descriptions of technological change either exogenously or
endogenously. We generally find many efforts to be lacking in one or more of these areas, each
of which is necessary to couple sector-level energy models with power system models suitable
for renewable energy integration studies; but, one can imagine sector-level models being
extended to serve such a purpose.

1.1.4.1 Buildings Sector

(Swan and Ugursal 2009) review building end-use energy consumption modeling techniques and
categorize the techniques as “top-down,” “bottom-up statistical,” or “bottom-up engineering”
models. These categories, along with positive and negative attributes of each, are described in
Table 1, which was adapted from Swan and Ugursal (2009). In what follows, we focus on the
two types of bottom-up models: bottom-up statistical and bottom-up engineering, because these
better align with dsgrid’s needs for temporal resolution, sectoral resolution, and ability to
describe technological change. Bottom-up statistical models focus on describing the stochastic,
occupant-driven temporal variation in energy used for individual end uses, and they have mostly
been restricted to residential buildings based on the availability of, for example, time use surveys

19 Demographic data were available for all 11 million utility customers. The hourly load data set covers
300,000 customers.
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and metered data. In contrast, bottom-up engineering models focus on accurately capturing
building thermodynamics over typical weather conditions, which is accomplished by simulating
single-building energy use as an outcome of physical interactions between building equipment,
building envelope, and weather that are driven by deterministic occupant schedules (Crawley et
al. 2001).

Table 1. Positive and Negative Attributes of the Three Major Building Energy
Modeling Approaches?

Top-Down Bottom-Up Statistical Bottom-Up Engineering
Focus Sector-wide annual energy  Stochastic occupant-driven Energy use driven by weather,
use and trends temporal variations in energy building physics, and occupant
use schedules
Positive  Conducts long-term Encompasses occupant Models new technologies and
Attributes forecasting in the absence of behavior policy implications

any discontinuity

Includes macroeconomic Imputes typical end-use Determines each end-use
and socioeconomic effects  energy contribution energy consumption by type,
rating, etc.
Requires simple input Includes macroeconomic Determines end-use qualities
information and socioeconomic effects  based on simulation
Encompasses trends Uses billing data and simple
implicitly survey information
Negative Relies on historical Is subject to multicollinearity Assumes occupant behavior and
Attributes consumption information unspecified end uses
Provides no explicit Relies on historical Requires detailed input
representation of end uses consumption information information
Provides coarse analysis Requires large survey Is computationally intensive

sample to exploit variety

Does not incorporate
macroeconomic factors

a Adapted from Swan and Ugursal (2009)

Residential Buildings

Several proposed residential bottom-up models identify the contribution of each end use to the
aggregate energy consumption profile of the residential sector. Capasso et al. (1994) developed a
bottom-up statistical model for evaluating the impact of demand side management on residential
customers, although this analysis did not include weather parameters. A bottom-up statistical
model of Finnish residential appliances by end use, with application to estimating potential
demand-side management effects is given by Paatero and Lund (2006). A similar effort for the
United Kingdom, which was validated using a year’s worth of metered data from 22 homes, is
described by Richardson et al. (2010).
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Richardson, Thomson, and Infield (2008) introduce a Markov-chain technique to generate
synthetic occupancy patterns, based on survey data of people’s time-use in the United Kingdom.
The stochastic model maps occupant activity to appliance use, creating highly resolved synthetic
demand data. Widén and Wickelgéard (2010) follow a similar approach to relate residential
power demand to occupancy profiles in Sweden. Muratori et al. (2013) propose a model,
validated against metered data, to simulate hourly electricity demand of U.S. households, based
on a Markovian behavioral model calibrated using the American Time Use Survey. The resulting
profiles have been used to simulate residential demand response programs (Muratori and Rizzoni
2016) and the impact of PEV charging (Muratori 2018). Johnson et al. (2014b) predict residential
power demand based on occupant behavior using a similar Markovian model also driven by the
American Time Use Survey data. Fischer, Hértl, and Wille-Haussmann (2015) describe detailed
modeling of residential electricity use for Germany, focusing on non-weather-dependent end
uses. The resulting hourly power profiles by end use were validated against metered data for 430
households. Wills, Beausoleil-Morrison, and Ugursal (2017) adapt and validate the Richardson
model to simulate Canadian residential appliance and lighting demands using 22 high-resolution,
measured demand profiles from dwellings in Ottawa, Canada. Overall, these models demonstrate
the ability to capture the time-dependent nature of residential loads by end use using a
combination of metered data, occupant survey data, and a variety of statistical simulation
techniques. However, because they do not incorporate engineering models of multiple building
subsystems interacting with environmental conditions, they can only be used to model limited
shifts in technology or policy (e.g., changes that are limited to a single end use or are primarily
driven by a change in occupant schedules).

Early bottom-up engineering modeling efforts involved using 16 multifamily residential building
prototype models (Ritschard and Huang 1989) and 8 single-family residential prototypes
(Ritschard, Hanford, and Sezgen 1992) in 16 climates to develop a database of hourly residential
building loads. Huang, Hanford, and Yang (1999) updated and expanded the Ritschard et al.
(1992) prototypes to 112 single-family and 63 multifamily residential building prototypes, and
they used them to determine the contributions of various enclosure components and internal
gains to residential heating and cooling demand. Building on the earlier work by Ritschard et al.
(1992) and Huang et al. (1999), Hopkins et al. (2011) increased the number of prototypes by an
order of magnitude by simulating all 4,382 homes sampled for the 2005 RECS. Many important
energy-related parameters, such as insulation levels, air tightness, and heating/cooling equipment
efficiency are not collected by RECS and thus had to be sampled from probability distributions.
ResStock, the latest research effort to model the U.S. single-family housing stock, uses 350,000
statistically sampled building models, drawing on building characteristics data from the 2009
RECS, the U.S. Census Bureau’s American Community Survey (ACS) and 10 other data sources
(Wilson et al. 2016, 2017).

Commercial Buildings

Significant effort has been made to examine energy use in commercial buildings from a bottom-
up engineering perspective. Some models, such as those developed by Fonseca and Schlueter
(2015) use simplified, algebraic hourly models to describe end uses in buildings. Others, such as
Yang, Li, and Augenbroe (2018); Heeren et al. (2013) use quasi steady-state approaches (1SO
13790:2008: Energy Performance of Buildings — Calculation of Energy Use for Space Heating
and Cooling 2008, 137), which also avoid differential equation-based physical modeling. These
simplified models generally require few inputs and run quickly, making them attractive in high-
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level studies of the commercial building stock over long time scales (Yang, Li, and Augenbroe
2018). Other studies use whole-building energy modeling software that directly simulates zonal
or finer-scale thermodynamics and is resolved at the hourly or subhourly level (Heiple and Sailor
2008); B. Griffith et al. 2007; Griffith et al. 2008; Sezgen et al. 1995; Coffey et al. 2015; Dirks et
al. 2015). These models promise greater accuracy at a cost of longer computational times and
higher input data requirements.

Another issue in commercial building stock modeling is the development of archetypes that
represent a larger segment in aggregate after weighting factors are applied to the simulation
results for each model. Reinhart and Davila (2016) use as few as 13 archetypical building models
to model commercial building energy use in Ireland, whereas 3,168 archetypical models have
been used in the case of Italy to represent 877,144 commercial buildings. Similarly, U.S. analysis
is often done using a subset of the 17 DOE “reference building” (Deru et al. 2011) or “prototype
building” models (Goel et al. 2014), which, depending on the scope of the study in terms of
building types and climate regions, can result in a few up to 272 archetype buildings (e.g., Hart
et al. (2015) uses 30, covering six building types and five climate zones). Dirks et al. (2015) use
approximately 2,000 archetypes to model the eastern half of the United States. As pointed out by
Brogger and Wittchen (2017), a challenge of the archetype approach is ensuring the archetype
models are actually representative of the stock. To overcome this limitation with archetype
modeling, a different approach has been taken by Coffey et al. (2015) in which each building
within the defined stock is modeled using a combination of 3-D building geometry and high-
level information (e.g., floor area and use type). The approach required an expert system that was
used to create individual whole building energy models, which results in a requirement for
significant input data that may not be available on a national scale while simultaneous greatly
expanding the size of the required simulation set.

When evaluating the magnitude of errors in multi-sector commercial analyses, Reinhart and
Davila (2016) demonstrate that large-scale studies only match the energy consumption of the
aggregate building stock within 1%—-19% of site energy use on an annual basis. while not
addressing issues of time of use. Akbari et al. (1993); Sezgen et al. (1995) both attempt to
address this by applying load shapes developed from additional data sources. Though this
approach may be adequate for predicting future scenarios where the load shape is not expected to
change significantly, it is inadequate for predicting future scenarios where new technologies are
expected to change the load shape, which is the case when considering electrification of the
building stock. The Heiple and Sailor (2008) model is one of the few building stock models that
has been validated for both annual energy consumption and load shape. In this case, the load
shape for a tractable geographic extent was validated against top-down models of the city,
allowing for derivation of measured data for a larger entire region containing that city.

Most of the bottom-up, physics-based models for buildings represent occupant behavior by
applying schedules that dictate both the presence of occupants (e.g., occupant component of
thermal loads, and hot water use) and their impact on equipment controls (e.g., lighting system
status; heating, ventilation, and air conditioning [HVAC] control mode; and HVAC set points).
Many of these schedules are based on previous research into this topic. Heiple and Sailor (2008)
note that these schedules can noticeably impact the overall results, and they suggest creating
additional archetype divisions with different operating schedules. Kim and Srebric (2017); Chen,
Hong, and Luo (2018) examine data sources and methodologies to develop diverse and
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stochastic schedule sets for university buildings and offices respectively. This research is very
promising, and it will be an excellent candidate for inclusion in stock-wide modeling,
particularly as additional classifications of commercial buildings are considered in the literature.

Summary

Ideally, there would be building stock models covering large geographic extents informed by
both detailed stochastic modeling of occupant behavior (bottom-up statistical models) and
detailed modeling of building physics interacting with weather, occupant behavior, and
equipment controls (bottom-up engineering models). However, the current state of the art is that
these two types of modeling approaches are practiced separately. The occupant-focused
statistical models (which are mostly restricted to the residential sector) typically have good
temporal and end-use resolution but a limited ability to model technological change because they
are stochastic simulations based on historical time-of-use-surveys and metered data. The physics-
focused engineering models (for both residential and commercial buildings) are well suited to
model the energy impacts of technological change by end use, but they struggle with achieving
accurate temporal resolution. This shortcoming is primarily driven by the historical emphasis on
whole-building, annual energy efficiency metrics; a lack of hourly data by end use for
calibration; and the naturally wide variance in occupant behaviors and control settings that in
some sense should be averaged out when the primary concern is creating energy efficient designs
for buildings that may be used by multiple occupants over the course of their designed lifetimes.
This report documents efforts to begin to calibrate bottom-up engineering building stock models
(particularly ResStock and the newly minted ComStock) on an hourly or subhourly basis. We
expect to see more such efforts given the increasingly urgent need to describe both time-
dependence of energy use and the potential impacts of technological change.

1.1.4.2 Transportation Sector

Electricity load modeling for the transportation sector, especially as it focuses on the adoption
and charging profiles of passenger PEVs, has been proposed by many researchers in response to
the potential for these vehicles to capture significant market share. Though some studies,
especially those with a focus on climate change mitigation, also examine demand trends in other
transportation subsectors (Garrido and Mahmassani 2000; Kamakate and Schipper 2009; Eom,
Schipper, and Thompson 2012; Muratori et al. 2017; Winchester et al. 2013; Boeing 2015;
Paulley et al. 2006), significant electricity consumption is not typically projected for those
subsectors due to a lack of mature technological options (e.g., electric air or marine transport).

Several vehicle-to-grid studies leverage travel information surveys to predict PEV charging
demand (Clement-Nyns, Haesen, and Driesen 2010; Denholm and Short 2006; Duvall et al.
2007; Green, Wang, and Alam 2011). Bashash and Fathy (2012), for example, propose a control-
oriented model representing the collective charging dynamics of PEVs that uses the U.S.
National Household Travel Survey to predict the number of PEVs connected to the grid at any
given time. Other studies use behavioral models to predict vehicle use and charging patterns
(Muratori, Moran, et al. 2013) or queuing theory to estimate the overall charging demand of a
population of PEVs (Li and Zhang 2012). Ashtari et al. (2012) instrumented 76 PEVs in
Winnipeg, Canada, to record vehicle driving and parking patterns. One-second charging profiles
were used to calibrate a stochastic method to predict PEV charging loads and capture the
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relationship of vehicle departure, arrival, and travel time for different charging scenarios (e.g.,
residential versus workplace and different charging power levels).

In this context, NREL, in partnership with the California Energy Commission, developed the
Electric Vehicle Infrastructure Projection (EVI-Pro) model? to simulate spatially and temporally
resolved demand for PEV charging at residential, workplace, and public destinations based on
real-world travel data (Wood et al. 2017). EVI-Pro anticipates consumer charging behavior
while capturing variations with respect to housing type (single-unit versus multiunit dwellings),
travel period (weekdays versus weekends), and regional differences in travel behavior and
vehicle adoption.

1.1.4.3 Industrial Sector

Given the highly complex, heterogeneous, and proprietary nature of the industrial sector, and a
corresponding lack of comprehensive data sources, detailed models of its energy consumption
have lagged models of other sectors. In past studies, top-down estimates based on projections
from the EIA AEO, which is produced annually using NEMS, have been common (Hostick et al.
2012; Holmes et al. 2014). Though these studies provide a good baseline of aggregate energy
consumption within the industrial sector, their granularity is typically limited to the census
division level.

In addition to using AEO data, many studies incorporate data from EIA’s MECS. This national
survey is conducted every four years and collects information on U.S. manufacturing
establishments, their energy-related building characteristics, and their energy consumption and
expenditures (EIA 2017a). Within the MECS, detailed estimates of energy consumption by
industry type and census region are available at the end-use level. Additionally, the DOE
Advanced Manufacturing Office has used these data in numerous studies of specific
manufacturing industries.?!

Though these studies provide useful information for the individual industries covered, they
demonstrate the primary issue in modeling industrial sector energy use, which is that there is no
“one size fits all” bottom-up modeling approach. Although various industries may share similar
processes and end uses, their energy consumption may vary greatly depending on what type of
product is being produced, and no one data source describes process units consistently across all
industrial manufacturing subsectors. As a result, detailed technology level models are rare,
limiting the granularity that can be achieved by an industrial sector model.

1.2 Scope of dsgrid

dsgrid is a model of U.S. electricity use with an unprecedented combination of temporal,
geographic, and sectoral detail and coverage (Figure 1). Previous load models focused on similar
questions have reasonably focused on (1) seasonal and peak load effects and (2) building end
uses that are widespread and either (a) large as a proportion of peak load with the potential to be
controlled (for demand response studies) or (b) with significant energy efficiency potential.

20 EVI-Pro: Electric Vehicle Infrastructure Projection Tool, hitps://www.afdc.energy.gov/evi-pro-lite
21 The so-called Bandwidth Studies are listed at “Energy Analysis by Sector,” DOE,
https://energy.gov/eere/amo/energy-analysis-sector.
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A recent effort to develop more end-use and geographic specificity (Olsen et al. 2013) is
leveraged here, but what the report describes is fundamentally different in scope.

dsgrid uses large-scale building energy modeling and gridded meteorological data to accurately
reflect regional differences in equipment types as well as weather to enable realistic
multidimensional “what-if” analyses. It also provides hourly subsectoral detail on industrial
manufacturing loads and captures other important non-building loads. Projections of future load
will include detailed modeling of PEVs, both passenger and commercial vehicles, coupled with
multiple charging strategy and scheduling flexibility assumptions.
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Figure 1. Load models summarized by their geographic, temporal, and sectoral extents
and resolution

dsgrid provides an unprecedentedly detailed picture of current and, when coupled with EnergyPATHWAYS,
future continental United States (CONUS) electricity load

In the remainder of this report, the authors describe dsgrid: its modeling approach and initial
baseline results for one historical year. Future work will use outputs from the
EnergyPATHWAY'S model to develop detailed descriptions of future load scenarios.

The dsgrid data sets and model are a timely effort to understand the time-varying nature of
electrical demand and flexibility at an unprecedented level of detail that will be used to explore
future scenarios of the U.S. electric sector.
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2 Model Architecture: A Composite Picture Built Up
from Sector Models

So that it can provide the necessary sector level details and compute residuals against historical
electricity-sector data, dsgrid was not developed as a single model but rather as a confederation
of models and data sets bound by processes for comparing and harmonizing data across several
levels of geographic, temporal, and sectoral resolution.

In this section, the authors summarize the model as a whole and its constituent parts. We first
provide an overall architectural view (Section 2.1). This is followed by brief descriptions of the
sector models, which are provided in two “flavors”: (1) detailed, bottom-up models whose data
are available at hourly resolution by subsector, end use, and county, and (2) gap models that rely
on a mixture of top-down and bottom-up data sources and are typically coarser than the detailed
models in at least one dimension (Section 2.2). After summarizing the sector-level modeling as a
whole (Section 2.2.5), we describe two additional gap models, models of distributed generation,
and derived data sets describing system losses and model residuals (Section 2.3).

2.1 Architectural Overview

The heart of the dsgrid model is the bottom-up detailed sector modeling described briefly here
and in more detail in Section 2.2 and Appendices A, B, and C. However, to create a
comprehensive picture of U.S. electrical load, the model must also account for other aspects of
system load, such as loads not captured in detail by the sector models, distributed generation, and
T&D losses; and should also be calibrated and validated against historical data. To accomplish
these goals the detailed bottom-up sector models are complemented by coarser gap models,
distributed generation models, and several historical electric-sector data sets within an analytic
framework that allows comparison and computation across different levels of geographic,
temporal, and sectoral resolution (Figure 2, next page).

The detailed bottom-up energy modeling for each sector is conducted with separate
methodologies, following the overall philosophy of leveraging and supporting the energy
modeling work conducted by research groups focused on particular end-use sectors, rather than
attempting to recreate or repurpose such work from a pure power systems point of view. The
scope and methods used for each sector model are thus products of prior work done by each
sector modeling team combined with modifications necessary to meet the temporal and
geographic resolution required by dsgrid. Brief descriptions of the methodologies follow:

e Residential and Commercial Buildings (NREL): Building loads are estimated using
ResStock and ComStock, which use similar statistical methodologies and OpenStudio
modeling infrastructure to simulate U.S. single-family detached and commercial building
stock electricity consumption by end-use. These models sample from thousands of
probability distributions to produce hundreds of thousands of EnergyPlus simulations,
which are then weighted to represent subsector building stocks at the county level. This
detailed modeling covers single family homes and commercial buildings mappable to the
16 DOE commercial “prototype buildings” (Goel et al. 2014).

¢ Industrial Manufacturing (EPRI/ORNL): Industrial manufacturing loads are modeled
with the Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E), which
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uses plant-level databases, the Manufacturing Energy Consumption Survey, and the
Electric Power Research Institute’s Load Shape Library to construct hourly time series of
electricity use by manufacturing subsector and end use. Because manufacturing processes
vary greatly, IGATE-E does not attempt direct simulation of loads but rather compiles
data from multiple sources and applies statistical techniques to estimate energy
consumption down to the end-use level. Because IGATE-E only models manufacturing,
the additional industrial sectors of agriculture, mining, and construction comprise the
industrial gap model.

Historical Calibration Data Sources

Pl'qae“g”i:ng Hourly ISO / FERC 714 System Generation Data Centralized Supply

Utility Annual EIA 861 Operational Data on System Losses T &D Losses
by State

Utility Annual N . . EIA 861 Retail Sales
by State nu Residential [fCommerciall| Industrial [ Transport & Operational Data

Site-Level Supply
dsgrid Model Components

State Hourly Distributed
{ar County) Generation

Municipal Outdoor Non-Sectoral
Water Services|| Lighting Gap Models

County Hourly

(per capita)
County Hourly Resg;::tlal IncIGl;spt:aI TraGnasF;::rt GSe;:or:ll
o ap Mode's Site-Level Demand

ResStock Core, Detailed
County Hourly Sector Models

Geographic | Temporal

Residential ICommerciaIl Industrial | Transport |
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Figure 2. dsgrid input data architecture

CHP = combined head and power FERC = Federal Energy Regulatory Commission
DPV = distributed solar photovoltaics IGATE-E = Industrial Geospatial Tool for Energy
Evaluation

EIA = U.S. Energy Information Administration

EVI-Pro = Electric Vehicle Infrastructure ISO= Independent System Operator

Projection Tool SERA = Scenario Evaluation, Regionalization and
Analysis model

e Transportation (NREL): Given the focus in this report on constructing a model of
historical electricity use we describe the detailed transportation modeling methods that
will be used in future work to capture EV location and charging; but no detailed sector-
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level results for transportation are presented. When this capability is developed for the
EFS future model year snapshots, on-road plug-in electric vehicle operation will be
described using the Scenario Evaluation and Regional Analysis (SERA) model and the
Electric Vehicle Infrastructure Projection Tool (EVI-Pro). SERA describes vehicle
infrastructure requirements and will be used to disaggregate vehicle adoption to the
county level. EVI-Pro simulates hourly charging profiles based on travel data and
charging preference assumptions (e.g., residential charging as opposed to reliance on
public charging). The historical data set includes a transportation gap model that
describes electricity use in passenger trains.

For the initial historical snapshot described here, the year being modeled by dsgrid is 2012. This
choice is based on data availability, including meteorological data that impacts some of the
sector models and ultimately needs to be time synchronized with the renewable generation data
to be used in the electricity supply modeling portion of EFS. The current baseline years for the
sector models are

e Residential Buildings: 2009 RECS and 2010-2014 ACS
e Commercial Buildings: 2012 CBECS

e Industry: 2014 MECS

e Transportation: 2012 National Transit Database

The sector models that are not primarily calibrated to 2012-specific data sets are scaled to
represent the historical 2012 model year. For example, for the residential sector, the 2010-2014
ACS provides dwelling unit counts by census tract, but when calibrating against 2009 RECS
energy consumption data, the 2009 RECS dwelling unit counts are scaled up to match the
occupied dwelling unit counts from the 2010-2014 ACS for each building type and census
division. Industry scaling from 2014 back to 2012 is done using the EIA SEDS data, which show
about a 1% increase in industrial retail electricity use over that time (EIA 2017b).

Moving up from the bottom of Figure 2, the dsgrid gap models capture (1) residential,
commercial, industrial, and transport subsectors that are not handled in our detailed sectoral
modeling and (2) municipal/utility end uses such as municipal lighting, and water pumping and
treatment. The magnitude of most of these gaps is first estimated using data products from the
EIA and other federal agencies, namely, the EIA Residential Energy Consumption Survey
(RECS), the Commercial Building Energy Consumption Survey (CBECS), the AEO, the
National Transit Database (NTD), and the County Business Patterns data (EIA 2013d, 2016a,
2015a; FTA 2017; U.S. Census Bureau 2018). We then form our gap model by assigning a proxy
timeseries to each of the gap magnitudes identified in those data sets. For some subsectors we
also geographically downscale our estimates using additional data sources available from the
bottom-up models. The processes and specific assumptions made for each gap are described in
Section 2.2 (sectoral gap models) and in Section 2.3.1 (municipal end uses). The temporal
resolutions of the gap energy magnitude data are uniformly annual. The geographic and sectoral
resolutions vary. Some of the key data are only available at the census division level or for the
nation as a whole, but in all cases, we can geographically downscale at least to the state, and
sometimes to the county.
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To approximate total site-level grid-delivered electricity use by sector and state, the authors
estimate hourly distributed generation from customer-sited PV, combined heat-and-power
(CHP), and distributed thermal plants, and subtract this from the sum of the detailed and gap
bottom-up load models. The distributed generation models are distinguished by sector
(residential, commercial, or industrial) to facilitate annual by-sector, by-state comparisons to
historical by-sector electricity demand. The hourly profiles, in addition to facilitating the creation
of grid-delivered electricity profiles, allow for hourly by-state comparisons to historical total
electricity demand. The main data sources for our distributed PV (DPV) model are Perea et al.
(2017) and Sigrin et al. (2016). CHP and distributed thermal capacity, generation, and behind-
the-meter fractions are estimated using EIA Forms 860 and 923 (EIA 2013a, 2018), and the DOE
CHP Database (ICF Inc. and DOE 2016). CHP and distributed thermal hourly profiles are
generated from continuous emission monitoring systems (CEMS) data (US EPA 2016; EPA
2013).

To calibrate and validate the initial dsgrid data set for historical year 2012, we leverage two
historical electricity-sector data sets. Shown at the top of Figure 2, with no sectoral resolution
and coarse geographic resolution, we have a historical data set of hourly electrical load that is
comprised of independent system operator (ISO) data, and FERC Form 714 filings (FERC 2016;
SPP 2016; pjm 2016; MISO 2016; ISO New England 2016; NYISO 2016). The native resolution
of that data is at the utility, balancing authority, or ISO region level. For this version of dsgrid we
use a version of the data set that has first been disaggregated down to individual transmission
nodes, and then re-aggregated up to the state level. In future versions we plan to enable analysis
at the county or utility level by fully leveraging the nodal disaggregations, but it was not
tractable to achieve a reliable geographic matching at that level of detail within the scope of this
initial project. This load data represents the system operator perspective, that is, it is equal to
generation plus imports minus exports, and is thus the total amount of generation plus net
imports that the system had to obtain to meet its load and cover all T&D losses.

Annual retail sales data are available from EIA Form 861 (EIA 2013b), where they are reported
by sector (i.e., residential, commercial, industrial, and transport>?) for every utility by state. EIA
Form 861 also reports the amount of electricity furnished or consumed by respondent without
charge, which we add to the commercial retail sales. These data—electricity consumption by
sector and state—represent the total amount of electricity sold or furnished to utility customers,
and thus excludes system losses. These data are more resolved sectorally and geographically than
are the top-down hourly load data, but they are temporally coarser. EIA Form 861 also reports
losses by utility and state, and this is the main data source for our loss model.

In Section 2.3, in addition to further describing the gap and distributed generation models, the
authors describe how we estimate system losses and compute model residuals. Hourly system
losses are estimated by combining the historical hourly load, historical annual sales, and
historical system losses data. Model residuals are estimated by combining the historical data sets,

22 In the coming decades, we expect significant amounts of electricity used to charge EVs to show up in EIA filings
as residential, commercial or industrial, rather than as transportation, electricity use based on behind-the-meter
charging at residences and commercial or industrial sites.
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the hourly system losses model, and the dsgrid components—detailed bottom-up sector models,
gap models, and distributed generation models.

2.2 Sector Models

The core of dsgrid leverages previous work by four energy modeling teams, each of which brings
multiple large-scale data sets together to form a holistic picture of an individual sector:
residential buildings, commercial buildings, industrial manufacturing, and transportation. The
four modeling teams have deep institutional experience estimating the energy use of their various
sectors, although usually on an annual or seasonal, rather than hourly basis. By expanding the
temporal, and in some cases, geographic resolution of these energy-use estimates, harmonizing
assumptions, and undertaking a collaborative calibration effort, dsgrid creates a highly resolved
picture of United States electricity use.

2.2.1 Residential Sector

ResStock is a bottom-up simulation methodology for modeling residential building stocks with a
high degree of granularity. In development by NREL since 2013 (Wilson et al. 2016, 2017),
ResStock characterizes the energy use of U.S. single-family detached housing?’ using a
hierarchical structure of conditional probability tables and detailed energy simulations of
hundreds of thousands of representative buildings.

2.2.1.1 Input Data Sets

The conditional probability distributions are synthesized from data queried, translated,
aggregated, and extrapolated from 11 sources, including U.S. census data, RECS, builder
surveys, and other data from field studies. These data are supplemented by engineering estimates
where data are lacking. Details of the housing stock characterization data model can be found in
Wilson et al. (2017). A summary of the input data sources is shown in Table 2. The data sources
are described in detail in Appendix A.

23 ResStock is currently limited to single-family detached housing. Capabilities for low-rise multifamily and mobile
homes are under development.
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v’ = direct dependency = = indirect dependency italics = archetype parameters MELSs = miscellaneous electric loads
C = Census Tract R = Regional (custom) TMY3 = 216 typical meteorological year subregions =~ NAHB = National Association of Home Builders

ResStock statistically represents housing stock characteristics with 6,000 conditional probability distributions derived from 11 data sources. This table provides
information on how each parameter’s probability distributions depend on other archetype parameters, as well as each parameter’s data sources, geographic
resolution, and number of options (bins).
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ResStock also depends on geospatial weather data. It uses 216 climate subregions as the core
geographic resolution for its building energy simulations (see Figure 3). The 216 subregions are
clusters of approximately 84,000 National Solar Radiation Data Base 10-km? grid cells that are
grouped based on proximity, elevation, and data similarity, using a method described in Lopez
(2011). For this work, 216 EnergyPlus weather (EPW) files, one for each climate subregion’s
representative location, was assembled using National Solar Radiation Database (NSRDB) data
from 2012 as described in Appendix H.

To achieve consistency with the commercial, industrial, and transportation sector components of
dsgrid, ResStock results are mapped from the 216 TMY 3 locations to the 3,107 counties in the
CONUS. This mapping is done using census-tract-level household data from the 2012 ACS
combined with a geospatial filter that excludes non-residential land. The filter is derived from
a 200-m residential land mask computed from LandScan Nighttime and Daytime Gridded
Population data (ORNL 2011) and Homeland Security Infrastructure Program facility location
data (HSIP 2012). This mapping uses iterative proportional fitting to mesh data from the ACS
Public Use Microdata and the American Housing Survey to ultimately account for the
distribution of building types, vintage, heating fuel, cooling type, floor area, and household
income within census tracts. Aggregated timeseries results for each county are standardized to
Eastern Standard Time (EST) to synchronize electrical load profiles across all U.S. time zones.

Figure 3. ResStock simulations use 216 climate subregions, each represented by a single
weather station.
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2.2.1.2 Methodology

The data sets described above are used to create a hierarchy of thousands of conditional
probability tables that collectively define more than 100 building components. Statistical
sampling based on a modified Latin hypercube sampling approach is used to select
representative homes from the parameter space defined by the housing stock data model (Wilson
et al. 2016). Detailed subhourly building energy simulations modeling a year’s worth of
operations are assembled using OpenStudio and run in EnergyPlus (Roth, Goldwasser, and
Parker 2016; Crawley et al. 2000). For this project, the energy consumption of the single-family
housing stock of the CONUS is represented by 350,000 building/location models run on
Peregrine, NREL’s high-performance computer, or distributed cloud computing.

Convergence testing of simulation results sliced various ways led us to select 350,000 as the
number of building/location models (combinations of building characteristics and climate
locations) to represent the current U.S. housing stock. Weighting factors are used to scale results
up from 350,000 to the 73.2 million regularly occupied single-family detached homes included
in the analysis, based on the 2010-2014 ACS (Manson et al. 2017; U.S. Census Bureau 2017).

2.2.1.3 Output Data
Each EnergyPlus simulation produces timeseries results of whole-building electricity and fuel

use, as well as electricity and fuel use by end use. ResStock simulations typically use ten-minute
timesteps for zone calculations with smaller timesteps used for HVAC system calculation on an
as-needed basis. Timeseries results can be reported with ten-minute resolution but are aggregated
to hourly resolution for dsgrid. The end uses reported for dsgrid ResStock analysis are based on
standard EnergyPlus reportable meters, and the dsgrid bottom-up residential data set reports
hourly timeseries of:

e Fans: electricity (kWh)

e Pumps: electricity (kWh)

e Heating: electricity (kWh)

e Cooling: electricity (kWh)

e Interior lights: electricity (kWh)

e Exterior lights: electricity (kWh)

e Water systems: electricity (kWh)

e Interior equipment: electricity (kWh)

e Heating: gas (kBtu)

e Water systems: gas (kBtu)

e Interior equipment: gas (kBtu)

e Water systems: water (gal)
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Customizable OpenStudio scripts can be applied to report consumption for more detailed end
uses, such as plug loads, cooking, and clothes drying. Additional reports related to building
performance (e.g., relative humidity and zone temperatures) can also be generated.

The output timeseries are provided at the county level and are time-synchronous with 2012
meteorological data, based on the geospatial disaggregations and weather data transformations
described above.

2.2.1.4 Calibration

ResStock, and building energy modeling in general, have previously focused on predicted annual
energy savings results for applications related to energy efficiency in buildings. ResStock is
currently calibrated by comparing modeled energy use by fuel type to the corresponding energy
use metrics given in the 2009 RECS (EIA 2013d) for slices of the housing stock, such as region,
vintage, and space heating fuel type. Iterative changes to model inputs were made to bring
modeled consumption into better agreement with the reference consumption. The use of
ResStock for producing electric load profiles under various scenarios is being validated as part of
this effort. Models for bottom-up load modeling can generally be categorized as models that
generate either (1) aggregated load profiles or (2) agent load profiles for individual buildings or
appliances. Individual building agent load profiles reflect the stochastic behavior of event-based
load spikes (e.g., toaster on for five minutes), which when summed over hundreds or thousands
of buildings, approach the smoothness of aggregated load profiles needed for bulk power system
analysis. Initially, dsgrid and ResStock focus on the former category of aggregated load profiles,
though the latter category of agent load profiles is of interest for other applications.**

In 2016, NREL completed initial validation of the non-weather dependent end use load profiles
(e.g., appliances, plug loads) generated by ResStock. In 2017, the validation effort focused on the
weather-dependent end uses (e.g., space heating, space cooling, and domestic water heating).
Sources of measured electric load profiles being used for validating ResStock include:

o Utility Load Research Data (ULRD): Electric utility companies collect load profile
data from a sample of their customers for various internal and external uses. NREL has
obtained a collection of ULRD for one or more years from about 30 U.S. electric utilities.
The hourly load profiles are typically aggregated by customer class; residential customers
that use electricity for space heating are sometimes split into a separate “space heat”
class. Commonwealth Edison (ComEd) is one utility that splits ULRD into single-family
and multifamily classes as well. Thus, the ComEd ULRD is particularly useful for
validating ResStock single-family load profiles. Figure 4 summarizes some of the
residential data in this data set, which is clearly summer peaking.

24 Though ResStock models individual buildings, it cannot yet model event-based load spikes for most end uses.

25

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.


http://www.nrel.gov/publications

1.6

—— ULRD 2012 total average, n=8

14

12 Wil

1.0

kWh

0.8

0.6

0.4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2012

Figure 4. Average of residential load profiles from eight electric utilities available in the
Utility Load Research Data (ULRD)

e End Use Submetering Studies: These studies measure the load profiles of individual
end uses (e.g., heating, cooling, water heating, appliances, and miscellaneous plug loads)
within individual buildings. The data collection is usually expensive and intrusive to
building occupants, so submetering studies are uncommon and typically limited in terms
of number of homes, geographic scope, and representativeness. The Residential Building
Stock Assessment Metering (RBSAM) study, which recorded data at 15-minute intervals
for over 150 end uses in about 100 single-family homes in the Pacific Northwest (Larson
et al. 2014), is the primary submetering study used for ResStock validation. Notable
changes made to ResStock inputs based on comparing ResStock outputs to the RBSAM
data set are shown in Figure 5, Figure 6, and Figure 7. Additional plots showing
preliminary calibration of weather-dependent end uses are included in Appendix A.
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Figure 5. The ResStock plug load schedule was updated to use the measured plug load profile
from RBSAM (mid-day valley eliminated).
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Figure 6. The ResStock lighting schedule algorithm was updated to eliminate the deep mid-day
valley and more closely match measured lighting use from RBSAM.

The algorithm is a piecewise function with six components that are functions of building latitude, season, and
sunrise/sunset times.
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Figure 7. After modification, the ResStock lighting schedule algorithm results in an improved
match to the RBSAM data for all months of the year.
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Other model improvements include addressing unrealistic coincidence in occupant behavior
regarding exhaust ventilation and hot water use events. For exhaust ventilation (e.g., bathroom,
kitchen, and clothes dryer exhaust), the model was changed from simulating every home having
exhaust ventilation events at the same time to using a probability distribution to assign timing of
the exhaust events. This had the effect of spreading spot ventilation out over the day realistically
for the sample of homes modeled in ResStock. For hot water use, a change was made to use
1,615 repeating weeks for the draw profile instead of a set of 50 annual draw profiles. This led
to significantly more diversity in hot water draw patterns across homes, and it reduced the
occurrence of unrealistically coincident water heater electricity demand.

2.2.1.5 Subsector Gap Model

When ResStock was initially developed, NREL’s residential modeling algorithms were focused
on single-family detached housing, based on a history of developing energy modeling and
optimization tools for research involving large, production homebuilders in the U.S. Department
of Energy (DOE) Building America Program (Christensen et al. 2006; Wilson et al. 2014).
Consequently, ResStock currently does not represent multifamily housing, including duplexes,
and low-, mid-, and high-rise residential buildings.?> Mobile homes are also not currently
represented. Larger multifamily buildings, in particular, mid- and high-rise residential buildings,
are represented as part of the commercial building stock (Deru et al. 2011). To facilitate
comparison to EIA Form 861 residential data (EIA 2013c), the dsgrid detailed residential sector
model is ultimately comprised of the ComStock mid- and high-rise apartment building
subsectors sitting alongside the ResStock results in a single data file.

The remaining residential subsectors form the residential gap model (Table 3). The energy use
for these gap subsectors is approximated by scaling the RECS 2009 energy use by the number
of dwelling units reported in the 2010-2014 ACS divided by the number of dwelling units in
RECS 2009. These factors are computed by subsector for the 27 reportable domains in RECS
2009 (large states and groups of states) (Table 4). The energy use is then distributed to counties
based on the 2010-2014 ACS occupied-only housing unit counts, again, on a residence-type
basis.

Table 3. Residential Subsectoral Gaps: Size and Proxy Timeseries Description

Est. Portion of CONUS Proxy Timeseries

Residential Electricity Geographic End-Use

Subsector Use (%) Description Resolution Resolution

Mobile homes 7.2 Single-family State Same as
detached (1,000 ft? ResStock
size bin)

Low-rise apartments 5.0 Mid-rise apartments State Same as
(ComStock) ComStock

Single-family attached 4.7 Single-family State Same as

(duplexes and detached ResStock

townhomes) (1,000 ft2 size bin)

2 ResStock multifamily capabilities are under development as of 2018.
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The proxy timeseries for the residential gap model are also summarized in Table 3. As can be
seen in the table, low-rise apartments use the mid-rise apartment load timeseries, broken down
by end use, from ComStock; and the other two gap subsectors, single-family attached and mobile
homes, use timeseries from ResStock, not the full county-level data, but the portion describing
homes smaller than 1,500 ft. In all cases, for each building type and county, if a county-level
proxy timeseries is available, it is used. If no proxy timeseries is available at the county level, the
state-level aggregate is used. In all cases, the proxy timeseries are scaled to match the electricity
use (megawatt hours [MWh]) per building type and county estimated based on RECS 2009
(energy use) and the 2010-2014 ACS (energy use scaled to 2012 using Table 4, and downscaled
to counties based on relative building counts).

Table 4. Residential Scaling Factors: 2010-2014 ACS Occupied Dwelling Units Divided by RECS
2009 Dwelling Units, by Building Type and Census Division

Apartments in 2 Apartments in

Single Family Single Family to 4 Unit Five5 or More
Census Division Detached Attached Buildings Unit Buildings Mobile Homes
East North Central 100% 109% 98% 100% 108%
East South Central 96% 84% 135% 106% 116%
Middle Atlantic 99% 105% 103% 106% 93%
Mountain 100% 85% 160% 138% 89%
New England 105% 92% 100% 97% 134%
Pacific 106% 112% 96% 99% 94%
South Atlantic 102% 133% 103% 110% 83%
West North Central 102% 101% 116% 113% 72%
West South Central 107% 58% 89% 103% 121%

2.2.2 Commercial Sector

ComStock is a bottom-up, physics-based model developed for this project by NREL to capture
energy-related characteristics and model energy use of the U.S. commercial building stock. The
ComStock methodology builds on the framework established by ResStock (Wilson et al. 2017)
but differs in several ways guided by the unique physical and operational characteristics of, as
well as the data available for, commercial buildings. Primary differences include how the
geospatial distribution of buildings is calculated and how empirical data are translated into
building energy model inputs. ComStock is described here in brief. Detailed information on the
data, process, and assumptions used to develop ComStock are available in Appendix B.

The ComStock model is comprised of five parts:

e A database of commercial building characteristics

e (Conditional probability tables synthesized from these data
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e A sampling methodology implemented in the Parametric Analysis Tool?¢

e Model articulation using the OpenStudio software development kit?’ to create statistically
representative models; the programmatic re-creation and customization of DOE prototype
buildings?® within this framework? is a key building block.

e The EnergyPlus building energy simulation engine.*’

ComStock results consist of scaled, statistically representative building load profiles for the
CONUS commercial building stock with county-level granularity. The modeling process

is modular and highly flexible, such that alternate input data sets can easily be substituted and
various OpenStudio scripts (termed “measures”) can be inserted into the workflow. Thus,
ComStock can be used to explore alternate geographies or years, as well as energy efficiency or
demand response measures that model alternate design or operational decisions.

2.2.2.1 Input Data Sets

We initiate the ComStock workflow with a hierarchical structure of conditional probability tables
for nine major determinants of commercial building energy use: building location (i.e., county),
building type, floor-to-ceiling height, building energy code, primary HVAC system, number of
floors, total floor area, and vintage. We synthesize conditional probability tables with binned
values for each of these building characteristics (with the exception of energy code) from
national data sets, namely CBECS (EIA 2016a) and CoStar, which is a building-level
commercial real estate inventory from which we derive aggregates at the census block level
(CoStar 2017). The resulting probability tables distill critical building characteristics at
appropriate geo-spatial extents, for instance indicating that about 74% of primary schools in the
United States are one story and 15% have two stories.

26 For information about the OpenStudio Parametric Analysis Tool, see www.openstudio.net and the Parametric
Analysis Tool 2.1.0 (PAT) Interface Guide at http://nrel.github.io/OpenStudio-user-
documentation/reference/parametric_analysis_tool 2/.

27 For information about the software development kit, see https://www.openstudio.net/developers.

28 For information about DOE prototype models, see the U.S. Department of Energy Building Energy Codes
Program, “Commercial Prototype Building Models,” https://www.energycodes.gov/development/commercial/
prototype models, last updated April 14, 2016.

2 For information about the OpenStudio-Standards Gem framework, see https://github.com/NREL/openstudio-
standards.

30 For information about EnergyPlus, see energyplus.net.
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Each building is assumed to meet the minimum energy efficiency requirements of either
ASHRAE Standard 90.1 (ASHRAE 2016) or the DOE “reference buildings” pre-2004
assumptions (Deru et al. 2011). We assume building codes are commensurate with building
vintage (e.g., if a building was constructed in 1994, we assume it adheres to the 1980-2004
ASHRAE 90.1 standards). In future work, we will derive state- and county-specific code
compliance from the Building Codes Assistance Project database and more-granular code
adoption data derived from municipality and county data-sources (BCAP 2017). We may also
use the last retrofit year field in the CoStar data to capture the proportion of older buildings that
should now be considered compliant with newer building codes based on having been deeply
renovated. Additional building characteristics are derived primarily from building type and code
set using defaults specified in the DOE prototype buildings (Goel et al. 2014) and the NREL
Sector Model (B. Griffith et al. 2007), and are subsequently maintained by NREL in the
OpenStudio suite of modeling tools.*! The major building characteristics captured by ComStock,
their interdependencies, and data sources are summarized in Table 5.

31 See Footnote 29.
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Table 5. Building Characteristics, Dependencies, Data Sources, and Number of Variable Values
Used in the ComStock Modeling Process

Dependencies Data Sources

DOE Prototype
NREL Sector Model

CoStar Building Type
Buildings

Division

Location (county)
DOE Prototype
Building

Vintage

Number of Floors
Building Shape
CBECS (EIA 2012)
RECS (EIA 2009)
CoStar (2017)

Characteristics

NREL NSRDB

# of Options (bins) if

table exists

Meta Division

Location X
(county)

CoStar building
type

DOE prototype
building X X

Vintage X X X X
Energy code X X

Space type X
breakdown?

Weather data X

Geometry | Rotation® X

Number of X X X
floors

Area X X X

Floor-to-ceiling
height

Building shape X
Aspect ratio? X X

Window-to-wall
ratio?

Construction X X

Envelope type?
Wall properties? X X

Windows
properties®

Internal

a
Loads People X X X

Lights2 X X

Plug loads? X X X
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Elevators? X X X
Kitchen X X X
equipment?
Service .
Water Stt;oawers, sinks, X X
Heating )
Laundry? X X
Schedules Operatlona X X
schedules
HVAC HVAeC system X X 5
type
HVAC controls? X X X
HVAC X X X
efficiencies?

italics = archetype parameters, which are building characteristics whose values influence the conditional probability
tables of other building characteristics

@ For energy simulations, values of these parameters are determined using EnergyPlus/OpenStudio defaults based
on the dependencies shown
(i.e., no probability tables are associated with these characteristics).

b The number of counties is dependent on the analysis area.
¢Rotation is defined as 8 orientation bins offset by 45 degrees, with a uniform probability distribution.
d Aspect is defined as 6 bins between about 0.5 and 6.5. Each shape uses only some of the bins.

¢We infer HVAC system type based on the main heating and cooling types recorded in (EIA 2016a), using lookup
logic from (Griffith et al. 2008).

ComStock, along with ResStock, utilizes actual meteorological year (AMY) weather files
derived from the NSRDB as an input into the EnergyPlus simulation engine (Appendix H).
However, ComStock uses individual weather files for each county in the CONUS. Each weather
file location was chosen to be the closest NSRDB grid cell to the LandScan grid cell with the
highest daytime population in the county (ORNL 2011).

2.2.2.2 Methodology

The conditional probability tables created from ground-truth data sets are stored in tab-separated-
values file format, and the Parametric Analysis Tool is used to sample these tables hierarchically.
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We apply the same Latin hypercube stratified sampling methodology as ResStock (Wilson et al.
2016), selecting values for building characteristics based on the relative probabilities (i.e.,
frequencies) of those values, as described in CBECS 2012 and CoStar data. The resulting sets
of building characteristics are translated into inputs for energy models in OpenStudio and
EnergyPlus format using the Parametric Analysis Tool and OpenStudio measures (Roth,
Goldwasser, and Parker 2016). This process is completed for 350,000 building simulations on
internal server systems and cloud-computing infrastructure. Weighting factors are applied to
scale results from the simulated 350,000 buildings to the total number of commercial buildings
in the CONUS as estimated by CBECS 2012 (EIA 2016a).

2.2.2.3 Output Data
ComStock output data are similar to those of ResStock. The reported end uses are based on

standard EnergyPlus reportable meters:
e Fans: electricity (kWh)
e Pumps: electricity (kWh)
e Space heating: electricity (kWh)
e Space heating: gas (kBtu)
e Space cooling: electricity (kWh)
e Interior lights: electricity (kWh)
e Exterior lights: electricity (kWh)
e Water systems: electricity (kWh)
e Water systems: gas (kBtu)
e Interior equipment: electricity (kWh)
e Interior equipment: gas (kBtu)
e Space cooling: district cooling (kBtu)
e Space heating: district heating (kBtu)
e Heat rejection: electricity (kWh)

When space heating or cooling is provided by district systems, the quantity of energy reported is
the amount of thermal heating or cooling energy delivered to the building. To capture the load
this represents in terms of electricity and natural gas, we assume conversion factors of 0.58 kWh
electricity/ton cooling-hour for district cooling and 1.25 kBtu natural gas/kBtu heating for
district heating (Xcel Energy 2016).

Based on the reported metadata of each simulation, the results are categorized on a county-by-
county basis. The data are reported by commercial subsector and end use by summing across all
applicable data points within each county to achieve aggregated load timeseries. These values,
along with a scaling factor of 9.034, which is a result of simulating approximately one seventh
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of all commercial buildings in each county and a simulation failure rate of approximately 15%, is
persisted and transferred to dsgrid.>?

2.2.2.4 Calibration

The modeling techniques used in the creation of the ComStock building energy models are based
on a significant body of peer-reviewed work completed by NREL, the Pacific Northwest
National Laboratory, and Lawrence Berkeley National Laboratory over the last decade (Deru et
al. 2011). The inputs have been reviewed by numerous experts, including ASHRAE committee
members who design these buildings professionally. These models are under a constant state of
update and review through the OpenStudio Standards Gem, an open-source project whose
continual testing and development is supported by several ongoing projects.

As ComsStock is still in early stages of development, additional calibration steps are in progress.
Two primary categories of error are currently being examined in the ComStock model. The first
class of error stems from the uncertainty regarding the number of commercial buildings in the
United States, the square footage of said buildings, and their primary use. The second class is
due to uncertainty in the modeling assumptions being applied and potential bugs in their
implementation. All work in the immediate future is focused on finding and addressing these
error sources to (1) improve our estimate of the total stock being modeled in terms of number
and size of buildings by type and (2) improve our estimates of the energy use of these buildings
at different timescales (e.g., annual, hourly, and subhourly).

Data sources (e.g., CBECS and CoStar) disagree on such basic data as the number, size and type
of commercial buildings. Some of these differences arise from different definitions of what
constitutes a commercial building. Determining the validity of these data sets relative to one
another, however, requires a set of ground-truth observations. The ComStock team is proceeding
by obtaining such observations from various public and private utility data sets. Doing so allows
for verification of the number of buildings of various rate classes, albeit for limited sets of
geographies. Additional data sets for building types that are not bought and sold frequently

(e.g., federal buildings and schools) are also being incorporated to further supplement CBECS
and CoStar.

The modeling assumptions built into the OpenStudio Standards Gem reflect the best information
available from existing sources. Many of the inputs are taken from building energy performance
codes such as ANSI-ASHRAE 90.1, which governs what properties buildings must have based
on their age, type, and location to minimally comply with energy efficiency codes. Other inputs
are taken from the ASHRAE Advanced Energy Design Guides, which are a series of
publications written by experts on designing particular building types. The approach to modeling
many of the complex building controls and equipment was taken from the DOE prototype
buildings, which have been developed by NREL, the Pacific Northwest National Laboratory, and
Lawrence Berkeley National Laboratory over the last decade (Deru et al. 2011; Goel et al. 2014).
Additionally, because of the sheer number of inputs required for each building energy model,

32 Factoring the simulation failure rate into the overall scaling factor represents an implicit assumption that
simulation failures are evenly distributed across geographies, building types, etc. The authors do not expect that
assumption to be fully correct, but did also not find any clear, easily correctable trends in the specific simulations
that failed. This is an area we will look at closely and correct in future work.
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some inputs and modeling assumptions were developed using professional engineering expertise
developed by the ComStock team over many years of modeling buildings for a diverse array of
research projects and field studies.

2.2.2.5 Subsector Gap Model

The DOE “reference buildings” and “prototype buildings” represent 17 commercial building
types that are then replicated across climate zones and vintage to create hundreds to thousands of
archetypes (Deru et al. 2011; Goel et al. 2014).%* These models®* serve as a baseline standard
from which each simulated building is articulated in EnergyPlus. The building types documented
in the CBECS 2012 and CoStar data sets must therefore be mapped to these DOE prototype
buildings for modeling purposes. To avoid producing inaccurate energy models, building types
that did not have a reasonable prototype equivalent were excluded from ComStock, and they are
instead included in the gap model. See Appendix B for the full mapping from CBECS and
CoStar building types to DOE prototype buildings, along with associated building counts used
for this analysis.

The CBECS building types included in the commercial building gap model are listed along with
their annual energy use in Table 6. These building types are those that are not mappable to the
DOE prototype buildings but are mappable to CoStar building types (Table C-3 and surrounding
text). This latter mapping is then used to downscale the electricity use reported in CBECS to
counties based on the CoStar building counts. The proxy timeseries for these gaps are the
aggregated ComStock timeseries, summed over subsectors and end use. If a county-level profile
is available, it is used; if not, a state-level profile is applied. Unlike with the residential gap
model, we do not expect the end-use breakdowns to hold when applied to these various building
types>> and so do not supply them.

33 The DOE “reference buildings” span 16 building types: Large Office, Medium Office, and Small Office;
Warehouse; Stand-alone Retail and Strip Mall; Primary School and Secondary School; Supermarket; Quick Service
Restaurant and Full Service Restaurant; Hospital and Outpatient Health Care; Small Hotel, Large Hotel; and Midrise
Apartment. The DOE “prototype buildings” do not include a Supermarket model, but they add a High-Rise
Apartment. Thus, the two sets of archetypical building models together represent 17 commercial building types.

3% ComStock builds off of the OpenStudio Standards gem, which is a programmatic implementation of the DOE
prototype buildings. At the time of this writing, 16 building types: all of those listed above except for Supermarket;
are available. Because of deficiencies in the CoStar data, we are also not able to distinguish between Mid-Rise and
High-Rise Apartments, nor between Primary and Secondary Schools (school buildings are generally under-
represented in CoStar) at this time. As such, this version of dsgrid provides results for 14 commercial building sub-
sectors: Large Office, Medium Office, Small Office, Warehouse, Stand-alone Retail, Strip Mall, Primary School,
Quick Service Restaurant, Full Service Restaurant, Hospital, Outpatient Health Care, Small Hotel, Large Hotel, and
Midrise Apartment. Future planned work to add Supermarkets to the prototype buildings, and to supplement CoStar
with data sources that better represent public-sector building counts, should remedy these shortcomings.

35 Commercial buildings are much more heterogenous than residential buildings, both in design and use. For
example, the end use breakdowns between grocery stores, vehicle repair shops, and libraries look very different;
and, the temporal distribution of load will be very different between offices, libraries, and religious buildings. The
inability to match a CBECS or CoStar building type to a prototype building essentially signals that we do not yet
have an energy model that properly captures one or both of these aspects.
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Table 6. Commercial Sector Subsectoral Gaps: Size and Proxy Timeseries Description

Est. Portion Proxy Timeseries

of CONUS
Commercial

Electricity Geographic End-Use
Subsector Use (%) Description Resolution Resolution
Grocery store/food market 2.7 ComStock aggregation  County None
Recreation 2.0 ComStock aggregation  County None
Religious worship 1.9 ComStock aggregation  County None
Entertainment/culture 1.6 ComStock aggregation  County None
Laboratory 1.5 ComStock aggregation  County None
Convenience store 1.2 ComStock aggregation ~ County None
Vehicle service/
repair shop 1.2 ComStock aggregation ~ County None
Convenience store with
gas station 1.0 ComStock aggregation ~ County None
Library 0.9 ComStock aggregation  County None
Vehicle storage/
maintenance 0.7 ComStock aggregation  County None
Other public order and
safety 0.6 ComStock aggregation  County None
Vehicle dealership/
showroom 0.6 ComStock aggregation  County None
Fire station/police station 0.5 ComStock aggregation  County None

2.2.3 Industrial Sector

The Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E) is a model that
utilizes multiple data sources and statistical approaches to estimate the energy consumption of
manufacturing plants across the United States. Originally developed by Oak Ridge National
Laboratory in 2012, the tool has been used to investigate the potential for demand response and
CHP at the plant levels (Alkadi et al. 2013; Bhandari et al. 2018).

IGATE-E can be differentiated from the other sector models used by dsgrid in that it does not
attempt direct simulation of loads, because of the highly complex and specialized nature of
manufacturing processes. For example, process heating, which represents one of the largest
opportunities for electrification within the manufacturing subsector, is comprised of more than
10 types of heating operations®® and 20 distinct system types>’ used to carry out these operations
(LBNL et al. 2015). Furthermore, the applicability of each of these operational categories and

36 LBNL et al. (2015) provides basic descriptions of agglomeration and sintering, calcining, curing, drying, fluid
heating, forming, high-temperature heating and melting, low-temperature heating and melting, heat treating,
incineration/thermal oxidation, metals reheating, smelting, and other heating processes.

37 LBNL et al. (2015) categorizes process heating systems as fuel-based, electric-based, steam-based, or other;
where other is comprised of systems such as heat recovery, heat exchange, and fluid heating. That report lists

14 kinds of fuel-based furnaces and 11 electricity-based process heating technologies.
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systems varies greatly from one manufacturing industry to another. Because of the impracticality
of modeling so many different use cases, IGATE-E instead compiles data from multiple sources
and applies statistical techniques to estimate energy consumption down to the plant and end-use
levels. Because IGATE-E only models manufacturing, the additional industrial subsectors of
agriculture, mining, and construction comprise the industrial gap model.

2.2.3.1 Input Data Sets

Within IGATE-E, several data sets are used to estimate energy consumption for the
manufacturing subsector. The primary data sets are the DOE Industrial Assessment Centers
(IAC) Database and the Manufacturers’ News, Inc. (MNI) EZ Select database. The TAC
Database is a public data source that contains information on more than 18,000 plant-level
assessments (DOE 2017a). The assessments date to 1981 and primarily focus on small- and
medium-sized plants.*® Although the IAC Database contains a large amount of data, its
relevancy may be limited in industries where fewer recent assessments have been completed and
where large manufacturing plants play a major role. Furthermore, because plants must choose to
undergo an assessment, a self-selection bias may be present, with a recent analysis of IAC
participants indicating participants were less energy efficient than their peers (Dalzell, Boyd, and
Reiter 2017). Though a detailed evaluation of the statistical validity of the IAC Database was not
conducted, Figure 8 summarizes how many assessments are available by both industry and
assessment year. For its use in this analysis, IGATE-E ignores assessments that do not provide
information on a plant’s NAICS code. As a result of this requirement, IGATE-E only uses
assessment data from 2002 onward, limiting problems that could have arisen from using

older data.
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Figure 8. Number of IAC assessments by industry and year (as of March 2018)
For assessments occurring before 2002, results are available by SIC code only.

NAICS = North American Industry Classification System

38 Eligibility requirements to qualify for an IAC Assessment include energy bills between $100,000-/yr and
2,500,000/yr.

38

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.


http://www.nrel.gov/publications

Additional data sources have been explored to supplement this database; however, the

proprietary/competitive nature of plant-level information has made it difficult to find additional

data beyond what is currently available from the IAC Database.

The MNI database is a commercial data set that provides industry, location, and employment

information for approximately 294,000 manufacturing sites across the United States, which

provides approximately complete coverage of manufacturing establishments, see Footnote 44.

Other sources were considered for this purpose, such as the Dun & Bradstreet Hoovers database,
but the MNI was found to be the most cost-effective based on the needs of the project. Together,

the MNI and IAC data sets are used to develop plant-level energy and demand estimates.

To refine IGATE-E’s initial energy consumption estimates, data from the 2014 MECS are used.

Finally, end-use level consumption information by industry (i.e., three-digit NAICS) from the

MECS, along with data from EPRI’s Load Shape Library,*® is used to construct disaggregated

8,760 load shapes. Table 7 summarizes the manufacturing plant characteristics, modeling

methods, and data sources used by IGATE-E.

Table 7. Manufacturing Plant Characteristics, Modeling Methods,

and Data Sources used by IGATE-E

Methods Data Sources
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Resolution Characteristics € wwdJ3 2 W
Plant Level Location (State/County/Zip Code) X X
Industry Code (NAICS/SIC) X X X X X
Energy Consumption (kWh or MMBtu/yr) X
Electricity Demand (kW/month) X X
Number of Employees X X X X
Industry Level |Industry Code (NAICS/SIC) X X X
Energy Consumption (kWh or MMBtu/yr) X
End-Use Energy Consumption (kWh/yr) X X
Sectoral Level |Load Shapes by End-Use X X

3 The EPRI Load Shape Library provides representative industrial load shapes by end-use and region. Daily load
shapes are provided for various scenarios (i.e., weekday versus weekend and peak season vs. off-peak season). Load

shapes are derived from simulations using the EPRI NESSIE (National Electric System Simulation Integrated

Evaluator) model platform. The inputs to NESSIE are derived from data estimated by the EIA’s National Energy
Modeling System (NEMS) as well as from data collected by EPRI through its laboratory testing and research.
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2.2.3.2 Methodology

To estimate electricity consumption within the manufacturing subsector, IGATE-E performs
regression analyses of energy consumption versus number of employees using data from the IAC
Database. Regression results are developed for individual industries based on their North
American Industry Classification System (NAICS)* code; this system is used to classify
business establishments according to their primary economic activity, specifically the type of
product being produced. Within the model, a linear regression analysis is conducted by industry
for every three- and four-digit NAICS code.*!

Working within this framework, the basic premise of IGATE-E is that manufacturing facilities
producing similar products (as categorized by their NAICS code) will utilize similar processes
that ultimately have similar energy intensities (i.e., energy usage per product produced).
Currently, number of employees is used as a proxy for the product being produced.*? Using these
industry-specific regression results, aggregate energy usage is estimated for each plant using
employment information from the MNI database. Finally, usage estimates are adjusted by
industry (three-digit NAICS) and census region to better align with the MECS.

Hourly annual load shapes are created by combining industry-level load factor estimates with
diurnal load shapes provided by sector and end use from the EPRI Load Shape Library. Load
factors are estimated from the IAC Database data by conducting a regression analysis of peak
electricity demand versus annual electricity use and then estimating an average load factor for
each industry based on the slope of these regressions. Plant-level peak electricity demand falls
out by combining load factor with annual energy consumption estimates. The EPRI Load Shape
Library provides daily load shapes by sector and end use for various scenarios (e.g., weekday
versus weekend). To disaggregate energy consumption at the end-use level, data from the 2014
MECS (by three-digit NAICS) is applied. Next, categories included in the EPRI Load Shape
Library are matched to the most appropriate MECS end-use category (Table 8). Finally,
disaggregated load shapes are constructed for each industry based on end-use consumption
estimates from the 2014 MECS and load shapes from the EPRI Load Shape Library. The
resulting load shapes are either “stretched” or “flattened” on an industry-by-industry basis to
match the load factor estimates derived previously. Within IGATE-E, load shapes are applied at
the individual plant-level based on a plant’s peak electricity demand.

40 For more information, see https:/www.census.gov/eos/www/naics/.

41 Within IGATE-E, a minimum of five IAC assessments per regression is enforced. While most four-digit
industries have enough data to meet this requirement, those that do not utilize three-digit regressions.

42 IGATE-E originally utilized annual sales data for this purpose; however, inconsistencies in quality and the
sporadic availability of this data limited its value. Although nominally annual sales should correlate better to energy
usage than number of employees, the latter data field is more consistently provided in IGATE-E’s data sets, and it
has thus proven to be a better proxy in practice.
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Table 8. End-Use and Load Shape Category Mapping

2014 MECS EPRI Load Shape
End-Use Category Library Category
Conventional Boiler Use Other

Process Heating Process Heating
Process Cooling and Refrigeration Other

Machine Drive Machine Drives
Electro-Chemical Processes Other

Other Process Use Other

Facility HYAC HVAC

Facility Lighting Lighting

Other Facility Support Other

Onsite Transportation Other

Other Nonprocess Use Other

End Use Not Reported Other

2.2.3.3 Output Data

For use in dsgrid, plant-level peak demand estimates are compiled by county and NAICS code.
These peak demand values are then mapped to the corresponding normalized load shape. Load
shapes are available on a per-four-digit NAICS code and time zone basis (conforming to the
dsgrid convention of 2012 as experienced in EST, with end-of-hour data points, and accounting
both for time zones and for varying daylight saving time policies). Within the load shapes,
electricity consumption detail is provided for the following end-use categories: conventional
boiler use, process heating, process cooling and refrigeration, machine drives, electrochemical
processes, other process use, facility HVAC, facility lighting, other facility support, onsite
transportation, and other nonprocess use. These categories match those reported in the MECS.*

2.2.3.4 Calibration
Several differences emerge when IGATE-E’s estimates are compared to the 2014 MECS.

Industries where consumption is significantly underestimated include:
e 322: Paper
e 324: Petroleum and Coal Products
e 325: Chemicals
e 331: Primary Metals.

In reviewing the MECS, these industries were found to have the highest energy intensities,
suggesting the lack of regression data for large manufacturing plants may be limiting IGATE-E’s

43 In addition to electricity consumption, IGATE-E also estimates annual natural gas consumption at the individual
plant-level. Currently, however, no effort has been made to disaggregate natural gas usage by end-use category.
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accuracy in these cases. For industries where consumption is significantly overestimated,
discrepancies in the number of establishments and employees considered by MECS compared to
IGATE-E may be the primary issue.*

While additional research is being conducted to understand these differences, IGATE-E’s initial
estimates are adjusted by industry and census region to match the MECS. This is accomplished
by scaling individual plant estimates so that aggregate consumption estimates match those from
the 2014 MECS. The primary drawback to this is that errors in the MECS are ultimately
reproduced by IGATE-E. Future efforts will focus on further developing IGATE-E’s
optimization approach to avoid “overadjusting” initial estimates to match the MECS.

2.2.3.5 Subsector Gap Model

Within the industrial sector, IGATE-E’s methodology has specifically been developed for the
manufacturing subsector. Subsectors not covered by IGATE-E include agriculture, forestry,
fishing and hunting; mining, quarrying, and oil and gas extraction; and construction. In dsgrid,
these non-manufacturing subsectors are represented in the industrial gap model using annual
electricity estimates from the AEO and generalized load shapes from the EPRI Load Shape
Library. To develop county level results for these subsectors, AEO national estimates are first
disaggregated to the state level based on employment data from the U.S. Census Bureau’s
Statistics of U.S. Businesses and then at the county level based on number of establishments data
from the U.S. Census Bureau’s County Business Patterns (CBP).

Table 9. Industrial Sector Subsectoral Gaps: Size and Proxy Timeseries Description

Proxy Timeseries
Est. Portion of

CONUS

Industrial

Electricity Geographic  End-Use
Subsector Use (%) Description Resolution Resolution
Mining, quarrying, and oil IGATE-E generic
and gas extraction 8.8 industrial load shape County None

IGATE-E generic

Construction 6.4 industrial load shape County None
Agriculture, forestry, fishing IGATE-E generic
and hunting 3.7 industrial load shape County None

2.2.4 Transportation Sector

For dsgrid, we are primarily interested in electrification of road transportation, namely electricity
use for passenger and commercial plug-in hybrid electric vehicles and battery electric vehicles.
To model this electricity use, we rely on three NREL models, as summarized in Figure 9:

4 For example, while the MNI database and the U.S. Census 2015 Statistics of U.S. Businesses
(https://www.census.gov/programs-surveys/susb.html) largely agree on the number of manufacturing
establishments, reporting 294,427 and 292,825 respectively; the 2014 MECS estimates 175,107 establishments.
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e Automotive Deployment Options Projection Tool (ADOPT): used to inform vehicle
adoption and vehicle attributes (e.g., range and fuel economy)

¢ Scenario Evaluation and Regional Analysis (SERA): used to provide spatially
distribute regional vehicle adoption

¢ FElectric Vehicle Infrastructure Projection Tool (EVI-Pro): used to generate
hourly charging profiles based on travel data and charging preference assumptions
(e.g., residential charging as opposed to reliance on public charging).

Core bottom-up transportation modeling in dsgrid focuses on electrification of on-road
transportation via PEVs (including plug-in hybrids), for both light-duty and medium- and heavy-
duty vehicles. All other forms of transportation (e.g., rail, air, marine, and off-road vehicles) are
considered in the gap model. Moreover, we do not consider alternative electrification strategies
such as battery swapping or dynamic charging technologies (e.g., embedded roadway or catenary
charging) that may be especially appropriate for heavy-duty on-road vehicles (Navidi, Cao, and
Krein 2016; Cordoba Ledesma 2015). Note that although off-road vehicles are generally
considered a transportation gap in dsgrid, energy consumed by off-road vehicles used in
construction, agriculture, or mining would be categorized as an industrial, rather than a
transportation gap, in line with energy consumption statistics (EIA 2017c).

|
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Figure 9. Transportation modeling scheme for the road subsector
LDV = light-duty vehicle, MDV = medium-duty vehicle, HDV = heavy-duty vehicle

The electricity consumption in road transportation in 2012, however, was very limited, with
roughly 70,000 plug-in electric passenger vehicles on the road concentrated in a few urban areas
(IHS Markit 2017). This number represents about 0.4 TWh of electricity, or less than 0.05% of
U.S. electricity use (EIA 2015a). Therefore, it is not included in the 2012 historical dsgrid
snapshot that is the focus of this documentation, but we do here document the methodology that
will be used to model PEV charging load profiles and flexibility for future scenario snapshots
that include higher PEV market shares. We also describe our transportation gap model, which
consists of a first-order spatial and temporal disaggregation of transit rail electricity use, which
accounted for approximately 6.6 TWh in 2012 (EIA 2015a).
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In the remainder of this section, we document how PEV electricity use will be estimated in the
EFS future load snapshots using SERA and EVI-Pro, given (1) an exogenously specified fleet of
electric vehicles (informed by ADOPT runs for passenger PEVs) and (2) how rail transit
electricity use has been disaggregated in the gap model. Given electrification scenarios designed
as part of the EFS project, which define overall (national) adoption of electrified technologies in
the transportation sector (Mai et al. 2018), SERA will be used to disaggregate to the county level
and EVI-Pro will be used to develop hourly charging profiles. Charging flexibility and
willingness to delay charging will be assessed in a scenario framework based on bounding
conditions and expert judgement. The potential to use that flexibility to provide grid services and
participate in demand response will not be considered here, but it will be assessed using
operational grid models in future work.

2.2.4.1 Input Data Sets

To describe electricity use in the on-road transportation sector, we rely on vehicle registration
data from IHS Automotive, vehicle attributes from the ADOPT model, consumer attitude and
preference for alternative fuel vehicles included in the SERA model, and numerous travel
surveys and charging behavior assumptions included in the EVI-Pro model. Table 10
summarizes the dependencies and data sources used to model plug-in vehicle electricity

use in dsgrid.

Table 10. Vehicle Characteristics, Dependencies, and Data Sources Used in the
dsgrid Transportation Modeling Process

Dependencies Data Sources
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Subsectors Transportation electricity use | x X
Passenger PEVs | X X X X X X X X
Commercial PEVs | X X X X
Others | X X X X
Passenger Vehicles |Overall PEV adoption | X X X X X X X X
Spatial disaggregation | X X X X
PEV characteristics | X X X
PEV use patterns | X X X X
Charging profiles (hourly) | X X
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Dependencies Data Sources
Commercial Overall PEV adoption X X X X X
Vehicles L .
Spatial disaggregation | X X
Electrification strategy | X X X
Vehicle attributes | X X
Vehicle use patterns | X X X
Charging profiles (hourly) | X X X

2.2.4.2 Methodology

Electricity use for passenger light-duty vehicles is modeled using a suite of mature tools
developed by an NREL transportation team. These tools project vehicle adoption in the light-
duty sector and alternative fuel infrastructure build-outs, and they model the energy use of
individual passenger and commercial vehicles, including charging profiles for PEVs. The version
of dsgrid documented here focuses on electrification of road transport, including passenger
vehicles as well as medium- and heavy-duty commercial vehicles. Three different models are
combined to arrive at hourly, county-level electric vehicle charging profiles. Detailed
transportation models are used to project electrification of road transportation (which makes up
approximately 79% of the approximately 26 quads of 2012 transportation energy consumption
and is the most likely sector to be impacted by electrification). Other subsectors (rail, marine
shipping, and aviation) are not be considered in detail.

The ADOPT tool will be used to inform passenger vehicle adoption scenarios over time based
on characteristics of the existing vehicle fleet, technical and cost targets, and policy assumptions
(Brooker et al. 2015). ADOPT will also project attributes and characteristics of future vehicles
(e.g., battery capacity and vehicle range, and fuel economy) ADOPT provides yearly estimates
of sales and vehicle stock at the county level that are further geospatially resolved using the
SERA model (Bush et al. 2017). SERA has a highly geographically resolved understanding of
transportation demands— down to the 0.5-km scale—and it will properly regionalize the
ADOPT projections as needed and provide regional estimates of the resulting annual electricity
demand. SERA will also be used to estimate potential for electrification for medium and heavy-
duty commercial vehicles based on scenarios informed by relevant literature and current truck
traffic volumes resolved in time and space. Medium-duty battery electric vehicles and buses will
be modeled based on relevant literature in a scenario approach (i.e., educated assumptions about
electrification of the existing fleet). In the heavy-duty road sector—although battery-powered
trucks are technically conceivable—the range and the fuel energy density (both in terms of
weight and volume) requirements make the deployment of PEVs harder (even though some
private companies have been working to develop such products). Therefore, truck electrification
will be modeled based on instantaneous charging, either wireless charging or charging via
electrified road corridors (catenary charging). These charging profiles will be estimated for key
corridors using heavy-duty traffic information and spatially disaggregated using the SERA
model.
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Finally, given a projected adoption of passenger and medium-duty PEVs for a given year, EVI-
Pro will be used to estimate hourly charging profiles (Wood et al. 2017). EVI-Pro considers
different recharging infrastructure scenarios, informed by the SERA model, including
preferential use of residential, workplace, and public charging stations. EVI-Pro uses real-world
travel data to simulate spatially and temporally resolved demand for PEV charging at homes,
workplaces, and public destinations. It anticipates consumer charging behavior while capturing
variations with respect to housing type (single versus multiunit dwellings), travel period
(weekdays versus weekends), and regional differences in travel behavior and vehicle adoption.
Figure 10 illustrates the main modeling steps in EVI-Pro.

Figure 10. EVI-Pro model structure

Source: Wood et al. (2017)

eVMT = electric vehicle miles traveled
A fundamental assumption in EVI-Pro is that consumers prefer charging scenarios that enable
them to complete all their current travels (which are driven in gasoline vehicles) and to maximize
the miles driven on electricity (for plug-in hybrid electric vehicles). To define which charging
scenarios consumers will elect, individual travel days from available travel surveys are simulated
in the model. Each travel day is simulated multiple times for each potential combination of
charging behavior (e.g., L1-Home, L2-Home, and L1-Home plus L1-Work) and the lowest-cost
option if then selected, considering different levels of consumer preference for alternative
charging solutions.

Past works using ADOPT, SERA, and EVI-Pro focused primarily on light-duty vehicles. For the
future load snapshots, the team plans to construct a fairly detailed model of medium- and heavy-
duty electric vehicles, based on the EFS focus on on-road transport electrification. To estimate
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the adoption of such vehicles the team will leverage internal expertise and coordinate with the
scenario development group to produce realistic projections.

2.2.4.3 Output Data

ADOPT, SERA, and EVI-Pro are mature models that have been used extensively to answer a
variety of questions related to transportation sector transformation and potential implications in
terms of refueling infrastructure deployment and impact on the electric grid. The EFS, however,
will push the boundaries of the three models by integrating them to generate spatially and
temporally highly-resolved profiles for a set of different electrification scenarios. For the future
scenario load snapshots, the models will be combined to produce hourly baseline charging and
charging flexibility metrics (e.g., charging “schedulability” profiles) by subsector and scenario
(specified by a set of charging preferences) for each county in the CONUS.

2.2.4.4 Calibration

SERA and EVI-Pro, which will be used to project future electricity demand for road
transportation, have been calibrated using current vehicle use and statistics based on available
regional and National travel surveys (Bush et al. 2017; Wood et al. 2017).

2.2.4.5 Subsector Gap Model

dsgrid models on-road transportation at a high level of detail. For the purposes of describing
dsgrid, all other transportation subsectors are “gaps.” For this version of dsgrid, we focus on

the amount of electricity used for transportation in 2012, a total of about 7.0 TWh. Most of

the electricity used in transportation in 2012 was used by trains: 6.6 TWh partitioned among
intercity rail, transit rail, and commuter rail, per EIA (2015a). This energy use is disaggregated in
the transportation gap model to produce hourly profiles using a first-order disaggregation method
based on NTD data (FTA 2017). In particular, total electricity consumption for rail is
disaggregated spatially based on annual electric energy expenditure for propulsion (in kWh),

as reported by NTD for 67 companies covering 45 U.S. urban areas (FTA 2017). To resolve

this demand hourly, because no detailed modeling is available, we leverage data on hours of
operation for different days of the week and number of rail cars operating in each day, which are
also available in the NTD. Table 11 summarizes this gap model. Additional details are provided
in Appendix D.

Table 11. Transportation Sector Subsectoral Gaps: Size and Proxy Timeseries Description

Proxy Timeseries

Est. National
Electricity Geographic End-Use
Subsector Use (TWh) Description Resolution Resolution
Constructed based on
hours of operation and
number of rail cars
Passenger rail 6.6 operating by day type State None

2.2.5 Summary

The purpose of dsgrid is to estimate potential future load shapes, especially as they might be
impacted by energy efficiency, electrification, and demand response (i.e., set-point and
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operational modifications made in support of grid operations). Given this, an initial gap analysis
of our planned model was completed up front to assess how much electricity use—and how
much of all potentially electrifiable site energy use—is covered by the bottom-up sector models,
as these proportions give a first indication of how well we should expect to be able to model
major shifts in future electricity load. We have also revisited the gap analysis to accurately
reflect what in the end is covered in our detailed and gap sector models, as well as what energy
use remains unmodeled by dsgrid.

The analysis uses subsectoral data available in 2009 RECS, 2012 CBECS, 2014 MECS and the
2012 historical data available in the AEO 2015 (EIA 2013d, 2016a, 2017a, 2015a).* We
surveyed the sector modeling teams to determine which subsectors are fully described, which are
included in our sectoral gap models, and which are not included in either of these categories. The
proportion of U.S. electricity use and total site energy use modeled in detail, coarsely, or not at
all was then estimated by tagging subsectors in the national-level data sets. Details about the
model coverage analysis methods and results are available in Appendix E.

For the baseline dsgrid snapshot described here, perhaps the most important metrics are those
associated with 2012 electricity use. As shown in Figure 11, dsgrid models about 80% of current
U.S. electricity use at full subsector and end-use resolution. Looking across all electricity use,
one can see the largest gaps are in commercial and residential buildings. Industrial energy use
that is not covered by IGATE-E includes mining, construction, and agriculture. Transportation
electricity use is currently very small and consists mostly of passenger rail, which is not modeled
in detail by dsgrid but is assigned an hourly timeseries of electricity use by state. The actual
sectoral gaps are listed in detail above, in Table 3, Table 6, Table 9, and Table 11, and in the
surrounding text.

100%
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Misc. Sales/Service (2%); Other (6%) i Construction (5%)
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Figure 11. dsgrid models about 80% of 2012 U.S. electricity use in detail.

4 1t is generally the case that coverage in our sector models is mostly determined by sub-sector rather than by
geography or end use.
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Looking forward to questions of end-use electrification and operational flexibility—and
recognizing that our sector models model all energy use, not just electricity—we extend our
analysis of model coverage to compare total energy use by each fully modeled subsector against
the total energy use of the sector. This comparison is done on a site energy basis, based on
dsgrid’s focus on loads as they are experienced from the utility customer perspective. The
results of that breakdown are shown in Figure 12.
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