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Executive Summary 

When and where electric vehicle (EV) charging occurs has significant implications for power 

systems supporting widespread EV adoption, especially with high shares of wind and solar gen- 

eration. Numerous studies have estimated the value of scheduling or otherwise managing electric 

vehicle charging in such power systems. This study improves on those works by leveraging 

detailed simulation models for EV adoption, EV use, EV charging, and bulk power system opera- 

tions, and by linking them with methods for describing charging flexibility at both the individual 

vehicle and aggregate levels. 

This technical potential study focuses on how the value of EV managed charging (EVMC) 

changes depending on charging flexibility type (within-charging session or within-week schedul- 

ing), dispatch mechanism (direct load control or one of several price-based mechanisms), and 

managed charging participation rate, assuming ubiquitous availability of vehicle charging infras- 

tructure and on-time completion of all trips. The study is based on a passenger light-duty vehicle 

(LDV) adoption scenario with 100% electric vehicle sales by 2035 and an envisioned 2038 New 

England power system for which within-ISO generation is 84% clean.1 

We show that naively aggregating EV charging flexibility from individual vehicles into megawatt- 

scale resources grossly overestimates the flexibility of the fleet, because such aggregate models 

can unrealistically pair, e.g., one already-fully-charged vehicle’s ability to increase load with an- 

other already-charging vehicle’s ability to accept more charge, effectively requesting a charging 

rate that is infeasible for the latter vehicle. We then propose a heuristic, experimental method for 

identifying scaling factors that, when multiplied with bounds on aggregate EV charging behavior, 

yield megawatt-scale resources with desirable properties. In our study, decreasing the aggregate 

ability of vehicles to increase charging, decrease charging, and delay the accumulation of energy 

in vehicle batteries by 50% creates megawatt-scale pseudo-storage resources for which dispatch 

requests can be fulfilled by individual vehicles with low error at hourly resolution. We also find 

that aggregators might want to make full use of all vehicles’ ability to delay energy accumulation 

(100% scaling factor for within-charging session flexibility) or both ability to decrease charging 

and ability to delay energy accumulation (100% scaling factor for within-week flexibility) to 

maximize EVMC market revenues. Although this "maximize expected revenue" scaling can be 

expected to result in higher dispatch errors, if all discrepancies are settled against hourly energy 

prices, the times when aggregate EVMC "over-performs" generally more than make up for the 

times when aggregate EVMC "underperforms" its requested dispatch. Nonetheless, despite the 

possible implementation of scalings that maximize revenue in real-world operations, this study 

uses the low error scaling factors (50% for all parameters, for within-session and within-week 

flexibility) in most cases when examining direct load control dispatch mechanisms, because 

the performance of this heuristic is well-characterized at the aggregate level. That is, using low 

error scaling factors avoids the computationally expensive step of disaggregating aggregate dis- 

patch requests to individual vehicles to determine the actual impact on real-time power system 

operations.

 

1EVs comprise 45% of LDV stock, or 5.3 million vehicles in New England, in the 2038 study year. 80% of EVs 

are battery electric vehicles. Clean generation is defined to include wind, solar, biomass, hydropower, and nuclear 

generation. 
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At low participation rates, individual vehicles responding to hourly real-time prices or a simple 

two-block time-of-use rate produce per-vehicle savings of the same order of magnitude as direct 

load control with low error scaling. In fact, we find that at 5% participation (2% of the LDV 

fleet), hourly real-time prices can outperform low-error direct load control by 15%–130%, where 

the latter number corresponds to within-week flexibility. At higher participation rates (e.g., at or 

above 30%, which in this study corresponds to 14% of the LDV fleet being fully responsive to 

charging prices) we find that dispatch mechanisms where individual EV charging responds to a 

predefined price signal (price-taking) requires some degree of coordination to provide system- 

level benefit. However, how price-based EVMC could be made to work at high participation 

rates was not within the scope of this study. The low-error direct load control mechanism enables 

feasible, coordinated dispatch of EVs alongside other resources on the bulk power system, and 

unlike price-taking mechanisms, reduces system costs across all participation levels (from 5% to 

100%). 

Per-vehicle value is highest at low participation rates for all dispatch mechanisms. Factoring 

in production cost savings, avoided firm capacity savings, and combustion-related power sec- 

tor emissions savings,2 we estimate the value of EVMC at low participation rates (5%) to be 

$33/vehicle-year to $69/vehicle-yr for within-session charging flexibility and $40/vehicle-yr to 

$120/vehicle-yr for within-week charging flexibility in an envisioned 2038 New England power 

system and monetary value reported in 2016 U.S. dollars. At 100% participation, per-vehicle 

value declines to $25/vehicle-yr to $31/vehicle-yr for within-session charging flexibility and to 

$29/vehicle-yr to $36/vehicle-yr for within-week charging flexibility; however, 100% partici- 

pation yields the highest total system savings: 4.4% of production costs, 5.2% of power sector 

emissions, and 780 MW of firm capacity for within-session flexibility, and 5.6% of production 

costs, 6.9% of power sector emissions and 830 MW of firm capacity for within-week flexibility 

in a net-importing power system with 28.9 GW peak load and 20.8 GW net-peak load.

 

2CO2 

emissions savings were valued at $45/metric ton in 2016$ in the operational dispatch and the EVMC 

valuation analysis. 
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1 Introduction 

Widespread adoption of electric vehicles (EVs) will significantly impact future power systems 

(Muratori et al. 2021). In particular, in future power systems with more wind and solar genera- 

tion, when and where charging occurs will be a key driver of electric grid expansion needs and 

system costs (Mai et al. 2018; Cochran et al. 2021a; Murphy et al. 2021; Zhou and Mai 2021; 

Muratori and Mai 2020). At the bulk power level, new EV loads require more electricity supply 

and could require additional generation or transmission and distribution capacity. Will the load 

shapes align well or poorly with low marginal cost generation (including wind and solar)? Will 

they exacerbate system peak loads and thus necessitate additional generation capacity, or will 

new charging infrastructure result in higher localized peaks that require more transmission capac- 

ity? Although it is perhaps not indicative of future unmanaged EV charging load shapes, current 

EV charging profiles tend to peak in the evenings after people come home from work and plug 

their vehicles into residential outlets or dedicated chargers (Kaluza, Almeida, and Mullen 2016; 

Wood et al. 2017). Such profiles exacerbate and extend current residential load peaks and, if 

borne out in the future at higher EV shares, could cause system stress and make decarbonization 

more challenging, especially in solar-heavy grid systems (Muratori 2018). EV managed charging 

(EVMC) can alleviate such issues by changing the charging load shape to better match electricity 

supply while holding mobility service constant with high probability (Zhang et al. 2020; Szinai 

et al. 2020). EVMC can thus lower costs, reduce required system expansion, and increase system 

reliability. However, the grid services EVMC can provide and its value to the power system have 

not yet been fully assessed (Anwar et al. 2022). 

This study builds on recent capability development at the National Renewable Energy Laboratory 

(NREL) to estimate the potential resource size and value of EVMC for personal LDVs in a 

possible future bulk power system (Figure 1). EV adoption and vehicle charging are estimated 

for a high EV adoption scenario using the Transportation Energy & Mobility Pathway Options 

(TEMPO)TM model3 run at the county level considering county-specific demographic distribu- 

tions, vehicle distributions, and weather. Grid operations are simulated using a nodal production 

cost model (PCM) that describes a future ISO New England (ISO-NE) system that was isolated 

from the Interconnections Seam Study (SEAMS) 

4 continental-scale model. EV charging flexi- 

bility is estimated using the demand-side grid flexibility model (dsgrid-flex). We chose to model 

ISO-NE in 2038 because ISO-NE is a well-defined regional power system and the 2038 model 

year available from SEAMS provides a good starting point for exploring how a future system 

with significant shares of wind and solar generation might operate with and without managed 

charging at different levels of managed charging participation. 

Broadly speaking, EVMC consists of scheduling or otherwise modulating EV charging and pos- 

sibly discharging in response to grid signals. Currently, although two-way vehicle-to-grid (V2G) 

services that allow discharging electricity from EVs back into the grid have been piloted (CEC 

2019; Black et al. 2018; Das and Sanchari 2020) and shown to provide more value than one-way 

vehicle charge scheduling (V1G) in recent analyses (Anwar et al. 2022), most utility EV pro- 

grams are one-directional (V1G, which does not discharge vehicle batteries to provide power to

 

3"TEMPO: Transportation Energy & Mobility Pathway Options," NREL, 

https://www.nrel.gov/transportation/tempo-model.html 

4"Interconnections Seam Study," NREL, https://www.nrel.gov/analysis/seams.html 
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Figure 1. Value of EVMC in bulk power systems modeling workflow 

the grid) (SEPA 2021). V1G has lower communication and control requirements, as well as less 

risk of vehicle range limitations and less uncertain battery degradation impacts (Noel et al. 2019; 

Guo et al. 2019). We therefore study only V1G for this report. On the grid services side, this re- 

port focuses on the three services in the bulk power system that are responsible for 95% or more 

of costs: energy, capacity, and transmission (Denholm, Sun, and Mai 2019). Specifically, EVMC 

can reduce energy costs, reduce generation capacity requirements, and alleviate transmission con- 

gestion via intentional scheduling of EV charging. At the vehicle level, managed charging could 

be actively controlled by an aggregator; be affected through customer-facing vehicle, charger, 

or smart phone software; or be achieved behaviorally (similar to how gasoline vehicle drivers 

currently factor price into their choice of gas station). At the bulk power level, managed charging 

could bid into and be dispatched in day-ahead (DA) or real-time (RT) markets; be anticipated by 

short-term load forecasts; or simply show up in the real-time, actual load. This study is agnostic 

about most of these details, but in the interest of understanding the bulk power system value of 

EVMC, we do compare the performance of three stylized EV charging dispatch mechanisms: 

(1) direct load control (DLC) in which the grid operator dispatches storage-like megawatt-scale 

aggregations of EV charging load alongside supply-side resources to minimize system costs, (2) 

real-time pricing (RTP) in which individual vehicle charging is scheduled to minimize charging 

costs as defined by DA wholesale electricity prices, and (3) time-of-use (TOU) tariffs, which are 

similar to RTP profiles but use coarser price signals, with different energy prices depending on 

season and time block (up to 32 prices per year rather than the 8,760 in RTP). In all cases, we 

model EVMC as fully respecting mobility constraints, that is, EVMC does not hinder the ability 

of vehicles to complete all trips. 

Numerous studies have estimated the value of EVMC in bulk power systems (Anwar et al. 2022). 

We improve on earlier estimation methods by: 

• Starting from sample vehicle energy profiles differentiated by vehicle type, household type, 

and location (location impacts weather and EV energy use) 

• Estimating charging bounds for both within-charging session and within-week scheduling 

flexibility, thus exceeding the common assumption of a 24-hour flexibility window 
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• Computing both individual-level and aggregate-level dynamic flexibility models 

• Comparing aggregate flexibility dispatch to vehicle-level flexibility dispatch and using 

those comparisons to scale aggregate flexibility parameters (i.e., ability to increase charg- 

ing, decrease charging, or delay the accumulation of energy in vehicle batteries) to create 

low-error and maximum-revenue megawatt-scale resources 

• Starting from a bulk power system production cost model that meets basic standards for 

reliability under baseline charging assumptions and realistically incorporates widespread 

EV adoption into a system with high wind and solar shares5 

• Examining how managed charging value and complexity change depending on flexibility 

type (within-session, or within-week) and dispatch mechanism (DLC, RTP, or TOU). 

Similar to some other studies, we: 

• Capture charging flexibility by determining as-early-as-possible (immediate) and as-late- 

as-possible (delayed) charging bounds that preserve mobility service 

• Make a "ubiquitous charging" assumption that a charger is always available when an EV is 

parked 

• Analyze a fixed power system and do not directly estimate how EVMC could change 

utility-scale generation, transmission and storage investment or retirement decisions 

• Directly compute electricity production (operational) cost impacts and estimate capacity 

value using heuristic methods 

• Estimate the value of EVMC as a function of participation rate without attempting to 

estimate fixed and variable costs, realistic participation rates, or demand bids 

• Analyze only bulk power system benefits and costs, implicitly assuming the distribution 

system can handle additional EV load. 

The result is a technical potential study focused on how the value of EVMC changes depending 

on participation level, dispatch mechanism, and whether the charging flexibility is represented 

per-charging session or over the course of an entire week. Although the geography and temporal 

focus of the study (ISO-NE in 2038 with a single grid build-out and single EV deployment 

scenario) is limited, and the value results are subject to the usual caveats that modeled grid 

service prices are often less volatile than real-world grid service prices (Gagnon et al. 2021; Seel 

and Mills 2021), both the methodology and the results should interest readers who would like to 

better understand how large shares of EVs could be efficiently integrated into bulk power systems 

with high shares of variable generation. 

In the remainder of this report, we describe our EV adoption projection and unmanaged charging 

profile (chapter 2), reference production cost model (chapter 3), dynamic models of EVMC 

resource (chapter 4), and bulk power system value of EVMC results (chapter 5) before discussing 

the implications of our results (chapter 6) and providing concluding remarks (chapter 7).

 

5Reliability was confirmed by computing loss of load expectation (LOLE) and normalized expected unserved 

energy (NEUE) with the Probabilistic Resource Adequacy Suite6. 
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2 Electric Vehicle Adoption and Unmanaged Charging 

The Transportation Energy & Mobility Pathways Options (TEMPOTM) model generates long- 

term scenarios of energy use for the United States transportation sector. TEMPO includes all 

passenger and freight transportation modes (i.e., walking, biking, public transport, LDVs, freight 

trucks, rail, maritime, and aviation) (Figure 2); however, the scope of this study is limited to 

personal LDVs, including cars, sport utility vehicles, vans, and pickup trucks. LDV adoption 

and use is modeled at the household level, and households are differentiated by income, urbanity 

(e.g., rural, suburban, urban, etc.), and number of drivers (Muratori et al. 2020; Muratori et 

al. 2021). TEMPO preserves travel needs and behaviors while simulating the adoption and use 

of new options. Transitions from the current petroleum-dominant paradigm to alternative fuels 

and vehicles can be modeled through projections of technology and fuel evolution over time (i.e., 

cost and performance improvements) and various policies (e.g., zero-emission vehicle [ZEV] 

sales mandates). In addition, TEMPO includes county-level geographic resolution for input data 

on household types and vehicles preferences. EV efficiency estimates also vary with outdoor 

temperature as measured at 975 weather stations across the contiguous United States. These 

geographically resolved data allow TEMPO to reflect heterogeneity in the estimated vehicle stock 

and use and to project heterogeneous EV adoption and charging profiles for future scenarios (Yip 

et al., n.d.).

 

Figure 2. The TEMPO model is a comprehensive transportation demand macro 

model. TEMPO can explore long-term scenarios of energy use across all passen- 

ger and freight transportation modes and assess synergies with energy supply. 

In this study, we focus on a future ISO-NE system with significant shares of plug-in electric 

LDVs (EVs). We create a simulated population of New England EVs in 2038 by running a 

scenario that nationally achieves 50% EV sales by 2030 and 100% EV sales by 2035 to align 

with goals and targets such as 50% zero emissions sales nationally by 2030 (Biden 2021) and 

California and New York ZEV regulations that approach 100% ZEV sales by 2035 (Yip et al., 

n.d.). We disaggregate EV adoption by county by anchoring each county to empirical county- 

level vehicle registration data in historical years and then applying the national-level EV growth 

rate trends uniformly across all counties. This approach captures the current heterogeneity in EV 
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adoption observed across counties in the United States and extends this into the future, achieving 

high-level EV sales goals while assuming similar positioning of counties in terms of EV adoption 

either leading or lagging national averages. In 2021, many counties, particularly in states with 

ZEV programs mandating ZEV sales, had EV sales shares well over the national average of 5%. 

U.S.-wide county-level projected EV sales shares are shown in Figure 3, with New England 

county sales shares highlighted in red. The heterogeneity built into county-level TEMPO projec- 

tions is evident. New England county sales shares mostly fall near and below the U.S. average 

EV sales shares.

 

Figure 3. Personal light-duty EV sales shares over time by county in the All EV Sales by 2035 sce- 

nario. The national average is shown as a black dashed line. The New England counties are plotted in red. 

Figure 4 shows New England LDV sales shares by vehicle type. This TEMPO scenario assumes 

a solid majority of EV sales will be battery electric vehicles (BEVs) in the longer term. Plug-in 

hybrid electric vehicles (PHEVs) are assumed to be 20-30% of the total EV sales share in the 

2025-2035 transition time frame before tapering off to 0% by 2045, based on expert opinion and 

latest trends in BEV technology, infrastructure, and policies.

 

Figure 4. Personal LDV sales shares by vehicle technology type and year for New England in the All EV 

Sales by 2035 scenario. Powertrains depicted: internal combustion engine vehicles, plug-in hybrid electric vehicles 

(PHEVs), and battery electric vehicles (BEVs). The vertical line indicates 2038, the year of the data for this study. 

The resulting New England LDV stock is shown in Figure 5. Because only about 6% of the LDV 

fleet turns over each year (Jacobsen and Benthem 2015), sales shares are a leading indicator of 
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stock shares, and national average 100% EV sales by 2035 translates into a New England LDV 

stock EV share of only 81% in 2050. In this study, we explore the value of EVMC for the 2038 

All EV Sales by 2035 scenario EV stock. That scenario projects 5.3 million EVs in New England 

in 2038, 80% of which are BEVs, with the remainder being PHEVs. Overall, EVs are 45% of the 

New England LDV stock in 2038.

 

Figure 5. New England LDV stock in TEMPO, 2020-2050. The total 2038 LDV stock is 12.2 million vehicles, 

including 4.3 million BEVs and 1.0 million PHEVs. The vertical line indicates 2038, the year of the data for this study. 

County-level heterogeneity for LDVs per capita, EV share and EVs per capita is depicted for the 

2038 New England All EV Sales by 2035 scenario in Figure 6. The counties with higher numbers 

of EVs per capita are those with more LDVs per capita, higher EV shares, or both. The more- 

urban counties tend to have average or higher EVs per capita because, although urban counties 

have fewer LDVs per capita, they have higher shares of EVs. There are therefore few counties 

with relatively low numbers of EVs per capita (e.g., only 4 of 67 counties have less than 0.3 EVs 

per capita for this particular scenario). 

Unmanaged EV charging is simulated by TEMPO assuming vehicles plug in and charge after 

every trip until either they are fully charged or another trip is started. We refer to this as the Im- 

mediate charging strategy. This charging strategy assumes charging infrastructure is ubiquitous, 

always available for EVs to plug-in whenever they are parked, and has the outcome of maximiz- 

ing vehicle state of charge at all times. It thus represents a bounding case that minimizes range 

anxiety. For this study, we assume all charging between trips is either 120 volt Level-1 (L1) 

charging at 1.4 kW or 240 volt Level-2 (L2) charging at 7.2 kW. High power direct current fast 

charging (DCFC) is simulated only when required to complete a trip. Vehicles are assigned to 

either L1 (5% of vehicles) or L2 (95% of vehicles) between-trip charging. In the final unmanaged 

profiles, charging is 88% L2, 5% L1 and 7% DCFC. The average per-vehicle charging load pro- 

files of the Immediate charging strategy and how they vary by county based on heterogeneity in 

household types, vehicle preferences, and weather are shown in Figure 7. 

In Figure 7, a wider spread across different months for the same county indicates more severe 

winter weather that reduces vehicle energy efficiency in cold months. Counties with higher 

charging demand per vehicle than the regional average either have larger EVs (e.g., more pickup 
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Figure 6. New England LDV stock in TEMPO, 2038 by county 

trucks or sport utility vehicles), more driving activity, or more temperature extremes than the re- 

gional averages or a combination of these characteristics. From the figure and a basic knowledge 

of New England geography, we observe higher than average per-EV charging load in more rural 

counties and larger differences in energy use by month in more northern or mountainous counties 

that are regularly subject to severe winter weather. 

Applying sample weights to TEMPO’s 101,031 sample vehicle profiles for 2038 New England 

produces the aggregate profile shown in Figure 8. We assume all charging takes place on the 

distribution system and incurs uniform, average losses of 5.3% (Cohen et al. 2019). The overall 

charging load as it would be measured at the meter is 16.27 TWh/yr or 8.41 kWh/vehicle-day; 

including the 5.3% losses, the generation required to serve this load is 17.13 TWh/yr. In what fol- 

lows, charging load refers to EV load as measured at the meter; generation includes grossing up 

for distribution losses. With EVMC, this amount of load, and thus mobility service, is unchanged, 

but we change the charging load profiles (charging shape) to better align electricity demand with 

electricity supply, thereby reducing system operating costs. TEMPO simulates a single week of 

charging for each sample vehicle for each month of the year to capture the impacts of tempera- 

ture, which in Figure 8 manifests as identical weekly profiles for each month. The unmanaged 

charging profile peaks at 3.79 GW on winter (simulated February) Monday evenings during the 

local time hour ending at 6 p.m. (i.e., January 30, February 6, February 13, and February 20 for 

2012), and has at least 0.284 GW of EV charging load in all hours during the year. 
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Figure 7. County-level Immediate EV charging strategy average load profiles in 

2038. Average load profiles are normalized to be per vehicle (kWh/h/EV). The black 

line shown in all facets is the per-vehicle average weekday load for all of New England. 

8 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



 

Figure 8. TEMPO unmanaged EV charging hourly profile (as measured at the meter) for New England 

in 2038 using weather year 2012. The profile was created by simulating Immediate charging under a ubiq- 

uitous charger assumption. Charging 5.3M EVs requires 16.27 TWh of annual energy, with a peak demand of 

3.79 GW at 6 p.m. on the coldest weekday evenings, and a minimum demand of 0.284 GW across all hours. 

Table 1 summarizes the 2038 New England EV stock, unmanaged charging profile, and set of 

sample vehicles used in this study. 

Table 1. TEMPO 2038 ISO-NE EV Adoption, Unmanaged Charging, and Sample Vehicles Summary

 

Vehicle Stock 2038 Unmanaged Charging 2038 Sample Vehicles 2038

 

EV Stock [millions] 5.3 Electricity Load [TWh]a 16.3 Number [thousands] 101 

EV Share of LDVs 45% Peak [GW]a 3.79 Avg. Sample Weight 52.5 

BEV Share of PEVs 80% Peak Time 5 p.m.-6 p.m. January 30b Avg. Load [kWh/veh-day] 8.41

 

a Load measured at the meter. Serving this load requires 17.1 TWh 

of generation, 3.99 GW at peak, to cover distribution losses of 5.3%. 

b The peak charging load occurs on Monday evenings in February in TEMPO’s representative-week simu- 

lations. January 30 has February data because most of the week January 30–February 5 occurs in February. 
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3 Bulk Power System Operations 

We demonstrate the value of EVMC in a production cost model (PCM) indicative of a future 

ISO-NE power system. ISO-NE is an independent system operator (ISO) covering six northeast- 

ern U.S. states: Connecticut, Rhode Island, Massachusetts, Vermont, New Hampshire, and Maine 

(Figure 9).7 We chose ISO-NE for this case study because it is moderately-sized and geograph- 

ically well-defined, and because it has a limited number of connections to other power systems. 

The PCM was initially extracted from the Interconnections Seam Study8 (SEAMS) 2038 model 

(Bloom et al. 2022). We also developed an ISO-NE PCM from the SEAMS 2024 model, which 

we use here to illustrate (approximately) how the 2038 system differs from ISO-NE as it exists 

today. For this study of ISO-NE, the SEAMS ISO-NE subnetwork was extracted and assigned 

fixed import and export schedules based on full SEAMS model runs. Hydroelectric generator dis- 

patch was also fixed to the results of full SEAMS model runs, to facilitate comparisons of models 

with and without EVMC. 

Figure 10 shows the annual generation for New England in the 2024 model, the 2038 model 

(without EV load), and the 2038 model with the TEMPO All EV Sales by 2035, 2038 Immediate 

charging profile added.9 The latter PCM is the Reference scenario for this study. Currently, the 

ISO-NE system is predominately natural gas and nuclear generation with significant contribu- 

tions from hydropower and non-hydropower renewables as well as imports.10 However, much 

of the non-hydropower renewables is biomass; only 6.2% of generation and 5.3% of net energy 

for load (NEL) comes from within-ISO wind and solar, that is, variable generation (VG), in 2021 

(ISO-NE 2022). In contrast, the 2024 SEAMS model has 14% VG and the 2038 SEAMS model 

has 35% VG counting only ISO-NE non-curtailed VG resources and measured against NEL. 

When 17.1 TWh of generation needed to serve EV charging load (direct consumption plus dis- 

tribution losses) is added to the 2038 SEAMS model, the PCM serves additional load primarily 

through increased net imports (15.9 TWh) and increased natural gas combined cycle (gas com- 

bined cycle) generation (1.1 TWh).11 Thus our 2038 +EV Reference scenario has within-ISO VG 

shares (excluding curtailment for both VG and total generation) of 47% of generation and 35% of 

NEL. Reference scenario within-ISO clean energy shares (inclusive of wind, solar, hydropower, 

biomass, and nuclear; excludes storage) are 84% of generation and 63% of NEL.

 

7https://www.iso-ne.com/ 

8https://www.nrel.gov/analysis/seams.html 

9All PCM results in this report are generated from the ISO-NE PCMs isolated from SEAMS; that is, we do not 

report any results extracted directly from the original SEAMS models. 

1022.2 TWh/18.8 TWh in gross/net imports in ISO-NE in 2021; net imports were 15.8% of net-energy for load 

(NEL) (ISO-NE 2022). 

11ISO-NE was isolated from the SEAMS model by using the full SEAMS model to compute import and export 

profiles under baseline conditions and then fixing those profiles in the isolated model. PLEXOS effectively modifies 

these net-import profiles by dumping energy at a cost of $20/MWh. In what follows we report net imports as the 

difference between load (inclusive of storage charging) and internal non-curtailed generation, effectively counting 

dumped energy against net imports. The 2038 model contains 56.6 TWh of fixed imports and 15.6 TWh of fixed 

exports, both implemented at select nodes, for up to 41.0 TWh of net imports. 
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Figure 9. ISO-NE dispatch zones and load regions. ISO-NE’s eight load regions are the in- 

dicated aggregations of 1–4 dispatch zones. Unmanaged EV load is represented at the load re- 

gion level and then distributed to all load nodes via participation factors. EVMC flexibility mod- 

els are represented in the DA PCM at the largest load node per dispatch zone (19 pseudo-storage 

units; approximate locations shown). In the RT PCMs EVMC outcomes are, as with unmanaged EV 

load, represented at the load region level and distributed to all load nodes via participation factors. 
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Figure 10. Annual generation in three models of possible future ISO-NE systems: the SEAMS 

2024 model, the SEAMS 2038 model (without EV load), and the model used in this study— 

SEAMS 2038 plus TEMPO 2038 Immediate charging for the All EV Sales by 2035 scenario. 

As implied above, we find that additional within-ISO generation resources beyond those included 

in the ISO-NE PCM isolated from the SEAMS 2038 PCM are not required to support addi- 

tional EV charging loads in ISO-NE, because the model is able to make more use of available 

net-imports and gas combined cycle capacity. However, additional intra-regional transmission 

capacity is warranted. These findings are the end result of a significant model construction and 

validation effort that started with isolating the ISO-NE subnetwork from the SEAMS model, ap- 

proximating imports and exports from the full SEAMS model, and turning on the option to model 

linearized power flow (i.e., DC optimal power flow [DCOPF]; SEAMS used a pipe flow model). 

Early work with this model exported to the Probabilistic Resource Adequacy Suite confirmed low 

loss of load expectation (LOLE) even after EV loads were added, which indicated that the model, 

including fixed import and export schedules, has sufficient generation available to serve all load. 

However, transmission line limits, which we only enforce on lines at 115 kV and above, were 

often binding in the 2038 model even before adding EV load. 

Because the transmission congestion is attributable to the fact that SEAMS was a national-scale 

study that used a pipe flow transmission model and only captured inter-regional line limits, we 

adjust our transmission assumptions to represent a future ISO-NE transmission system upgraded 

to support new generation and loads. Specifically we increase the transmission capacity of six 

heavily congested high-voltage transmission lines (115 kV and above) by a total of 658 MW- 

miles. Via personal correspondence, ISO-NE transmission planners confirmed that all but one 

of the line increases is realistic, especially in light of ISO-NE’s current efforts to rebuild many 

lines. The one increase in capacity that we apply but might be unrealistic is underground capacity 

into Boston, which we approximately double to support SEAMS study plant retirements (see 

additional discussion in Appendix C). Alternative approaches to adding transmission capacity, 

such as increased efficiency or energy storage resources located in load pockets, could be feasible 

at lower cost, but are not explored in this study. 

We use PLEXOS medium-term (MT) and short-term (ST) optimization horizons to chrono- 

logically solve the entire year of day-ahead (DA) and real-time (RT) unit commitment (UC) 
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and dispatch problems on an hourly basis. In the DA model, MT steps determine daily target 

volumes for storage and ST steps optimize each day’s hourly operations incorporating 6 days 

of look-ahead at lower temporal resolution (6-hour instead of 1-hour time steps). (We chose 

6 days of look ahead for the ST problems to provide satisfactory scheduling of "within-week" 

EVMC.) Compared to the DA problems, the RT problems fix the commitment status of longer 

start time thermal generators, and fix the dispatch of pumped hydropower and EV loads. Because 

of these simplifications, the RT does not require MT solve steps and also does not incorporate 

look-ahead.12 

All production costs, including fuel, variable operating and maintenance (VO&M), startup and 

shutdown costs, and emissions come from SEAMS and are in real 2016 dollars. Burnertip nat- 

ural gas prices for New England are $8.87/MMBtu based on regionalized 2038 values from 

the 2017 Annual Energy Outlook (AEO) (EIA 2017). Other fuel prices in are uranium/nuclear 

($0.83/MMBtu), wood/biomass ($4/MMBtu), diesel oil ($14.47/MMBtu in New England), and 

coal ($3.32/MMBtu in New England). A carbon dioxide emissions price of $45/metric ton is 

applied to all fossil fuel units (Figueroa-Acevedo et al. 2020). Load, wind and solar profiles are 

time synchronized and use 2012 weather patterns. Days of the week therefore also follow the 

2012 calendar, so we show timeseries results using 2012 time stamps. In addition to the marginal 

costs of generation units, prices in the model are impacted by various penalties that discourage 

but do not prohibit undesirable conditions such as dump energy, unserved energy (USE), un- 

served reserves (USR), and violations of thermal line limits. Dump energy penalizes unused gen- 

eration (e.g., fixed imports) that cannot otherwise be dispatched down nor curtailed at $20/MWh, 

the penalty for USE (value of lost load in PLEXOS) is $1,000,000/MWh, USR are penalized at 

$1,500/MWh, and the penalty for violating thermal line limits is $5,000/MWh. Transmission 

congestion also impacts the dispatch of generators–to the extent that congestion causes higher 

cost generators to displace lower cost generators both production costs and locational marginal 

prices (LMPs) are impacted. For example, a line at its thermal limit will have different LMPs at 

either end as the lower cost generation that is serving marginal load at one node is inaccessible to 

the node at the other end of the congested line. 

To analyze transmission congestion, we compile a "congestion index" by adding up the hourly 

line flows (in MWh) each multiplied by the absolute difference in hourly price across the line 

($/MWh) for an entire year and dividing by 1 million. A higher congestion index thus indicates 

more value for additional transmission capacity between congested nodes. Although this number 

technically has units of millions of dollars, it is not an actual cost or revenue, so we report this 

value as a unit-less index as a basic way to compare degree of congestion across cases.

 

12Although dynamically scheduling hydropower and allowing both hydropower and EVMC to be re-dispatched 

in the RT could be considered more realistic and economically efficient, in practice storage and demand flexibility 

dispatch in RT ISO markets and PCMs is challenging given the need to track energy constraints–without some com- 

bination of long look-ahead times, accurate energy targets, or lost opportunity cost bidding there is a risk of chasing 

short-term profit at the expense of long-term feasibility. Because these modeling strategies are either not currently 

available in our PCM (e.g., accurate RT energy targets, lost opportunity cost bidding) or are computationally expen- 

sive and unrealistic (e.g., long RT look-ahead times), we choose to fix storage and storage-like dispatch in the RT and 

simply use the RT to determine how the rest of the system, excluding hydropower, would respond to accommodate 

load profiles modified by EVMC. 
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A final complication in our modeling is the geographic location of both the added EV load and 

the EVMC resource. TEMPO provides EV charging load at the county level. We map this load 

to the ISO-NE geography by finding the closest load node to each county’s population-weighted 

centroid. The PCM then provides the mapping from these load nodes to their corresponding 

dispatch zone and load region (shown in Figure 9). EV baseline load (Immediate charging) is 

assigned to each load region and then distributed to all load nodes pro-rata with native (non-EV) 

load. All RT EVMC profiles are also evaluated at this level, that is, regional changes in EV load 

due to managed charging are computed, added to the original (non-EV plus Immediate charg- 

ing) regional load, then distributed to all of the load nodes based on load participation factors 

(fraction of the region’s load assigned to each load node within the region). Only when PLEXOS 

dispatches the aggregate EVMC flexibility resource directly in the DA do the other geographies 

come into play. In this case, the EVMC resource is represented in PLEXOS as pseudo-storage 

units at either the per-county node (67 units), the largest load node in each ISO-NE-defined dis- 

patch zone (19 units), or the largest load node in each ISO-NE-defined load region (8 units). In 

this study, we typically choose to represent PLEXOS-dispatched EVMC at the dispatch zone 

level (at the locations shown by the stars in Figure 9) because having higher numbers of resources 

representing EVMC increases computational complexity without meaningfully changing results. 

Table 2 summarizes various statistics for the Reference scenario to describe system size, opera- 

tions, reliability, and costs. Further modeling details are available in Appendix B. 
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Table 2. Summary of Reference PCM for this Study. Possible future ISO-NE system isolated 

from the SEAMS 2038 model, with fixed import-export schedule, additional transmission capac- 

ity, linearized power flow, and TEMPO 2038 All EV Sales by 2035 Immediate EV charging load.

 

Category Metric Value Units

 

Capacity Generation 46.7 GW 

Pumped Hydropower Storage 858 MW 

Pumped Hydropower Storage 8,460 MWh 

Generation Annual Loada 142.7 TWh 

Annual Generation 106.3 TWh 

Annual Storage Losses 0.5 TWh 

Annual Net Imports 36.4 TWh 

Annual VGb 50.0 TWh 

Annual RE Generationc 59.6 TWh 

Annual Clean Generationd 89.3 TWh 

Annual Curtailment 5.0 TWh 

Peak Loade 28.9 GW 

Time of Peak Load July 17 5p.m.–6 p.m. ET 

Net-Peak Load f 20.8 GW 

Time of Net-Peak Load Aug 24 7 p.m.–8 p.m. ET 

Reliability Congestion Indexg 158.9 

Unserved Reserves (USR) 10.9 MWh 

Unserved Energy (USE) 0 MWh 

Costs Annual System Cost (incl. $45/ton CO2) 1.933 billion $2016 

Annual System Cost (excl. emissions) 1.647 billion $2016 

Annual Fuel Cost 1.437 billion $2016 

Annual VO&M Cost 0.117 billion $2016 

Annual Start & Shutdown Cost 0.092 billion $2016 

Emissions 6.37 million metric tons CO2 

Average Load-weighted LMP 46.5 $/MWh 

Peak Load-weighted LMP 1477.2 $/MWh 

Time of Peak Load-weighted LMP Jan 5 8 p.m.–9 p.m. ET $/MWh

 

a ISO-NE load, including EV charging load and storage losses. Excludes exports. 

b VG includes wind and PV. 

c RE generation includes wind, PV, hydropower, and biomass. 

d Clean generation includes wind, PV, hydropower, biomass, and nuclear 

e Peak load is the maximum hourly load considering ISO-NE na- 

tive load (inclusive of unmanaged EV charging) and storage losses 

f Net-peak load is the maximum hourly value of load as defined for peak load minus VG 

g Congestion Index is calculated by adding up the hourly line flows (in MWh) each multiplied by the absolute 

difference in hourly price across the line ($/MWh) for an entire year and dividing by 1 million. Line limits are only 

enforced on lines ≥ 115kV, thus those are the only lines that can induce price differences between connected nodes. 
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4 Managed Charging 

Scheduling EV charging can reduce bulk power system capacity, generation, and transmission 

costs by better aligning electricity load with electricity supply in both time and space. In this 

study, we estimate the value of these services under the assumptions of ubiquitous charging (EVs 

are plugged in whenever they are not driving) and fixed mobility service (all trips completed on 

time and with maximum electricity miles for PHEVs). We first develop charging flexibility mod- 

els for individual vehicles and then aggregate them to create MW-scale, battery-like flexibility 

resources suitable for large-scale bulk power system models. In the end, the amount of resource 

available to provide grid services depends on the number of participating vehicles and whether a 

grid operator directly dispatches an aggregate, MW-scale resource (DLC) or individual vehicles 

respond to time-varying prices (RTP or TOU). 

4.1 Individual Vehicle Charging Flexibility 

We parameterize vehicle-level EVMC based on charging strategies that bound when each sample 

vehicle can charge while respecting charger capacity limits and preserving mobility service (i.e., 

all trips can be completed as long as actual charging falls "between" that of the two bounding 

cases and during times when the vehicle is idle). The Immediate charging strategy consists of 

plugging in immediately after every trip and charging until the battery is full or the next trip be- 

gins, whichever comes first. This strategy maximizes state of charge (SOC) and vehicle range 

at all times. Because this strategy maximizes the potential for mobility service and minimizes 

range anxiety, this is the strategy we use to create the unmanaged charging profile (Figure 8) that 

is included in the Reference scenario (chapter 3). The Immediate strategy is also the charge-as- 

early-as-possible bounding case for both within-session and within-week charging flexibility. To 

form the as-late-as-possible bounding case for within-session flexibility, the Delayed charging 

strategy is simulated for each sample vehicle. This strategy delivers the same amount of energy 

to each vehicle during each charging session (every time the vehicle is parked) as the Immediate 

strategy, but it delays the start of charging as long as possible. Creating an as-late-as-possible 

bounding case for within-week charging flexibility is more complex. Again we ensure that the 

same amount of energy is delivered, this time over the course of a week, and that each EV has 

sufficient SOC to complete all prespecified trips, but instead of using all possible charging ses- 

sions, a minimum number of charging sessions are selected and the energy delivered during those 

sessions is delayed as long as possible using a linear programming formulation (details available 

in Appendix A). The three major charging strategies implemented in TEMPO and used in this 

study are summarized in Table 3. 
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Table 3. Charging Strategies that Bound Flexibility while Preserving Mobility Service

 

Charging 

Strategy 

Representative of Timing Frequency Typical Occur- 

rence 

SOC

 

Immediate Unmanaged charg- 

ing; Bound that 

describes earliest 

charging ( P1) 

Start charging as soon as 

car is parked 

Every time the car 

is parked after a 

trip 

Immediately after 

each trip 

Charge to maximum 

or until next trip, 

whichever is first 

Delayed As-late-as-possible 

bound for within- 

session managed 

charging ( P2 , S) 

Maximum delay of 

charging constrained to 

deliver the same energy 

as Immediate during each 

charging session 

Every time the car 

is parked after a 

trip 

Immediately 

before each trip 

Same SOC as 

Immediate at end of 

session 

Min Charges 

and Delayed 

As-late-as-possible 

bound for within- 

week managed 

charging ( P2 , W ) 

Fewest charging sessions 

over the week holding 

mobility service constant; 

Charging delayed to end 

of selected sessions 

Minimum charg- 

ing sessions per 

week 

Before and after 

long trips 

Determined by a lin- 

ear program; same 

energy delivered per 

week as Immediate

 

Figure 11 depicts an example set of charging profiles for a single vehicle over a single week. 

Focusing first on the Immediate and Delayed profiles we see that the SOC for this vehicle stays 

fairly high (above 80%), and flexibility in timing only appears when an Immediate charging ses- 

sion results in 100% SOC prior to the next trip. Moving to the EV charging flexibility envelope 

created by Immediate paired with Min Charges & Delayed, that combination results in a much 

larger set of possible vehicle SOCs over the week, represented by the area between the blue and 

teal lines. Min Charges & Delayed drops to below 20% SOC for roughly a day during the week. 

Nevertheless, the vehicle gets back to its initial SOC by the end of the week, fulfilling the Min 

Charges & Delayed constraint that all energy used during travel is replenished each week.

 

Figure 11. Example of all charging strategies for a single vehicle-week. Trips are in- 

dicated by falling SOC; increasing SOC indicates charging. There are 31 charging ses- 

sions under the Immediate and Delayed strategies and 2 under Min Charges & Delayed. 

Given two charging profiles, P1( t ) and P2( t ) , that describe the earliest and latest possible charg- 

ing, respectively, along with the maximum charging capacity profile,

 

P ( t ) , that is zero when the 

vehicle is not plugged in and equal to the charger power otherwise, we construct a battery-like 

model of charging flexibility for each vehicle modeled by TEMPO. In general, the battery SOC 
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S ( t ) evolves as 

S ( t ) = S ( t − 1 )+ P ( t ) δ t − E ( t ) δ t (4.1) 

where we are assuming a right-hand rule time discretization with time step δ t , P ( t ) is the charg- 

ing power, and E ( t ) is the energy lost through driving. (Note that to be fully realistic we would 

also track the charging efficiency over time, because the conversion rate between electricity con- 

sumed and increased vehicle SOC varies by charger type and even within charging sessions. 

However, in this study we make the simplifying assumption that all chargers are equally efficient 

and only track electricity consumption.) Taking P1( t ) , the earliest possible charging profile, as the 

baseline, we model charging flexibility as the difference between what actually happens and this 

baseline charging assumption. That is, E ( t ) is fixed, the baseline SOC is 

S1( t ) = S1( t − 1 )+ P1( t ) δ t − E ( t ) δ t (4.2) 

and we define 

∆ P ( t ) = P ( t ) − P1( t ) (4.3) 

∆ S ( t ) = S ( t ) − S1( t ) . (4.4) 

Subtracting Equation 4.2 from Equation 4.1 we obtain the evolution equation for an individual 

vehicle’s charging flexibility: 

∆ S ( t ) = ∆ S ( t − 1 )+ ∆ P ( t ) δ t . (4.5) 

However, vehicle charging is not infinitely flexible. We must set bounds on ∆ P ( t ) and ∆ S ( t ) . The 

power bounds are derived from 

0 ≤ P ( t ) ≤

 

P ( t ) , (4.6) 

that is, 

∆ P

 

( t ) = − P1( t ) ≤ ∆ P ( t ) ≤

 

P ( t ) − P1( t ) =

 

∆ P ( t ) . (4.7) 

The energy bounds are derived from 

S2( t ) ≤ S ( t ) ≤ S1( t ) , (4.8) 

where S1( t ) is defined in Equation 4.2 and S2( t ) is likewise defined as 

S2( t ) = S2( t − 1 )+ P2( t ) δ t − E ( t ) δ t , (4.9) 

where P2( t ) is the as-late-as-possible charging profile. We then see that 

∆ S

 

( t ) = S2( t ) − S1( t ) ≤ ∆ S ( t ) ≤ 0 (4.10) 

and ∆ S

 

( t ) evolves as 

∆ S

 

( t ) = ∆ S

 

( t − 1 )+( P2( t ) − P1( t )) δ t , (4.11) 

which is sufficient to set the ∆ S

 

( t ) profile as soon as its value is fixed for one specific time. 

Certainly, any time where S2( t ) = S1( t ) is convenient for this purpose. In our modeling, this 

occurs at the end of every TEMPO-modeled week, such that the flexibility dispatch returns 
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the fleet to baseline conditions every 168 hours (time step δ t =1 hour) and ∆ S

 

only needs to be 

tracked over the course of each week. 

To demonstrate this model of individual vehicle charging flexibility, we apply it to the example 

profiles shown in Figure 11 to create a within-session (S) flexibility model and a within-week 

(W) flexibility model, and then dispatch those two models to minimize charging costs assuming 

that energy prices follow the corresponding DA locational marginal price (LMP) profile from 

our Reference PCM. (Optimal dispatch formulation details are provided in Appendix E.) The 

resulting SOC profiles are shown along with the as-soon-as-possible and as-late-as-possible 

bounds in Figure 12.

 

Figure 12. Example optimal and bounding SOC profiles for a single vehicle week. Compared to 

Figure 11, vehicle charging has been scheduled to minimize costs relative to an RTP. Three types of 

profiles are shown: baseline (Immediate = S1), delayed (Delayed = S2 , S; Min Charges & Delayed 

= S2 , W ), and minimum charging cost (Optimal within-session = SS; Optimal within-week = SW ). 

By design, the optimal within-session profile still contains 31 charging sessions (as do the Imme- 

diate and Delayed profiles), however, the timing of charging is selected to align with lower cost 

times. For example, the optimal within-session profile charges in the lowest price subset of the 

71st-76th hours, with a pause in the middle but still returning to full SOC by the end of the ses- 

sion. The optimal within-week profile avails itself of its larger range of options, engaging in 23 

charging events at a total cost of $1.23 for this vehicle-week compared to $7.48 for the optimal 

within-session profile and $10.24 for the Immediate charging strategy. 

4.2 Aggregate Charging Flexibility 

The most accurate way to model charging flexibility is to explicitly constrain charging for each 

EV. However, accuracy comes at a computational cost that is not practical in all situations. Con- 

sidering least-cost bulk power system UC and dispatch as implemented in, for example, PLEXOS 
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and software used by ISOs, it is not possible to directly optimize the charging of individual vehi- 

cles. The number of vehicles, thousands to millions, is orders of magnitude larger than the tens 

to hundreds of generating units, and the size of vehicle charging loads, on the order of kW, is or- 

ders of magnitude smaller than the injections into and out of transmission buses, which are at the 

MW scale. Resolving the dispatch of millions of resources of vastly different sizes to the toler- 

ance levels required to give clear instructions to all resources is simply not possible today within 

reasonable time frames. Furthermore, ISO software typically does not even allow for resource 

offers in increments smaller than 0.1 MW–the next decimal point of precision is not accepted by 

the software. In both system operations and our PCM, EV charging flexibility must currently be 

represented as a storage-like aggregate of hundreds-to-thousands of vehicles, at a MW-scale. 

Starting from the model of individual charging flexibility developed in the previous section: 

∆ Sk( t ) = ∆ Sk( t − 1 )+ ∆ Pk( t ) δ t (4.12) 

∆ Pk

 

( t ) = − Pk , 1( t ) ≤ ∆ Pk( t ) ≤

 

Pk( t ) − Pk , 1( t ) =

 

∆ Pk( t ) (4.13) 

∆ Sk

 

( t ) = Sk , 2( t ) − Sk , 1( t ) ≤ ∆ Sk( t ) ≤ 0 (4.14) 

∆ Sk

 

( t ) = ∆ Sk

 

( t − 1 )+( Pk , 2( t ) − Pk , 1( t )) δ t , (4.15) 

where we have added a subscript k to denote individual vehicles k in the set K of all participating 

vehicles, an obvious construction of aggregate flexibility is: 

∆ S ( t ) = ∆ S ( t − 1 )+ ∆ P ( t ) δ t (4.16) 

∆ P

 

( t ) = ∑ 

k ∈ K 

∆ Pk

 

( t ) ≤ ∆ Pk( t ) ≤ ∑ 

k ∈ K

 

∆ Pk( t ) =

 

∆ P ( t ) (4.17) 

∆ S

 

( t ) = ∑ 

k ∈ K 

∆ Sk

 

( t ) ≤ ∆ S ( t ) ≤ 0 , (4.18) 

which we refer to as the outer approximation (OA) of aggregate flexibility. 

But how accurate is this outer approximation? If the actual flexibility of the vehicles K is repre- 

sented by the set 

PK 

= 

{ 

∑ 

k ∈ K 

∆ Pk( t ) 

∣∣∣∣∣exists ∆ Sk( t ) with (4.12) to (4.15) satisfied for all k ∈ K 

} 

, (4.19) 

how does the set of feasible outer approximation profiles

 

P = {∆ P ( t )|exists ∆ S ( t ) with (4.16) to (4.18) satisfied} (4.20) 

compare? Extending the work of Hao et al. (2015) we show in Appendix C that PK 

is a subset 

of

 

P , that is, every aggregate trajectory that can feasibly arise from the individual vehicles is 

feasible for the outer approximation model. Thus the set

 

P is at least as large as PK 

and is likely 

larger. How much larger? We can develop an intuition by computing an outer approximation for 

a modest number of vehicles and dispatching both the aggregate and the individual flexibility 

models against the same hourly prices. Then, we can observe to what extent the sum of the 

individually-optimized profiles does or does not align with the optimal dispatch of the outer 

approximation. 
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Figure 13 depicts such an example analysis created from 475 sample vehicle profiles (totalling 

3.02 MW of charging load on average, after sample weights are applied) with within-session 

flexibility. The top plot shows the price signal against which the individual flexibility models 

(blue lines) and the outer approximation (OA) aggregate flexibility model (pink lines) are dis- 

patched. The black lines show the bounds for the OA model. As expected, the aggregate model 

(pink lines) stays within these bounds and is often actively constrained by them. The optimiza- 

tion formulation incentivizes reducing charging load as much as possible when prices are high 

and satisfying the overall energy demand as much as possible when prices are low. Both power 

and energy bounds work together to determine exactly what "as much as possible" means at any 

given time. The sum of the individual dispatch results (blue lines) also stays within these bounds 

but is not typically hitting them. Because the individual vehicles are optimized using the same 

cost minimization objective as the aggregate flexibility model and the corresponding annual cost 

savings for the individual dispatch is only $494M compared to $740M for the aggregate dispatch, 

this implies that while the individual optimal profiles are feasible for the OA aggregate model, the 

aggregate dispatch is not actually feasible if requested from individual vehicles. That is, we have 

verified that PK 

⊂

 

P and have also identified a significant feasibility gap (

 

P is strictly larger than 

PK) arising from the fact that the aggregate model can unrealistically pair, e.g., one already-fully- 

charged vehicle’s ability to increase load with another already-charging vehicle’s ability to accept 

more charge, effectively requesting a charging rate that is infeasible for the latter vehicle. 

Hao et al. (2015) also suggests a way to address this issue of the outer approximation being a 

strict overestimate of aggregate flexibility. Instead of constructing a model of the form 

∆ S ( t ) = ∆ S ( t − 1 )+ ∆ P ( t ) δ t (4.21) 

∆ P

 

( t ) ≤ ∆ Pk( t ) ≤

 

∆ P ( t ) (4.22) 

∆ S

 

( t ) ≤ ∆ S ( t ) ≤ 0 (4.23) 

that overestimates actual flexibility, one can determine values of ∆ P

 

( t ) ,

 

∆ P ( t ) and ∆ S

 

( t ) that 

allow a proof that the set 

P

 

= {∆ P ( t )|exists ∆ S ( t ) with (4.21) to (4.23) satisfied} (4.24) 

is an under-approximation of flexibility, that is, that P

 

⊂ PK. Such a model is an inner approx- 

imation , and any dispatch request made of it is feasible. Therefore, a grid model could safely 

use such a representation of EVMC and expect the aggregator to be able to fulfill the resulting 

dispatch request. 

Unfortunately, readily constructed inner approximations for time-varying load flexibility (includ- 

ing EVMC) are overly conservative. The construction presented by Hao et al. (2015) assumes 

that the aggregate dispatch signal will be shared out to all of the contributing resources based on 

constant fractions βk 

and then sets the aggregate bounds in a worst-case sense. That is, 

∆ P

 

k( t ) ≤ βk∆ P

 

( t ) ≤ ∆ Pk( t ) ≤ βk

 

∆ P ( t ) ≤

 

∆ Pk( t ) (4.25) 

∆ S

 

k( t ) ≤ βk∆ S

 

( t ) ≤ ∆ Sk( t ) ≤ 0 (4.26) 

for all vehicles k ∈ K and for all times t . In the case of a time-varying resource like EVMC pro- 

viding a temporally-linked grid service like energy shifting, this construction generally leads to 

21 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



 

(a) Energy prices

 

(b) Charging power profile differences from baseline ( ∆ P )

 

(c) Cumulative delivered charging energy differences from baseline ( ∆ S ) 

Figure 13. Optimal dispatch of one outer approximation aggregate resource compared 

to the aggregated result of optimally dispatching the 475 comprising vehicles indi- 

vidually. This example shows three days of optimal dispatch for one county’s TEMPO data. 
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inner approximations that are too conservative. That is, so much of the flexibility resource is lost 

to the aggregation process that the gain of provable dispatchability is not sufficient to overcome 

the loss of potential value (Hale et al. 2022). It might be possible to construct a better type of 

inner approximation e.g., with time-varying βk 

or by relaxing the dispatchability requirement to a 

high probability of dispatchability rather than an absolute requirement, but as of this writing the 

authors do not know of such a construction. 

We therefore propose to heuristically scale the outer approximation to achieve better outcomes. 

That is, instead of using the bounds Equation 4.17 and Equation 4.18 directly, we apply scaling 

factors to the minimum power bound ( f1), the maximum power bound ( f2), and the minimum 

SOC bound ( f3): 

f1 ∑ 

k ∈ K 

∆ Pk

 

( t ) ≤ ∆ Pk( t ) ≤ f2 ∑ 

k ∈ K

 

∆ Pk( t ) (4.27) 

f3 ∑ 

k ∈ K 

∆ Sk

 

( t ) ≤ ∆ S ( t ) ≤ 0 , (4.28) 

and the scaled outer approximation (SOA) model is then defined by Equations 4.16, 4.27, and 

4.28. 

To define the values of f1, f2 

and f3 

we perform re-dispatching experiments where, for a set of 

participating vehicles k ∈ K we: 

1. Construct a number of SOA models by computing the OA model and then specifying 

different values for f1, f2 

and f3. 

2. Compute a dispatch profile for each SOA model by minimizing charging costs using an 

RTP profile. 

3. Dispatch the individual resources k ∈ K to minimize the mean absolute error (MAE) be- 

tween the aggregate dispatch from Step 2 and the aggregated individual resource dispatch, 

subject to individual vehicle-level constraints (Equation 4.12 to Equation 4.15). (Formula- 

tion specified in Appendix E.) 

4. Evaluate the quality of the individual dispatch in terms of (a) an error metric and (b) esti- 

mated net revenue of managed charging, assuming that the aggregator would have to settle 

deviations from requested dispatch at the same RTP. 

Because it is expensive and computationally challenging to perform Step 3 (optimal disaggrega- 

tion of individual resources of an aggregate dispatch request), in this study we estimate scaling 

parameters using a moderately-sized example. Specifically, we analyze the aggregation and 

dispatch for the same data set used for Figure 13, i.e., 475 sample EVs from a single county 

representing an annual charging load (including distribution losses) of 26.5 GWh. The SOA ag- 

gregate charging flexibility from these vehicles is computed for 125 different combinations of f1, 

f2 

and f3 

values–every combination of each parameter being set to 0.2, 0.4, 0.6, 0.8, or 1.0. The 

SOA models are then dispatched as price-takers against the 8,760-hour DA regional RTP from 

the Reference scenario and the individual vehicles’ dispatch is optimized to fulfill those requests 

with minimum MAE. The experiment thus consists of 125 pairs of optimal SOA aggregate and 

disaggregated-and-then-summed individual dispatch profiles to compare in terms of net revenue 
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(i.e., charging cost savings relative to the Immediate, unmanaged charging strategy, measured 

using the DA RTP) and MAE. 

Figure 14 shows the results of the experiment for within-session flexibility. The left plot (Fig- 

ure 14a) shows the gross net-revenue achieved by the price-taking dispatch of the SOA models, 

which are ignorant of the individual vehicle charging constraints, versus the mean absolute error 

(MAE) between the optimized SOA dispatch and what the individual vehicles are actually able 

to do when they try to fulfill the aggregate request. The dashed line on that plot depicts the net 

revenue that results from directly dispatching the individual vehicle flexibility models against the 

same price profile—the fact that some of the SOA points are above this line indicates that those 

SOA models are producing infeasible (from an individual vehicle perspective) dispatch requests. 

That said, just because an SOA point is below the individual net revenue line does not mean that 

its dispatch is strictly feasible. Indeed, MAE varies from near zero to up to 1.53 MW (about 50% 

of the average load of 3.02 MW), and high dispatch error is observed for many combinations of 

scaling factors both above and below the dashed line.

 

(a) Gross net-revenue for the SOA dispatch profile

 

(b) Actual net revenue after dispatching individual 

vehicle charging flexibility to minimize MAE 

between actual and SOA-requested dispatch 

Figure 14. Within-session charging flexibility disaggregation experiment. Both subfigures 

plot net-revenue versus disaggregation MAE and indicate scaling parameter combinations se- 

lected for subsequent analysis with red dots. Annotations list f1/ f2/ f3 

multiplied by 100 and the 

percentage by which gross net-revenues for the annotated points exceed plotted net revenues. 

The plot on the right (Figure 14b) shows the net revenue for the aggregation based on the individ- 

ual charging profiles that result from disaggregating the dispatch requested of the SOA resources. 

That is, instead of computing net revenue for the SOA dispatch profile, we compute the indi- 

vidual dispatch profiles that best match that aggregate request and then settle out the charging 

costs based on the price profile. Once we do this, we see that the least-scaled SOA models, by 

over-promising as an aggregate, produce less revenue than many of the more-scaled SOA models. 

For the purpose of this study, we draw attention to two specific models on the non-dominated 

Pareto front of error minimization and net revenue maximization. First, the model with maximum 
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revenue (MR) for within-session flexibility has f1 

= 0 . 6, f2 

= 0 . 4, and f3 

= 1 . 0. This SOA MR 

model has significant disaggregation error, around 0.62 MW MAE, but the errors in its favor (i.e., 

when the vehicles dispatch more in the low price times and less in the high price times than the 

SOA model predicted) more than make up for the errors that cause it to pay more for charging 

than expected (i.e., when the vehicles dispatch less in the low price times and more in the high 

price times than the SOA model predicted), as compared to, e.g., more-scaled models with lower 

MAE. Second, there are SOAs with very low MAE that achieve net-revenue up to two-thirds of 

the MR SOA. The highlighted low-error (LE) model has f1 

= 0 . 4, f2 

= 0 . 6, and f3 

= 0 . 4, 0.02 

MW MAE, 66% of the MR SOA revenues and 59% of the individually optimized net-revenues. 

In what follows, we use slightly adjusted versions of these SOA scaling parameters to define 

within-session MR and LE models. We also estimate "revenue ratios," defined as actual net- 

revenue divided by gross net-revenue as measured in this experiment, and use them to discount 

production cost savings results in chapter 5. For example, the revenue ratio we used to adjust OA 

production cost results for within-session flexibility is 0.55 (gross net-revenue is 82.3% higher 

than actual net-revenue). The actual scaling parameters and revenue ratios used in what follows 

are listed in Table 4. 

Similar results are presented for within-week flexibility in Figure 15. The results are directionally 

similar, but the MR and LE SOAs have different optimal scaling factors in this case compared 

to within-session flexibility. MAE can also be much higher. The scaling parameter for ∆ P

 

, i.e., 

f1 

appears to be most important–all of the points that produce gross net revenue estimates above 

what is achievable by directly dispatching the individual vehicles have f1 

equal to 1.0 or 0.8, and 

the MR point has f1 

= 0 . 8. The full definition of the MR point is f1 

= 0 . 8, f2 

= 0 . 6, and f3 

= 0 . 8, 

which has less scaling of ∆ P

 

( f1) and more scaling of ∆ S

 

( f3) as compared to the within-session 

MR SOA. Figure 15b also shows that many SOA models are able to achieve very low error for 

within-week flexibility. A common theme of low-error within-week scaling is approximately 

halving both f1 

and f3. The specific LE point called out in Figure 15 is f1 

= 0 . 6, f2 

= 0 . 2, and 

f3 

= 0 . 6, but consistent with within-session, slightly modified values for both MR and LE are 

chosen for use in chapter 5, see Table 4. For within-week flexibility, the revenue ratio for the OA 

model is 0.58 (gross net-revenue is 72.7% higher than actual net-revenue). 

4.3 Resource Summary and Dispatch Mechanisms 

As an upper bound, in this study we consider the case in which all charging other than DCFC for 

all 5.3 million modeled light-duty passenger vehicles is flexible. That amounts to assuming that 

up to 12.0% (17.1 TWh with losses) of the system’s 142.2 TWh of total load could be shifted 

in time to occur later than what is simulated by the Immediate charging strategy. Based on our 

ubiquitous charger assumption, the flexibility in terms of power consumption is the same for 

within-session and within-week flexibility: only load in the Immediate charging profile can be 

reduced, and the maximum possible gain in load is equivalent to the amount of charger capacity 

that is accessible (because a car is parked) but unused (because the car is no longer charging) 

under the Immediate charging strategy. The ability to delay load, however, differs depending on 

the flexibility type. 

Figure 16 shows what the outer approximation of the flexible resource looks like for one week in 

June under both within-session and within-week assumptions. Per Figure 16a, the June baseline 

charging that can potentially be delayed varies between about 300 MW at 4 a.m. to 5 a.m. local 
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(a) Gross net-revenue for the SOA dispatch profile

 

(b) Actual net revenue after dispatching individual 

vehicle charging flexibility to minimize MAE 

between actual and SOA-requested dispatch 

Figure 15. Within-week charging flexibility disaggregation experiment. Both subfigures 

plot net-revenue versus disaggregation MAE and indicate scaling parameter combinations se- 

lected for subsequent analysis with red dots. Annotations list f1/ f2/ f3 

multiplied by 100 and the 

percentage by which gross net-revenues for the annotated points exceed plotted net revenues. 

time and 3.4 GW in weekday evening hours. Monthly baseline charging minimums are 300 MW 

(May) to 380 MW (February) and maximums are 3.2 GW (May) to 4.0 GW (February). On 

average, passenger vehicles are parked about 95% of the time; this combined with our ubiquitous 

charger assumption results in available charging capacity being more than 6 times actual charging 

at all times of day. Figure 16b shows that the Immediate charging strategy keeps the ISO-NE 

fleet’s batteries mostly full all of the time. The aggregate Delayed (within-session) SOC bound 

at most reduces the fleet’s charging level by 21 GWh or 5.5%. The within-week OA flexibility 

resource provides significantly more energy capacity–up to 114 GWh (30%) at the point of 

widest difference. The shape of the MinCharges & Delayed SOC (within-week) bound also 

demonstrates a potential improvement for future work–the gradual loosening and then sudden 

tightening of the SOC bound at the beginning and end of the week, respectively, is a modeling 

artifact of the combined TEMPO and dsgrid-flex workflow. In summary, as modeled in this study 

the EVMC resource is on the order of 0.09 kW/vehicle to 0.66 kW/vehicle (500 MW to 3.4 GW 

for the 2038 ISO-NE model) in power capacity and up to 4.0 kWh/vehicle to 21.5 kWh/vehicle 

(21 GWh to 114 GWh for the 2038 ISO-NE model) in energy capacity, the latter depending on 

whether charging is being scheduled on per-session or weekly timescales. 

The resource shown in Figure 16 is an overestimate of flexibility for several reasons, two of 

which we explore further in the results that follow. First, it is not going to be the case that all ve- 

hicles will participate in EVMC programs all the time. In this study we capture that fact through 

participation rates, which we model by randomly selecting sample vehicles to include in the flex- 

ibility modeling until the sum of their sample weights represents a desired percentage of the total 

number of vehicles. Second, we saw above that not all load profiles that are feasible for the outer 
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(a) Immediate (baseline) charging and up- 

per bound on hourly EV charging. For the OA 

model minimum charging is 0 GW in all hours.

 

(b) Baseline (Immediate) and minimum SOC bounds 

for all vehicles for within-session (Delayed) and 

within-week (MinCharges & Delayed) flexibility 

Figure 16. Outer approximation power and SOC bounds for all ISO- 

NE modeled vehicles (i.e., 5.3 million EVs) for one week in June 

approximation are feasible once the individual vehicle constraints are considered. In what follows 

we address this concern by modeling three different dispatch mechanisms, some of which have 

additional variants. 

The dispatch mechanisms used to schedule managed EV charging in this study are summarized 

in Table 4. RTP allows individual vehicles to respond directly to the hourly prices forecast by 

the Reference scenario DA model (with unmanaged EV charging). We dispatch vehicles against 

an ISO-NE system average RTP, computed as the load-weighted average of the eight regional 

price profiles. TOU similarly allows individual vehicles to respond directly, but to a much coarser 

price signal that varies with seasons and time blocks. In this study the TOU rates are designed 

to match the system-level RTP as well as possible in a least-squares sense, using a specified 

number of seasons and blocks and subject to the TOU tariff recovering at least as much revenue 

as RTP under baseline load conditions. Seasons are contiguous sets of days and are subject to 

a minimum length constraint. Blocks are contiguous hours within days, are also subject to a 

minimum length constraint, and are defined differently for weekdays and weekend days. As 

described in more detail in Appendix D, we find the optimal TOU formulation challenging to 

solve even with commercial solvers and we obtain better objective function values by applying 

agglomerative clustering13 to the RTP profile to create TOU rates. In this study we present results 

for two different TOU rates: TOU-1-2 with one season and two blocks, and TOU-4-4 with four 

seasons and four blocks (definitions available in Appendix D). Finally, DLC allows EVMC to 

participate in the DA price formation process by dispatching it directly alongside supply-side 

resources. We analyze three DLC models with different scaling factors: DLC-OA (unscaled), 

DLC-MR (scaling factors maximize revenue), and DLC-LE (scaling factors ensure low dispatch 

error and otherwise maximize revenue), in recognition of the challenges of constructing accurate, 

MW-scale estimates of EVMC resource. 

In the price-taking dispatch mechanisms (RTP, TOU), the full flexibility of the individual vehicles 

is available because they are dispatched using the individual vehicle constraints, but we represent 

the worst case from the grid operator point of view in that the DA model does not anticipate that 

the EVMC that will show up in the actual (RT) load profiles. We simulate this by dispatching

 

13"sklearn.cluster.AgglomerativeClustering," scikit-learn, https://scikit- 

learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html 
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Table 4. Summary of Dispatch Mechanisms and Defining Parameters

 

Dispatch 

Mechanism 

Parameter Within-Session 

Flexibility 

Within-Week 

Flexibility

 

RTP Price profiles Unmanaged charging DA prices 

Number of prices in tariff 8,760

 

TOU-1-2 Time series to mimic Unmanaged charging DA prices 

Number of seasons 1 

Number of blocksa 2 

Number of prices in tariff 4

 

TOU-4-4 Time series to mimic Unmanaged charging DA prices 

Number of seasons 4 

Number of blocksa 4 

Number of prices in tariff 32

 

DLC-OA f1, f2, f3 

1.0 

Revenue ratiob 0.55 0.58

 

DLC-MR f1 

0.5 1.0 

f2 

0.5 0.5 

f3 

1.0 1.0 

Revenue ratiob 0.76 0.63

 

DLC-LE f1 

0.5 0.5 

f2 

0.5 0.5 

f3 

0.5 0.5 

Revenue ratiob 0.99 0.99

 

a Blocks are defined differently for weekdays and weekends. Therefore, the number of price 

points in these TOU rates is equal to the number of seasons times the number of blocks times two. 

b Revenue ratio is the net-revenue from dispatching individual vehicles to match a requested aggre- 

gate profile divided by the net-revenue expected based on dispatching the aggregate. In both cases 

net-revenue is calculated based on the same price profile. The values here come from the disaggrega- 

tion experiments described at the end of Section 4.2, but computed specifically for the listed points. 
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the individual vehicles against an RTP or TOU price that reflects the DA, unmanaged charging 

Reference conditions, and then inserting the resulting load changes into the RT model with Refer- 

ence (unmanaged charging) unit-commitment patterns. Thus, these stylized price-taking dispatch 

mechanisms show what value EVMC can provide even if charging flexibility is not anticipated 

by grid operators nor the price formation process. Similar to other research (Roozbehani, Dahleh, 

and Mitter 2012; Cole et al. 2014; McKenna and Keane 2016; Ruth, Lunacek, and Jones 2017) 

we find these dispatch mechanisms can on-net increase system costs at high participation rates 

because large unanticipated deviations of actual load from forecast can cause the very types of 

grid stress that price-responsiveness is supposed to mitigate. This study counters those effects 

by muting the aggregate managed EV charging response with a penalty on hour-to-hour changes 

(ramps) in aggregate charging. This approach produces lower bound results for the capabilities of 

price-taking (RTP or TOU) approaches at high participation rates, because in practice the impact 

of these mechanisms would likely be represented in DA operational models (and thus DA RTPs) 

via load forecasts or approximate representations of inter-temporal charging flexibility (similar to 

the DLC models described herein) to better align prices and UC patterns with actual price-taking 

EVMC response. To the best of our knowledge, the academic literature does not contain much 

on those exact approaches, but the coordination problem is well known and a number of authors 

have addressed it by either iterating between power system dispatch and load scheduling or by 

computing prices that will induce loads to meet specific objectives such as peak load reduction 

or valley-filling (David and Li 1993; Corradi et al. 2013; Cole et al. 2014; Ma, Callaway, and 

Hiskens 2013; Xi and Sioshansi 2014). 

The DLC dispatch mechanism presents aggregate flexibility to the grid operator in the DA model, 

but the amount of flexibility is reduced from what is accessible through the individual vehicles by 

scaling factors (LE and MR cases) or is significantly infeasible (OA and MR cases). The flexibil- 

ity is also not accurately located in the DA model–it is aggregated into pseudo-storage flexibility 

resources at 19 (dispatch zone resolution) nodes. We evaluate overall outcomes in terms of dis- 

patch and system cost savings by fixing the EVMC profiles determined in the DLC DA model 

in the RT model formulated from the DLC DA UC results. The unscaled DLC-OA represents an 

upper bound on the bulk power system value of EVMC, because it strictly overestimates charging 

flexibility and is able to modify unit-commitment decisions in the DA. Narrowing EV charging 

power and energy bounds with scaling factors to create the DLC-LE and DLC-MR resources 

yields more realistic descriptions of what coordinated EVMC dispatched in DA markets could 

look like if the aggregate resource is scaled either to have few infeasible dispatch requests (-LE) 

or to maximize revenue after accounting for buying back infeasible dispatch at the clearing price 

(-MR). Unfortunately, it was not within the scope of this study to take the DA dispatch requests 

for these aggregates and then compute feasible vehicle-level charging profiles to best fulfill those 

requests. This study is therefore not able to fully analyze, but can only approximate, the bulk 

system value of the DLC-LE and DLC-MR dispatch mechanisms. Because of this deficiency, we 

often analyze DLC-LE results that are expected to be close to feasible, rather than DLC-MR re- 

sults that are expected to have more inaccuracies but produce more system and aggregator value 

if deviations from expected dispatch are settled against the final RT prices. 
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5 Bulk Power System Value of Managed Charging 

We explore the value of EVMC in an envisioned 2038 ISO-NE bulk power system based on the 

scenario framework shown in Table 5. Rather than running all possible combinations of scenar- 

ios, we select specific runs that help us answer a series of four questions, culminating in, "What 

is the trade-off between per-vehicle value, total system cost reductions, and dispatch mechanism 

complexity?" In all cases, the unmanaged, Immediate EV charging scenario serves as a reference 

condition against which we measure the value of EVMC. We also explore the differences be- 

tween within-session and within-week charging flexibility throughout. Different combinations of 

participation rate and dispatch mechanism are selected as we progress, and by the end, in addition 

to answering the posed questions we also grapple with some DER aggregation challenges: "If we 

ask for demand flexibility, how much will actually show up?" and "When does price responsive 

flexibility break down if it is not factored into the price formation process?" 

Table 5. Scenario Framework for Exploring the Value of EVMC in the ISO-NE Bulk Power System

 

Charging Strategy Flexibility Type Participation in 

Managed Charging 

Managed Charging 

Mechanism

 

Value Unmanaged vs. 

Managed 

Within-session versus 

Within-week 

5%, 10%, . . . , 100% DLC, RTP, TOU

 

What does it 

represent? 

Cost savings if the 

timing of EV charging 

is managed (V1G) 

Value of choosing 

charging times daily 

or weekly 

Depth of need for 

EVMC services 

Value of more pre- 

cision in EVMC 

dispatch

 

What does it not 

represent? 

Impact of different 

charging infrastruc- 

ture scenarios; V2G 

or V2X 

Impact of place-based 

differentiated pricing 

Trade-offs between 

utility costs and/or 

program design and 

participation rates 

Dispatch to maximize 

value across multiple 

grid services, trade- 

offs with distribution 

system costs

 

5.1 What system cost savings could EVMC provide if all personal passenger light- 

duty EVs participated? 

Because DLC-OA simply sums individual charging bounds to estimate aggregate resource size 

and thus overstates actual charging flexibility by potentially infeasible combinations of charging 

and energy capacity, we can calculate an upper bound for the total bulk system production cost 

savings of EVMC by applying the DLC-OA dispatch mechanism with 100% participation. This 

lets the Reference DA UC model shift up to 12.0% of load, all 17.1 TWh of generation needed 

to serve the charging load of 5.3 million vehicles, to reduce system costs by avoiding unit starts 

and shut downs, reducing fuel and VO&M costs, and reducing transmission congestion. The 

result of this shifting, calculated in the DA at the dispatch zone level (19 pseudo-storage units) 

and realized at all of the ISO-NE load nodes in the RT model, is shown in terms of system costs 

(excluding emissions costs) in Figure 17. If the vehicles present within-session flexibility to the 

system operator, production costs are reduced by 6.7% or $20.9/vehicle-year. The corresponding 

results for within-week flexibility are 8.2% production cost savings or $25.5/vehicle-year. 
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Figure 17. Annual production costs with within-session (-S) and within-week (-W) 

DLC-OA EVMC with 100% participation compared to annual production costs with un- 

managed EV charging. As shown in Section 4.2, DLC-OA is an overestimate of aggre- 

gate flexibility such that these results are an upper bound on total production cost savings. 

If we factor in the analysis of Section 4.2 and estimate total production cost savings for DLC-OA 

(unscaled), DLC-LE (scaling factors ensure low dispatch error and otherwise maximize revenue), 

and DLC-MR (scaling factors maximize revenue) assuming that production cost savings would 

be reduced by the revenue ratios in Table 4, we end up with production cost savings estimates 

of 3.7% to 4.7% for within-session and 4.4% to 6.4% for within-week flexibility (Figure 18). 

Certainly the Table 4 revenue ratios are not the right discount factors for capturing the impact 

of DLC-LE, DLC-MR and DLC-OA dispatch infeasibilities on production costs. It would be 

best to directly compute dispatch profiles for the 101,031 sample vehicles that in total minimize 

the error between the actual and requested aggregate dispatch and then calculate production 

cost savings in the RT for the sum of those individual profiles; it would be an improvement to 

at least perform those calculations for some cases and then calculate production cost discount 

factors by comparing the results for requested and actual EVMC dispatch. Regardless, computing 

disaggregated dispatch at that scale is computationally onerous and out of scope for this study, so 

we apply the price-taking revenue discount factors in Table 4 as the best available proxies. 
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Figure 18. Annual production costs with within-session (-S) and within-week (-W) EVMC with 100% partic- 

ipation using the DLC-LE, DLC-MR, and DLC-OA dispatch mechanisms all compared to annual production 

costs with unmanaged EV charging. Estimates of how much savings might be overstated by dispatching 

SOA aggregate resources are shown in black and factored into per-vehicle production cost savings estimates. 

The results in Section 4.2 show that DLC-LE is the most conservative aggregate dispatch in the 

sense that it is more likely to be feasible when implemented with individual vehicles compared 

to DLC-MR and DLC-OA. For this reason, we predominantly analyze the DLC-LE aggregate 

models in what follows. That said, the DLC-MR scaling might be more likely in an operational 

setting, and DLC-LE achieves lower net revenue than optimal dispatch of individual vehicles 

in Figure 14b and Figure 15b, so the DLC-LE results can be considered an underestimate of 

maximum achievable EVMC value under DLC. 

EVMC can reduce firm capacity requirements by shifting load out of the most expensive to 

serve hours. A reasonable first-order approximation for the most expensive to serve hours are 

those with the highest net load. Following Stephen, Hale, and Cowiestoll (2020) and Jorgenson 

et al. (2021), we estimate the firm capacity contribution of EVMC by calculating the average 

MW reduction in the top 100 net-load hours based on comparing net-load duration curves with 

and without EVMC included. For example, Figure 19 shows the first 100 hours of the net-load 

duration curves, which are load minus VG values for every hour of the year sorted from highest 

to lowest, for the 2038 PCM without EV load (light grey), the Reference scenario (black), the 

DLC-LE 100% participation within-session EVMC scenario (yellow), and the DLC-LE 100% 

participation within-week EVMC scenario (dashed cyan). On average, unmanaged EV load 
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adds 1,620 MW to the top 100 hours of net-load in this system. DLC-LE EVMC with 100% 

participation reduces that amount by about half no matter whether the flexibility type is within- 

session or within-week.

 

Figure 19. Top 100 hours of the net-load duration curves for the 2038 PCM without EV load (No EVs), the 

Reference scenario (Unmanaged EVs), and the DLC-LE 100% participation scenarios for within-session 

(100% DZ-S (LE)) and within-week (100% DZ-W (LE)) flexibility. The firm capacity contribution of EVMC is 

estimated to be the average net load reduction across these top 100 net-load hours. Capacity value is estimated 

by multiplying the firm capacity contribution by capacity prices from the Cambium data set (Gagnon et al. 2021). 

The firm capacity value for the DLC-LE 100% participation scenarios is shown in Table 6 along- 

side other key statistics that summarize the overall bulk power system value of this EVMC sce- 

nario. We estimate firm capacity value by multiplying firm capacity avoided by an assumed 

capacity price of $75.62 to $96.81/kW-y in $2016 ($81.55/kW-y to $104.40/kW-y in $2020),14 

which are the ISO-NE 2038 capacity prices of the Mid-case 95% decarbonization by 2035 and 

Mid-case 95% decarbonization by 2050 scenarios in the 2021 Cambium data set (Gagnon et 

al. 2021). (The Mid-case capacity price falls within this range at $96.5/kW-y in $2016.) Over- 

all, the per-year monetary value of this EVMC scenario is $147.9 million to $164.4 million 

for within-session flexibility and $175.9 million to $193.6 million for within-week flexibility 

($2016), inclusive of production cost savings, avoided CO2 

emissions valued at $45/ton, and the 

aforementioned range of firm capacity value. In addition, compared to the Reference scenario 

402 GWh (within-session) and 579 GWh (within-week) more within-ISO generation is used 

locally through a combination of reduced VG curtailment and reduced "dump energy" (unused 

generation that cannot otherwise be curtailed nor dispatched down costs $20/MWh). These are 

approximate upper bounds for the system-level value of EVMC in the envisioned ISO-NE sys- 

tem, based on 5.3 million vehicles (45% of the passenger LDV fleet) participating in the 2038 

time frame.

 

14Values in $2016 are computed from the $2020 values in the Cambium data set using an annual simple average 

of the monthly Consumer Price Index for all urban consumers (CPI-U, https://fred.stlouisfed.org/series/CPIAUCSL). 
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Table 6. Summary of EVMC Bulk System Value if All Ve- 

hicles Participate Using the DLC-LE Dispatch Mechanism

 

Metric Within-Session 

Flexibility 

Within-Week 

Flexibility

 

Production cost savings (million $/yr) 73.9 92.4 

Production cost savings (%) 4.4 5.6 

Production cost savings ($/vehicle-yr) 13.9 17.5 

Emissions avoided (million metric tons) 0.33 0.44 

Emissions avoided (%) 5.2 6.9 

Emissions avoided (kg/vehicle-yr) 59 75 

Increased use of within-ISO generationa 

(GWh) 

402 579 

Increased use of within-ISO generationa 

(kWh/vehicle-yr) 

76 109 

Firm capacity avoided (MW) 781 834 

Firm capacity avoided (kW/vehicle-yr) 0.15 0.16 

Firm capacity value (million $/yr) 59.1 - 75.6 63.1 - 80.7 

Firm capacity value ($/vehicle-yr) 11.1 - 14.3 11.9 - 15.2 

Transmission congestion index 174.9 170.3 

Transmission congestion index reduction -16.0 -11.4

 

a EVMC increases the use of within-ISO generation by avoiding VG curtailments (with 

a $0/MWh cost) and reducing net imports. Exactly which type of non-use of within-ISO 

generation occurs in a given scenario is a complex function of system DCOPF dispatch, 

but we do observe a clear trend of EVMC enabling more use of within-ISO generation. 

Table 6 also reports the transmission congestion index for the DLC-LE 100% participation 

within-session flexibility and within-week flexibility scenarios. Contrary to our expectations, 

EVMC actually increases transmission congestion in the high-voltage ISO-NE network (115 

kV and above) in these scenarios. The values reported in the table are for the RT models. The 

values for the DA models, in which EVMC shows up at 19 nodes, show congestion reduction 

for within-session flexibility (172.1 compared to 174.0 in the Reference scenario DA model) but 

a significant increase in transmission congestion (237.4) for within-week flexibility, suggesting 

potential difficulty in scheduling of EVMC with heavier reliance on the coarser beyond-day 

look-ahead for the longer within-week time horizon. This finding also suggests that the value 

of using EVMC to reduce fuel, start & shutdown, VO&M and emissions costs can be worth an 

additional amount of transmission congestion. More work is required to fully understand how 

EVMC impacts trade-offs between congestion on the distribution and transmission systems, costs 

to upgrade the distribution and transmission systems, and the value streams EVMC can provide 

to bulk power systems. 

Figure 20 shows annual generation in the DLC-LE 100% scenarios minus the Reference scenario 

annual generation. Within-session and within-week EVMC reduce wind, solar, and hydropower 

curtailment (shown as increased generation from those resources); reduce use of pumped hy- 

dropower energy storage (thus avoiding some of the round-trip losses experienced in the Ref- 

erence scenario); increase biomass generation and reduce gas combined cycle generation. The 

34 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



 

magnitude of the changes differs depending on EVMC type. Within-session EVMC produces an- 

nual generation by type changes on the order of 1 TWh in either direction, whereas within-week 

EVMC avoids over 3 TWh of curtailments. In the latter case, the additional VG is balanced by a 

larger reduction in gas combined cycle generation and by a sizable reduction in net imports (i.e., 

increased exports that cost ISO-NE $20/MWh).

 

Figure 20. Annual generation by type for the 100% DLC-LE scenarios for within-session (-S) and within-week 

(-W) flexibility minus annual generation by type for the unmanaged EV charging Reference scenario 

Figure 21 shows the within-week EVMC pattern of trading off reduced curtailments for in- 

creased exports during some hours as well as the more general pattern—seen for both types of 

flexibility—of shifting load from evening hours to early morning, midmorning, and early after- 

noon hours. Such load shifts can be especially valuable during peak and near-peak days, when 

the most expensive units in the system are called on to help meet peak demand. Because Fig- 

ure 21 shows such peak and near-peak days (the middle day, July 17, is the gross peak load day), 

we also see that within-week EVMC is on net able to shift some load out of these days entirely, 

whereas within-session EVMC is constrained to use approximately the same amount of energy as 

the Reference scenario across these three days. 
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Figure 21. Hourly generation by type for three days of the 100% DLC-LE within-session and within- 

week EVMC scenarios minus the corresponding hourly generation by type profiles for the un- 

managed EV charging Reference scenario. The three days shown contain the peak load day, July 17. 

5.2 What is the value of the first increment of EVMC participation? 

Though EVMC provides the most overall value to the bulk power system at 100% participation 

(Section 5.1), the first increment of EVMC provides the most per-vehicle value. We estimate 

the value of this first increment by analyzing scenarios with 5% participation rates, which is 

small enough to be considered a first increment but large enough to mostly avoid numerical is- 

sues caused by trying to resolve the effect of a very small resource in a large system. Figure 22 

shows the production cost savings for the DLC-LE 5% scenarios. Total production costs are only 

reduced by 0.5% for both within-session and within-week flexibility in this case; considerably 

lower than the 4.4% and 5.6% observed for 100% participation (Table 6). However, as expected, 

per vehicle-year production cost savings are higher than in the 100% participation DLC-LE 

scenario: $28.4/vehicle-yr for within-session and $28.0/vehicle-yr for within-week, compared 

to $13.8/vehicle-yr and $17.4/vehicle-yr, respectively. Unexpectedly, within-week flexibility is 

somewhat less valuable than within-session flexibility, however, this appears to be an optimiza- 

tion issue–it was significantly more difficult for the PLEXOS mixed-integer program to resolve 

the dispatch of this small quantity of within-week flexibility compared to either a similar quantity 

of within-session flexibility or larger quantities of within-week flexibility. 
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Figure 22. Annual production costs with within-session (-S) and within-week (-W) EVMC for the DLC-LE dis- 

patch mechanism with 5% participation compared to annual production costs with unmanaged EV charging 

Price-taking dispatch mechanisms like RTP or TOU can also be used to manage EV charging at 

low participation rates. Figure 23 shows the production cost savings for DLC-LE, RTP, TOU-1-2, 

and TOU-4-4, for both within-session and within-week flexibility, all at 5% participation. At 

this level of participation, individual vehicles responding to an RTP reduces production costs 

the most: $30.2/vehicle-yr for within-session flexibility and $37.7/vehicle-yr for within-week 

flexibility. RTP outperforming DLC-LE demonstrates that at low participation rates the addi- 

tional savings from being able to fully schedule all vehicles’ charging individually outweighs the 

inefficiency of dispatching bulk system resources with no anticipation of the EVMC flexibility 

resource. 

TOU rates can also provide production cost savings at low levels of participation. Somewhat 

surprisingly, of the two TOU rates described in Appendix D, the simpler one-season, two-block 

(TOU-1-2) rate produces more production cost savings than the four-season, four-block (TOU-4- 

4) rate. One would generally expect the TOU-4-4 rate’s 32 prices to produce production cost sav- 

ings that fall between those induced by the TOU-1-2 rate’s 4 prices and the RTP’s 8,760 prices. 

However, the TOU-4-4 rate described in Appendix D underperforms relative to this expectation 

because of a poor transition between winter weekdays and winter weekends. In particular, winter 

Friday evenings have energy prices of 6.0 cents/kWh until 11 p.m., 0.8 cents/kWh until mid- 

night, 5.2 cents/kWh until 3 a.m. Saturday morning, and then 1.4 cents/kWh until 8 a.m. This 
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Figure 23. Annual production costs with within-session (-S) and within-week (- 

W) EVMC at 5% participation for all dispatch mechanisms (DLC-LE, RTP, TOU-1-2, 

and TOU-4-4) compared to annual production costs with unmanaged EV charging 

price profile, with a one-hour lowest-price from 11 p.m.-midnight, encourages maximizing EV 

charging during this hour, producing unexpectedly high charging load during that hour that is 

difficult for committed and fast-start resources to dispatch upward to accommodate in the RT. 

Resulting production cost increases suggest weekday and weekend time blocks should not be 

designed independently. The TOU-1-2 rate simply charges less for energy overnight (midnight 

to either 7 a.m. or 9 a.m.) than at other hours, and the EVMC dispatch patterns generated by this 

rate at 5% participation can achieve 61.3% and 45.7% of the RTP savings for within-session and 

within-week flexibility respectively. 

5.3 What is the trade-off between per-vehicle value and system cost savings as 

participation rates increase? 

The DLC-LE results depicted in Figure 24 show how system-level production cost savings and 

per-vehicle production cost savings change with participation level. Both within-session and 

within-week flexibility show the clear "declining marginal value" pattern that has been well- 

established for all resource types, as the per-vehicle value is highest at the lowest participation 

level, is smallest at 100% participation, and monotonically decreases in between. As expected, 

within-week flexibility is generally more valuable than within-session flexibility. Excluding the 

5% participation point, within-week flexibility is 22% to 26% more valuable than within-session 

flexibility, as measured by DLC-LE production costs alone. We suspect PLEXOS had a hard 
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time resolving the optimal dispatch for within-week flexibility at 5% participation. It is generally 

challenging to get PLEXOS to compute optimal dispatch for (a) small resources and (b) within- 

week resources relying on longer look-ahead—this particular point combines both characteristics. 

We also see in Section 5.2 that the per-vehicle value for this point dispatched using RTP is much 

higher: $37.7/vehicle-yr instead of the $28.0/vehicle-yr shown here.

 

Figure 24. Annual production costs with within-session (-S) and within- 

week (-W) EVMC for the DLC-LE dispatch mechanism and varying participa- 

tion levels compared to annual production costs with unmanaged EV charging 

Capacity value follows a similar declining marginal value pattern (Figure 25). In this case, 

within-week flexibility is again about 25% more valuable than within-session flexibility but only 

at lower participation rates. At 100% participation within-week flexibility is only about 6% more 

valuable than within-session flexibility: $12/vehicle-yr to $15/vehicle-yr for within-week flexibil- 

ity compared to $11/vehicle-yr to $14/vehicle-yr for within-session flexibility. In terms of overall 

capacity resource, at 5% participation, the resource is on the order of tens of megawatts, growing 

to hundreds of megawatts for 30% to 60% participation, and reaching 780 MW (within-session 

flexibility) to 830 MW (within-week flexibility) at 100% participation. 
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Figure 25. Firm capacity supplied by DLC-LE EVMC with within-session (-S) and within-week (-W) flexibility. 

Dots on secondary axis use capacity prices from Cambium (in $2016) to convert firm capacity to capacity value. 

Increasing amounts of EVMC also support increasing use of within-ISO generation realized 

through either reduced VG curtailment or reduced exports or both. Although in our study the 

curtailment and net import trends are not perfectly steady on their own, the trends in the sum of 

reduced curtailments and reduced exports are steady and show that within-week flexibility can 

increase use of within-ISO generation by about 25% to 45% more than within-session flexibility 

(Figure 26) across all participation rates. For all but one run, both curtailment and exports are 

reduced modestly to produce the overall increases in within-ISO use of within-ISO generation 

shown in the figure. In the 100% participation, within-week scenario large curtailment reductions 

(3.1 TWh) are balanced by increased exports (2.5 TWh), but as shown, the net increase in within- 

ISO use of within-ISO generation is in line with the other scenarios. 
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Figure 26. Increased use of available within-ISO generation for the DLC-LE EVMC scenarios. Compared 

to the Reference scenario with unmanaged charging, DLC-LE reduces VG curtailment, reduces exports, or both. 

5.4 What is the trade-off between per-vehicle value, system cost savings, and dis- 

patch mechanism complexity? 

Section 5.3 demonstrates that the DLC-LE dispatch mechanism works reasonably well across 

all participation levels and shows the expected trade-off between more participation yielding 

more system-level benefits but with less value per vehicle than at low participation. Section 

5.2 demonstrates that at low participation levels, individual vehicles responding to a real-time 

price can provide more value than an aggregate dispatched with the DLC-LE mechanism, and 

that vehicles responding to a simple two-block TOU tariff (with lower prices overnight) can 

provide a significant fraction of the DLC-LE value. That is, at low participation levels dispatch 

mechanisms that are much simpler than DLC, because they only require communicating prices 

annually, weekly, or daily to individual vehicles, can provide similar levels of value as DLC. It 

is well known that the effectiveness of price-taking methods deteriorates as participation levels 

increase. What does that deterioration look like for this particular case study? 

First, RTP, with price-responsive EVMC unanticipated in the DA UC, produces detrimental 

system outcomes at 100% participation. Figure 27 demonstrates this for three example days in 

January. Based on the hourly prices from the DA UC model, almost all vehicles charge during 

just a few lowest price overnight hours—only those vehicles that require daytime charging to 

complete trips charge during the day when prices are higher. In the most extreme case, this 

increases the daily EV charging load peak from about 4 GW in the evening to over 14 GW 

in the early morning hours (Figure 27a). Such a large change in load causes the price-taking 

assumption to break down in a system with a peak load of 28.9 GW and a net-peak load of 

20.8 GW (Table 2). The resulting RT price profile demonstrates that rather than benefiting the 
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system, enough unanticipated load materializing due to RTP response can be highly detrimental 

(Figure 27b).

 

(a) EV Charging Profiles

 

(b) Price Profiles 

Figure 27. With all 5.3 million vehicles participating, EVMC implemented with RTP eliminates the 

price spikes in the DA UC model but creates even larger price spikes at other times because of the 

dramatic EV load shape changes induced by responding to the RTP in an uncoordinated fashion. 

There should be ways to inform the DA UC of potential load flexibility and then reflect desired 

behavior back to vehicles in terms of prices (David and Li 1993; Corradi et al. 2013; Cole et 

al. 2014; Ma, Callaway, and Hiskens 2013; Xi and Sioshansi 2014); see Section 4.3. In this 

study we make the simplifying assumption that price-taking response is coordinated based on a 

penalty on aggregate hourly change in EV load. That is, a group of vehicles’ charging profiles 

are simultaneously optimized to minimize their individual charging costs, but we also add a 

ramp penalty (in $/MW) on the aggregate hourly change in EV load compared to the unmanaged 

baseline EV load in either direction (up or down) in the objective function (Section E.1) to mute 

the overall response. EV load profiles for the same three example days as Figure 27 are shown in 

Figure 28, this time with additional curves for RTP with nonzero ramp penalties. As expected, 

higher ramp penalties push the RTP response closer and closer to the baseline profile. In this 

particular example, a $500/MW penalty still produces some load shape change but the load 

profile computed with a $1,000/MW penalty is nearly identical to that of the unmanaged case. 

To compare across dispatch mechanisms, we select optimal ramp penalties for each combination 

of price-taking dispatch mechanism (i.e., RTP, TOU-1-2, and TOU-4-4) and participation level. 
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Figure 28. Adding a penalty on the aggregate response ramp to the RTP dis- 

patch formulation mutes the overall response. In this 100% participation scenario and 

for these particular example days, a ramp penalty of $500/MW is sufficient to bring ac- 

tual EV load peaks back down below 150% of the unmanaged charging EV load peaks. 

For simplicity, we analyze just four participation levels: 5%, 30%, 60%, and 100%, and a few 

ramp penalties: $0/MW, $1/MW, $10/MW, $50/MW, $100/MW, $500/MW, and $1,000/MW; and 

we choose the ramp penalties that maximize production cost savings. 

Figure 29 shows a limited number of results for the RTP dispatch mechanism applied to within- 

session flexibility. As shown earlier, at 5% participation, production cost savings of $30.2/vehicle- 

yr can be obtained using plain (ramp penalty of $0/MW) RTP dispatch. However, muting that 

response slightly, with a $1/MW ramp penalty, actually saves about $33.1/vehicle-yr, imply- 

ing that some coordination of EVMC is desirable even at this level of participation. Our results 

for 30%, 60%, and 100% participation suggest that simply muting aggregate RTP response is 

not an effective strategy at high levels of participation—though it avoids cost increases, it pro- 

vides little cost savings. For example, at 30% participation and with a $100/MW aggregate ramp 

penalty the production cost savings per vehicle are $4.0/vehicle-yr, which compares poorly to the 

$18.5/vehicle-yr obtained with the DLC-LE dispatch mechanism (Figure 24). 

Per Figure 30, even more coordination is required for within-week flexibility. At 5% partici- 

pation, RTP with a ramp penalty of $10/MW produces the highest per-vehicle production cost 

savings for all of the RTP variants: $65.0/vehicle-yr compared to $37.7/vehicle-yr with no ramp 

penalty. RTP for within-week flexibility does not produce significant production cost savings 

at 30% participation and above, even when response is coordinated through significant ramp 

penalties. 

The TOU rates paired with aggregate ramp penalties perform similarly. As shown in Table 7— 

which does not report ramp penalties for combinations of dispatch mechanism and participation 

rate with maximum production cost savings less than $1/vehicle-yr—in no case do the price- 

taking dispatch mechanisms analyzed in this study produce significant per-vehicle production 

cost savings at participation rates of 60% or above. For within-week flexibility, even 30% partic- 

ipation is too high for all three price-taking dispatch mechanisms. We also find similar optimal 

ramp penalties for RTP and the more complex TOU rate (TOU-4-4), while TOU-1-2 performs 

best at 5% participation with a $1/MW ramp penalty for both flexibility types: within-session and 

within-week. 
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Figure 29. Annual production costs for within-session EVMC realized through RTP response 

muted with penalties applied to hourly aggregate ramps compared to annual production costs 

with unmanaged EV charging. Two or three ramp penalties are depicted for each of four participa- 

tion rates. For example, the three points for 5% participation have ramp penalties of $0/MW, $1/MW, 

and $10/MW, which are indicated in the figure as RP0, RP1, and RP10. Only two ramp penalties are 

displayed for 100% participation, because lower ramp penalties have significantly negative savings. 

Figure 31 shows the per-vehicle and total production cost savings for DLC-LE at four participa- 

tion levels (5%, 30%, 60%, and 100%) and for both flexibility types alongside the eight non-null 

dispatch mechanisms listed in Table 7. As can be seen by examining the 5% participation rate re- 

sults, both within-session and within-week flexibility demonstrate the same ordering of dispatch 

mechanisms: RTP produces the most savings, followed by DLC-LE, TOU-1-2, and TOU-4-4; 

however, the amount of difference across mechanisms is much more pronounced for within-week 

flexibility than within-session flexibility. For example, for within-week flexibility, RTP produces 

132% more and TOU-4-4 produces 68% less production cost savings than DLC-LE, but for 

within-session flexibility, RTP produces only 16% more and TOU-4-4 produces only 50% less 

production cost savings than DLC-LE. For higher participation rates, DLC-LE clearly reduces 

production costs the most and within-week flexibility reduces production costs 20%–25% more 

than within-session flexibility. 

To complete our analysis, we estimate two more value streams for these 16 points: avoided firm 

capacity and CO2 

emission reductions. We estimate the firm capacity avoided by EVMC using 

the top 100 hours of net-load heuristic described in Section 5.1, and we estimate its monetary 

value using the capacity price range from Gagnon et al. (2021), which is also described in that 

section. Emissions are an output of each scenario’s RT model. We then provide two estimates of 

bulk system all-in savings of EVMC. The Low estimate uses the lower $75.62/kW-yr ($2016) 
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Figure 30. Annual production costs for within-week EVMC realized through RTP response 

muted with penalties applied to hourly aggregate ramps compared to annual produc- 

tion costs with unmanaged EV charging Multiple ramp penalties are depicted for two partic- 

ipation levels. For example, the four points for 5% participation have ramp penalties of $0/MW, 

$1/MW, $10/MW, and $50/MW, which are indicated in the figure as RP0, RP1, RP10, and RP50. 

capacity price and sets the carbon price to $0/ton. The High estimate uses the higher, $96.81/kW- 

yr capacity price and sets the carbon price to $45/ton (per Figueroa-Acevedo et al. 2020, also in 

$2016). These results, along with the production cost savings, are shown in Figure 32 and are 

summarized along with other key metrics in Table 8. 

The highest per-vehicle value is achieved at 5% participation with within-week flexibility and 

the RTP dispatch mechanism: $92.8/vehicle-yr to $119.6/vehicle-yr. The High estimate in- 

cludes $65.0/vehicle-yr for production cost savings, $35.9/vehicle-yr for capacity savings, and 

$18.7/vehicle-yr for emissions reductions. Of course, realizing these savings in practice would 

require the publication of week-ahead energy price forecasts, to enable week-ahead scheduling of 

EV charging, which to the authors’ knowledge is not a current practice of any U.S. utility or ISO. 

The optimal within-week, 5% participation RTP dispatch mechanism also assumes a $10/MW 

aggregate ramp penalty, which implies some coordination or randomization across vehicles is 

required for this scenario to meet its full potential. The RTP mechanism for within-session flex- 

ibility at 5% participation would be easier to implement, as only DA prices are needed and the 

optimal ramp penalty is $1/MW, but total per-vehicle value in that case is about 58% of the value 

of within-week flexibility. 

At 100% participation and absent price formation processes that both anticipate and incent ben- 

eficial price-responsiveness, only the DLC mechanism provides significant bulk power system 
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Table 7. Optimal Ramp Penalties for the Price-taking Dispatch Mechanisms that Re- 

duce Production Costs by at Least $1/vehicle-yr. Combinations that do not yield suf- 

ficient production cost savings for any value of ramp penalty are indicated with dashes.

 

Participation Within-session Within-week 

(%) RTP TOU-4-4 TOU-1-2 RTP TOU-4-4 TOU-1-2

 

5 1 10 1 10 10 1 

30 100 100 — — — — 

60 — — — — — — 

100 — — — — — —

 

value. In this case, the per-vehicle value is only 30% (within-week) to 45% (within-session) 

of the 5% participation RTP per-vehicle value, but it is still significant: $25.1/vehicle-yr to 

$36.5/vehicle-yr. The total system benefits assuming within-session flexibility are 4.4% pro- 

duction cost savings, 5.2% emissions savings, and 781 MW of firm capacity. The total system 

benefits assuming within-week flexibility are 5.6% production cost savings, 6.9% emissions 

savings, and 834 MW of firm capacity. 
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Figure 31. Production cost savings per vehicle and as a percentage of total production costs for 

16 combinations of flexibility type, participation rate, and dispatch mechanism. DLC-LE results are 

provided for all combinations of 5%, 30%, 60% and 100% participation and both flexibility types (within- 

session and within-week). The other eight points correspond to the non-null ramp penalties listed in Table 7. 
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Figure 32. Low and high estimates of total bulk power system cost savings per vehicle for 16 combi- 

nations of flexibility type, participation rate, and dispatch mechanism. The Low estimate uses a capacity 

price of $75.62/kW-yr and values emissions at $0/metric ton CO2. The High estimate uses a capacity price 

of $96.81/kw-yr and values emissions at $45/metric ton CO2. DLC-LE results are provided for all combina- 

tions of 5%, 30%, 60% and 100% participation and both flexibility types (within-session and within-week). 

Results are also reported for the non-null dispatch mechanism and ramp penalty combinations from Table 7. 
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6 Discussion 

In this study, we explore how the bulk power system value of EVMC (V1G) changes with partic- 

ipation rate, dispatch mechanism, and flexibility type while keeping the total number of EVs and 

the composition of the power system fixed. Our context is a future ISO-NE power system with 

84% clean, within-ISO generation, 26% of load served by net imports, and a passenger LDV fleet 

that is 45% electrified. On a per-vehicle basis, we find production cost savings of $14–$65 per 

vehicle-yr, CO2 

emissions reductions of 0.1–0.4 metric tons CO2 

per vehicle-yr, net-peak load 

reductions of 0.1–0.4 kW/vehicle-yr, and increases in use of within-ISO generation of 76–249 

kWh/vehicle-yr. These metrics largely fit within the review findings of Anwar et al. (2022) of 

"cost savings between $15-$360 per EV per year, CO2 

emissions of -0.1 to 2.5 metric tons CO2 

per EV per year, peak load reductions of 0.2-3.3 kW per EV, and VRE curtailment reduction of 

23-2400 kW h per EV per year." Unsurprisingly, our ranges are also tighter than those of Anwar 

et al. (2022), because this study only examines a single power system with a single EV build-out 

assuming V1G and examining only personal passenger LDVs. 

Unique to our study, we examine EVMC value starting from heterogeneous, vehicle-level sim- 

ulations of household vehicle adoption and use, and we compare within-session to within-week 

charging flexibility while preserving EV mobility service. This approach lets us illustrate the 

benefits and limitations of price-taking dispatch mechanisms like RTP and TOU, the implementa- 

tion challenges of operating a DLC program, and the additional value that could be unlocked by 

scheduling charging over several days to a week rather than simply shifting charging times during 

fixed charging sessions. We generally find that: 

• Price-taking dispatch mechanisms can provide similar amounts to, or more value than, 

DLC at low participation rates (e.g., 5% of study vehicles, which corresponds to active 

participation by 2% of the passenger LDV fleet). 

• Even at low participation levels, price-taking dispatch mechanisms provide more value 

when paired with some sort of coordination or muting of response (i.e., in our study, it was 

helpful to partially coordinate RTP and TOU responses via a small ramp penalty on the 

aggregate flexibility profile even at 5% participation). 

• Simple price-taking dispatch in which the EVMC response is unanticipated by the price 

formation process and DA UC decisions breaks down at fairly modest participation rates 

(e.g., at less than 30% of study vehicles, which corresponds to active participation by 14% 

of the passenger LDV fleet). 

• In contrast, DLC works well over the full range of participation rates, with the caveat that 

naïve aggregation of vehicle-level flexibility significantly overestimates megawatt-scale 

flexibility (DLC-OA). 

• Simple scaling of aggregate flexibility parameters can yield megawatt-scale resources 

for which the requested dispatch is likely to be approximately feasible (low, but nonzero 

expected mean absolute error, DLC-LE), but in our study this requires approximately 

halving the capability of the naive "outer approximation." 

• Less-aggressive scaling of key parameters (i.e., ability to delay charging energy for within- 

session flexibility and ability to delay charging energy and ability to reduce charging power 
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for within-week flexibility) can yield megawatt-scale resources whose realized dispatch is 

likely to differ significantly from the initial request but is also likely to maximize expected 

revenue on net (DLC-MR). 

• Depending on the metric, within-week flexibility can be 70%–100% more valuable than 

within-session flexibility at low participation rates (5%, RTP), but the effect is muted at 

higher participation rates, dropping to 15%–25% at moderate (30%, DLC-LE) and higher 

(100%, DLC-LE) participation rates. 

Some of the challenges we identify with these dispatch mechanisms are likely straightforward for 

aggregators, utilities, and ISOs to overcome through actual operation of gradually implemented 

EVMC programs. Charging patterns induced by TOU rates can be learned and then anticipated 

in operational load forecasts. Aggregators can bid their flexibility into ISO markets and learn 

how they should interface with both individual vehicles and the markets to maximize revenues. 

Various stakeholders can think through which devices (e.g., vehicles, chargers, smart phones, 

utility meters) should take measurements, communicate signals, compute charging schedules, 

and actuate charging, and all the data that are collected can be used to guide, troubleshoot, and 

improve EVMC systems. However, some of the phenomena documented in this study represent 

fundamental issues aggregators, utilities, and ISOs should be aware of, namely: 

• Responses to RTP and TOU rates may need to be dampened or smoothed in some way, 

even at low participation rates. 

• At low participation rates, allowing vehicles to respond directly to RTPs could be the 

simplest and most valuable approach to implementing EVMC, but we are unaware of 

clear guidance on how to effectively design and operate an RTP program (for any form of 

demand flexibility) at high participation rates. 

• The dispatch profiles requested of megawatt-scale aggregations of vehicle charging flex- 

ibility cannot in general be exactly fulfilled by the individual vehicles in the aggregation 

even with perfect foresight and control, but through experimentation and experience, it is 

possible to learn and productively work with error rate distributions. 

• Megawatt-scale aggregations can be tuned to be low error or maximum revenue. If insuffi- 

cient care is taken, they can produce both high error rates and low revenue. 

• It is possible to dispatch pseudo-storage resources representing EVMC alongside utility- 

scale resources in UC and economic dispatch models, but doing so can be computationally 

challenging, especially for small resources or resources like within-week EVMC that 

require longer look-ahead times than those currently used in ISO markets. 

The modeling we did for this study could be improved or extended in several ways: 

• Instead of assuming all EVs can plug in whenever they are parked (i.e., ubiquitous charg- 

ing) and there are no distribution-level constraints on the amount of EV charging that can 

occur in any one place at any one time, we would like to construct realistic infrastructure 

scenarios and directly examine the trade-offs between charger, distribution, and trans- 

mission infrastructure costs, including enablement costs for different EVMC dispatch 

mechanisms, and the bulk power system value of EVMC. In general, the more charging, 
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distribution, and transmission capacity there is, the more flexible EV charging can be; but 

as we have seen, EVMC can bring only so much value to the bulk power system. Given 

this, what are near-optimal amounts of charger capacity, grid build-out, and communica- 

tions, controls, and program administration for EVMC from the perspective of balancing 

costs across the combined EV service equipment (EVSE) and power systems? 

• To ensure comparability between runs and generally simplify the modeling tasks, in our 

PCM, we captured imports, exports, and hydropower dispatch as fixed time series in both 

the DA and RT models; and we fixed pumped hydropower storage and EVMC dispatch in 

the RT in all cases. In practice, all these resources are dynamic and to the extent possible 

should be actively scheduled in both the DA and RT time frames. Our study results are 

also limited to one power system—a single region and a single model year. A future study 

could examine more regions or more grid scenarios, or it could examine the interplay of 

EV adoption, grid build out, and EVMC at a national scale over a decadal time horizon 

using a capacity expansion model. 

• Finally, related to our EV flexibility modeling, as mentioned earlier, we would like to 

adjust our within-week envelope creation method to be less asymmetric. The data cre- 

ated for this study tends to overly limit flexibility early in the week relative to later in the 

week. We would also like to study disaggregation and price formation processes in more 

detail. Perhaps by studying a smaller system we could fully simulate the aggregation and 

disaggregation processes and quantify the impact of different SOA aggregates in terms 

of production costs, revenues, and dispatch error statistics, fully accounting for both DA 

and RT UC and dispatch processes. A study setting like this could also be used to explore 

whether there are straightforward ways to compute and respond to RTP and TOU prices 

that work even at high participation rates. 
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7 Conclusions 

This report presents a new methodology for evaluating the value of EVMC in bulk power systems 

as well as results for an envisioned 2038 New England power system with 84% clean, within- 

ISO generation. The new methods start from detailed and heterogeneous simulations of EV 

adoption, use, and charging for each county in New England. An All EV Sales by 2035 scenario 

generates vehicle adoption results out to 2050. The charging flexibility (V1G) of the projected 

2038 New England EV fleet of 5.3 million vehicles (45% of all personal passenger LDVs) is 

then analyzed in detail with the help of three simulated charging profiles that, in pairs, describe 

mobility-preserving vehicle-level within-charging session and within-week flexibility. Simple 

dynamic models of individual vehicle flexibility are directly dispatched against hourly RTP and 

season-block TOU price signals and are aggregated into megawatt-scale, battery-like flexibility 

resources suitable for direct inclusion in large-scale grid models. The value of EVMC in terms of 

reducing production costs, avoiding firm capacity, reducing emissions, and reducing transmission 

congestion is evaluated in a nodal, DCOPF production cost model of an envisioned 2038 New 

England power system developed from the SEAMS study’s national-scale PLEXOS model. 

As expected, per-vehicle value is highest at low participation rates, system cost and emissions 

savings are highest at high participation rates, within-week flexibility is more valuable than 

within-charging session flexibility, and price-taking by individual vehicles can work as well or 

better than direct load control at low participation rates. Less expected was that in some cases 

within-week flexibility is only about 10%–20% more valuable than within-session flexibility, 

but this may be due in part to modeling challenges, and to RTP and TOU responses needing to 

be anticipated in the DA UC model at modest EVMC participation rates (e.g., by the time 14% 

of all vehicles are actively participating). In this technical potential study, the value of EVMC 

to the bulk power system is significant: up to $119.6/vehicle-yr at low participation rates and up 

to $36.5/vehicle-yr at 100% participation, inclusive of production cost savings, capacity value, 

and emissions savings value, assuming a 2016 dollar-year, a capacity price of $96.81/kW-yr, and 

an emissions reduction value of $45/metric ton CO2. Nonetheless, that value is modest when 

considered as an upper bound on a potential monthly incentive payment ($3–$10 per vehicle- 

month) for participation in an EVMC program that does not yet factor in enablement costs, 

assumes a charger is always available, and assumes perfect foresight of mobility needs. That 

said, the potential benefits to the overall system are significant: up to 5.6% of production costs 

and 6.9% of emissions could be avoided by effective EVMC programs operated at scale in this 

particular example. 
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Appendix A. EV Charging Strategy Details 

Charging profiles were estimated using the TEMPO model under the scenario assumptions de- 

scribed in chapter 2. The TEMPO model generates trips by household vehicle for a representative 

week (including 5 weekdays and 2 weekend days) for a sample of households in each model 

year. Trip data for all EVs are passed to the TEMPO BEV module for processing and estimating 

charging profiles. 

TEMPO trip data are aggregated into nine periods (2–6 hours long) for each day. The BEV 

module preprocesses these data to add information and enforce a level of realism needed for 

estimating charging profiles, including: 

• Assign trips to a continuous time within the period according to within-period distributions 

derived from the National Household Travel Survey15 

• Calculate dwell times between trips that can be used for charging 

• Wrap trips that exceed beyond the end of the week to complete at the beginning of the 

week 

• Adjust trip times to avoid simultaneous trips on the same vehicle 

• Add dwell times for required DCFC stops for trips that exceed the vehicle range (the 

monetized time of these charging stops is modeled in TEMPO, but the explicit impact on 

trip timing/duration is not). 

The preprocessing also generates a set of arrays for each vehicle to pass as parameters to the 

charging strategy formulation described below. 

The TEMPO BEV module includes multiple charging strategies to achieve different objectives. 

Charging profiles are computed in two steps: optimization and postprocessing. During optimiza- 

tion, either the Greedy or Min Charges strategy is specified. In postprocessing, charging can be 

shifted toward the beginning (Immediate) or the end (Delayed) of each selected charging ses- 

sion. The charging strategies described in the report map to the TEMPO BEV module as follows. 

The Immediate charging strategy is computed using the Greedy optimization formulation post- 

processed under Immediate charging assumptions. The Delayed charging strategy also uses the 

Greedy optimization formulation but postprocessed for Delayed charging. The Min Chargees 

and Delayed strategy uses the Min Charges optimization formulation and the Delayed charging 

postprocessing step. 

A.1 Optimization 

The Greedy strategy is formulated as a linear program, and it maximizes the SOC over the mod- 

eled week. The Min Charges strategy minimizes the number of charges required to complete all 

trips, and it is formulated as a mixed integer program. Min Charges only applies to BEVs, as 

minimizing PHEV charging events would result in no charging. In addition to the primary objec- 

tive of the charging strategies, the formulation includes constraints to maximize PHEV electricity 

use and to adjust trips to accommodate additional charging stops if consecutive trips results in a 

negative SOC due to insufficient dwell time for charging.

 

15https://nhts.ornl.gov/ 
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A.1.1 Primary Formulation 

This section details the model sets, parameters, variables, constraints, and objective functions for 

the TEMPO charging strategies applied at the individual vehicle level. 

Table A.1. Set and Element Symbols

 

Symbol Description

 

E Set of all vehicle events (events include both trips and dwell times for the vehicle, 

where dwell times allow for charging opportunities) 

e Event

 

Table A.2. Index Sets

 

Symbol Description

 

e ∈ E Events, indexed from 1...|E|, the number of events

 

Table A.3. Subsets

 

Symbol Description

 

N ⊂ E Subset of vehicle events excluding the final event, |E| 

T ⊂ E Subset of vehicle events when trips occur

 

Table A.4. Parameters

 

Symbol Description

 

ce 

Energy consumption of event e , which is positive only for trip events (kWh) 

pe 

Power available for charging at event e , which is positive only for dwell time events 

(kW) 

te 

Start time of event e (hours) 

de 

Duration of event e (hours) 

f final hour of modeled time horizon

 

b maximum battery capacity of modeled vehicle (kWh) 

b

 

minimum desired state of charge of battery for modeled vehicle (kWh) 

|E | Number of events
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Table A.4. Continued

 

Symbol Description

 

W de f Weighting parameter to penalize a charge deficit below b

 

W 

phev Weighting parameter to maximize electricity consumption for PHEVs

 

Table A.5. Variables

 

Symbol Description

 

σe 

(continuous) State of charge of vehicle battery at start of event e (kWh) 

δe 

(continuous) Change in battery state of charge for event e due to charging (kWh) 

µe 

(continuous) Difference between σe 

and b

 

at the start of event e (kWh) 

ρe 

(continuous) Electricity consumption of PHEV vehicle of event e (kWh) 

χe 

(binary) Specifies if a charge session occurred during event e (only used in Min 

Charges strategy)

 

Constraints 

General constraints applicable to all vehicles and charging strategies enforce bounds on vehicle 

SOC, positive vehicle charging events, and the same beginning and ending vehicle SOC. The 

µe 

decision variable is used to enforce a soft constraint to maintain vehicle SOC above b

 

unless 

required to complete a trip, where µe 

is only positive if σe 

< b

 

: 

σe 

≤

 

b , ∀ e ∈ E (A.1) 

σe 

≥ 0 , ∀ e ∈ E (A.2) 

µe 

≥ 0 , ∀ e ∈ E (A.3) 

µe 

≥ b

 

− σe 

, ∀ e ∈ E (A.4) 

δe 

≥ 0 , ∀ e ∈ E (A.5) 

σ1 

= σ| E | 

(A.6) 

For the Greedy strategy, charging is constrained by available charger power capacity over the 

duration of the event: 

δe 

≤ pe 

· de 

, ∀ e ∈ E . (A.7) 

For the Min Charges strategy, charging is additionally constrained by whether there is an active 

charging session, specified by χe: 

δe 

≤ pe 

· de 

· χe 

, ∀ e ∈ E . (A.8) 
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For BEVs, the difference in the state of charge from one event to the next equals the reduction 

from energy consumption ( ce) of the event plus the increase from charging ( δe), and no PHEV 

electricity use ( ρe) occurs: 

σe + 1 

= σe + δe 

− ce 

, ∀ e ∈ N (A.9) 

ρe 

= 0 , ∀ e ∈ E . (A.10) 

For PHEVs, the difference in the state of charge from one event to the next equals the increase 

from charging ( δe) minus electricity consumption ( ρe), which must be greater than zero and less 

than both the total battery capacity (

 

b ) and the event’s total energy consumption ( ce): 

ρe 

≤

 

b , ∀ e ∈ E (A.11) 

ρe 

≤ ce 

, ∀ e ∈ E (A.12) 

ρe 

≥ 0 , ∀ e ∈ E (A.13) 

σe + 1 

= σe + δe 

− ρe 

, ∀ e ∈ N (A.14) 

Greedy Objective Function 

The Greedy objective function maximizes accumulated state of charge ( σe) and amount of PHEV 

travel served by electricity ( ρe) while minimizing extent to which battery charge is less than the 

desired minimum level ( µe): 

max ∑ 

e ∈ E 

σe 

− µe 

· W de f + ρe 

· W 

phev (A.15) 

Min Charges Objective Function 

The basic Min Charges objective function minimizes the number of charging events ( χe) and the 

extent to which battery charge is less than the desired minimum level ( µe): 

min ∑ 

e ∈ E 

χe + µe 

· W de f (A.16) 

In this analysis, the Min Charges objective function also includes a term to maximize the initial 

state of charge, σ1, for additional consistency with the Greedy strategy. We subtract σ1 

from the 

objective function, which can be weighted more or less heavily than χe, depending on the goal of 

the strategy (e.g., should an additional charge occur in order to maximize SOC at the beginning 

of the week). 

A.1.2 Adjustments for Infeasible Trip Sequences 

This analysis estimates aggregate flexibility resources based on individual vehicle profiles, as 

described in chapter 4, requiring realistic and feasible vehicle-level charging profiles. The core 

TEMPO model does not represent detailed charging behavior when estimating trip choices; thus 

in some cases, TEMPO could project infeasible sequences of trips for a modeled BEV (e.g., if 

too many trips are selected in a given period without sufficient charging time), resulting in an 

infeasible model given the formulation above. To adjust for this, we add the formulation below 
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to allow for the shifting of trips and dwell times to achieve feasible trip behavior (trip duration is 

not adjusted). The shifting of trips is highly penalized in the objective function, and it only occurs 

if the model is otherwise infeasible. This formulation requires binary variables; thus, the Greedy 

strategy becomes a mixed integer program instead of linear. 

Table A.6. Additional Variables for Infeasible Trip Adjustments

 

Symbol Description

 

τe 

(continuous) Adjusted start time of event e (hours) 

λe 

(continuous) Adjusted duration of event e (hours) 

ψe 

(binary) Value specifying whether trip event e was adjusted to accommodate addi- 

tional charging 

γe 

(continuous) Modified adjusted duration variable dependent on the value of χe 

for 

event to avoid a quadratic formulation e (hours)

 

Table A.7. Additional Parameters for Infeasible Trip Adjustments

 

Symbol Description

 

f Final time of the modeling horizon 

L Large constant used to assign a binary value of 1 for each adjusted trip 

W time Weighting parameter to penalize the change in start times of adjusted trips 

W trip Weighting parameter to the number of trips adjusted

 

Constraints 

λe 

≥ 0 , ∀ e ∈ E (A.17) 

λe 

= de 

, ∀ e ∈ T (A.18) 

τe + 1 

= τe + λe 

, ∀ e ∈ N (A.19) 

τe + 1 

≥ te 

, ∀ e ∈ E (A.20) 

ψe 

· L ≥ λe 

− de 

, ∀ e ∈ E (A.21) 

For the sake of simplicity in the current analysis, we do not allow shifting of trips past the end of 

the week, as enforced with the following constraints: 

f ≥ τe + λe 

, ∀ e ∈ N (A.22) 

f = τ| E |+ λ| E | 

(A.23) 
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For Min Charges, to avoid a quadratic model formulation when replacing de 

with λe 

in equation 

A.8, we calculate a new variable, γe, which equals 0 if χe 

= 0 (no charge session occurred during 

event e ) and equals λe 

if χe 

= 1 (a charge session occurred during event e ): 

γe 

≤ f · χe 

, ∀ e ∈ E (A.24) 

γe 

≤ λe 

, ∀ e ∈ E (A.25) 

To account for the adjusted dwell time duration, equation A.7 is then changed to equation A.26 

for the Greedy strategy, and equation A.8 is changed to equation A.27 for Min Charges: 

δe 

≤ pe 

· λe 

, ∀ e ∈ E (A.26) 

δe 

≤ pe 

· γe 

, ∀ e ∈ E (A.27) 

Finally, the following parameters are added to the summations in the respective objective 

functions to penalize both the time that trips may be shifted and the number of trips shifted: 

− ( τe 

− te) · W time, − ψe 

· W trip. 

A.2 Additional Processing 

Following the optimization, the BEV module adjusts the charging time within a dwell session 

to reflect Immediate or Delayed charging specifications. Under Immediate assumptions, the 

charging session begins at the beginning of the dwell session, and under Delayed assumptions, 

the charging session is postponed to as late as possible to reach the maximum SOC allowed by 

the dwell time. When the maximum SOC cannot be reached in the given dwell time, Imme- 

diate and Delayed are equivalent and charging occurs throughout the entire session. Charging 

energy requirements are also adjusted to reflect the efficiency of EV chargers, resulting in higher 

energy use than that used onboard the vehicle. The result of the BEV module is a vehicle-level, 

time-series data set of trips, charging sessions, and associated energy use, for each scenario and 

charging strategy specification. 
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Appendix B. Bulk Power System Modeling Details 

Fixed imports and exports are estimated from the full 2024 and 2038 SEAMS models aggregated 

import/export power flow at the boundary nodes. Imports and exports are incorporated as fixed 

generation and load, respectively, in PLEXOS at interfaces between ISO-NE and neighboring 

power systems (including DC ties to Quebec). During the early modeling stages, we experienced 

transmission flow-related infeasibilities due to the large quantity of fixed imports and exports at 

boundary nodes. We alleviated this issue with a set of 20 300-MW high cost pseudo-generators 

at the boundary nodes to provide imports/exports flexibility. These pseudo-generators are in- 

tended to be used sparingly, and they are not dispatched in any final scenarios except some of the 

RTP and TOU cases with insufficient ramp penalties (and negative EVMC value). The pseudo- 

generators are assigned a VO&M cost of $5,000/MWh and start cost of $20,000. The purpose of 

these values is to ensure pseudo-generators are only used to overcome fixed import/export-related 

infeasibilites, not to avoid lower-cost penalties like congestion and unserved reserves. 

Transmission line limits, which we only enforce on lines at 115 kV and above, are often binding 

in the 2038 DCOPF model, even before adding EV load. This is because SEAMS is a national- 

scale study with pipe flow transmission that only captures interregional line limits, large quan- 

tities of fixed imports and exports, wind and solar capacity additions located based on resource 

quality as opposed to transmission availability, and retirements of 77 coal, oil, and gas units to- 

taling 5,448 MW of nameplate capacity. Adding EV load pro rata with existing regional load 

participation factors increases ISO-NE total load by 13% and exacerbates congestion. 

We adjust transmission capacity with a 2038 transmission expansion scenario designed to reduce 

high price spikes set by thermal limit violation penalties. We increase the transmission capacity 

of six heavily congested high-voltage (115 kV and above) transmission lines by a total of 658 

MW-miles. These additions reduce thermal violation-related price spikes from $1500/MWh to 

$180/MWh. To determine whether these modeling changes were realistic, we corresponded with 

ISO-NE transmission planners who said all but one of the line increases was realistic, especially 

in light of ISO-NE’s current efforts to rebuild many lines, a number of which are over a century 

old. The one increase in capacity that we apply but which might be unrealistic is underground 

capacity into Boston, which we approximately double to support plant retirements (1,118 MW 

of the 5,448 MW of retirements in the SEAMS 2038 model compared to the 2024 model are in 

the Northeast Massachusetts and Boston Load Zone). This detail indicates future grid planners 

might have to contend with a dynamic similar to what was seen in the LA100 study concerning 

"in-basin" versus "out-of-basin" resources Cochran et al. 2021b as they decide how to serve this 

critical load center with 100% clean electricity Conference of the New England Governors and 

Eastern Canadian Premiers 2017. In the meantime, this is another source of uncertainty in our 

Reference scenario model of a possible future ISO-NE system. 
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Appendix C. Aggregation Details 

Hao et al. (2013) has demonstrated methods for creating generalized battery models that repre- 

sent aggregates of thermostatically controlled loads. Here we apply their methods to the simpler 

case of EVMC, explicitly account for the storage characteristics of DER resources, and discuss 

the possibility of using these aggregation methods for longer-duration grid services than their 

context, which was frequency regulation. To do this, we start with a collection of individual 

charging flexibility models with individual EVs identified with indices k ∈ K and express their 

individual shiftability as: 

d ∆ Sk( t )

 

dt 

= ηk( t ) ∆ Pk( t ) (C.1) 

∆ Sk

 

( t ) ≤ ∆ Sk( t ) ≤

 

∆ Sk( t ) (C.2) 

∆ Pk

 

( t ) ≤ ∆ Pk( t ) ≤

 

∆ Pk( t ) (C.3) 

Then, we seek a similar model formulation to represent their aggregate flexibility: 

d ∆ S ( t )

 

dt 

= η ( t ) ∆ P ( t ) (C.4) 

∆ S

 

( t ) ≤ ∆ S ( t ) ≤

 

∆ S ( t ) (C.5) 

∆ P

 

( t ) ≤ ∆ P ( t ) ≤

 

∆ P ( t ) (C.6) 

Following Hao et al. (2013), the general procedure for estimating the parameters η ( t ) , ∆ S

 

( t ) ,

 

∆ S ( t ) , ∆ P

 

( t ) , and

 

∆ P ( t ) required to define the aggregate model is fairly straightforward in the 

Laplace domain, not in an exact sense, but in the sense of being able to create bounding models. 

Because we are most concerned with the flexibility realized in terms of the aggregate shifted 

energy: 

∑ 

k 

wk∆ Pk( t ) , (C.7) 

where wk 

is a sample weight for individual resource k , the model construction focuses on defin- 

ing allowable shifting profiles at both the individual and aggregate levels. That is, if we define the 

sets of possible realizations at the individual level to be: 

Pk 

= {∆ Pk( t ) | ∃ ∆ Sk( t ) with individual model (C.1) - (C.3) for device k ∈ K satisfied } , (C.8) 

and the possible realizations for the aggregate to be 

PK 

= 

{ 

∑ 

k 

wk∆ Pk( t ) 

∣∣∣∣∣∆ Pk( t ) ∈ Pk 

, ∀ k ∈ K 

} 

, (C.9) 

we can work to define pairs of generalized storage model parameters for which the resulting 

models define sets of allowable power profiles ∆ P ( t ) that are either strictly smaller or strictly 

larger than PK. 

To this end, let: 

Φ = 

( 

η ( t ) , ∆ S

 

( t ) ,

 

∆ S ( t ) , ∆ P

 

( t ) ,

 

∆ P ( t )
) 

(C.10) 
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be any realization of the aggregate storage model and: 

PΦ 

= {∆ P ( t ) | ∃ ∆ S ( t ) with the aggregate model (C.4) - (C.6) defined by Φ satisfied } . (C.11) 

Then, we seek Φ

 

and

 

Φ such that: 

PΦ

 

⊂ PK 

⊂ P

 

Φ 

. (C.12) 

Thus, Φ

 

represents a lower-bound, inner-approximation, sufficient estimate of PK; whereas

 

Φ 

represents an upper-bound, outer-approximation, necessary estimate of PK, and the size of the 

difference between them is a metric of estimate tightness. 

C.1 Aggregation of Individual Flexibility Models with Constant Charging Efficiency 

The techniques of Hao et al. (2013) are easily applied when η is constant. 

Theorem 1. Outer Approximation When η is Constant 

Assume ηk 

in (C.1) is time-invariant for all individual devices k ∈ K . Then, with an arbitrarily 

chosen constant η , the aggregate model represented by (C.4) - (C.6) with 

∆ S

 

( t ) = ∑ 

k 

wk 

η

 

ηk 

∆ Sk

 

( t ) ,

 

∆ S ( t ) = ∑ 

k 

wk 

η

 

ηk

 

∆ Sk( t ) , (C.13) 

∆ P

 

( t ) = ∑ 

k 

wk∆ Pk

 

( t ) ,

 

∆ P ( t ) = ∑ 

k 

wk

 

∆ Pk( t ) , (C.14) 

defines an outer-approximation, necessary model P

 

Φ 

for PK. That is,

 

Φ = 

( 

η , ∆ S

 

( t ) ,

 

∆ S ( t ) , ∆ P

 

( t ) ,

 

∆ P ( t )
) 

, (C.15) 

with ∆ S

 

( t ) and

 

∆ S ( t ) defined in (C.13), and ∆ P

 

( t ) and

 

∆ P ( t ) defined in (C.14) constitutes an 

outer bound such that PK 

⊂ P

 

Φ
( t ) . 

Proof of Theorem 1. First, we take the Laplace transform of (C.1) after dropping the time- 

dependence of ηk: 

s ∆ Sk( s ) = ηk∆ Pk( s ) . (C.16) 

We then similarly transform (C.4): 

s ∆ S ( s ) = η ∆ P ( s ) . (C.17) 

To connect these individual and aggregate models, we define: 

∆ P ( t ) = ∑ 

k 

wk∆ Pk( t ) , (C.18) 

such that: 

∆ P ( s ) = ∑ 

k 

wk∆ Pk( s ) . (C.19) 

This allows us to bring the individual models into (C.17) by first using (C.19): 

∆ S ( s ) = 

η

 

s 

∑ 

k 

wk∆ Pk( s ) (C.20) 
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and then substituting in (C.16) solved for ∆ Pk( s ) : 

∆ S ( s ) = 

η

 

s 

∑ 

k 

wk 

s

 

ηk 

∆ Sk( s ) . (C.21) 

Rearranging, we arrive at: 

∆ S ( s ) = ∑ 

k 

wk 

η

 

ηk 

∆ Sk( s ) . (C.22) 

The upper-bound, necessary estimate

 

Φ is constructed by specifying energy, charging, and dis- 

charging capacities that envelop all possible realizations of the individual devices’ shiftability. 

Thus, we construct upper and lower bounds on charging capacity: 

∆ P

 

( t ) = ∑ 

k 

wk∆ Pk

 

( t ) ≤ ∆ P ( t ) ≤ ∑ 

k 

wk

 

∆ Pk( t ) =

 

∆ P ( t ) . (C.23) 

To bound energy capacity, we simply specify a value for η and then construct upper and lower 

bounds on change in energy level: 

∆ S

 

( t ) = ∑ 

k 

wk 

η

 

ηk 

∆ Sk

 

( t ) ≤ ∆ S ( t ) ≤ ∑ 

k 

wk 

η

 

ηk

 

∆ Sk( t ) =

 

∆ S ( t ) . (C.24)

 

Theorem 2. Inner Approximations When η is Constant 

Choose a βk 

for each k ∈ K such that 0 ≤ wk 

βk 

≤ 1 and ∑k wk 

βk 

= 1 . Then, with: 

η = ∑ 

k 

wk 

βk 

ηk 

and ∆ Pk( t ) = βk∆ P ( t ) , (C.25) 

we see that: 

∆ P ( t ) = ∑ 

k 

wk∆ Pk( t ) (C.26) 

and we can show that PΦ

 

⊂ PK, where PK 

is defined by (C.9) and: 

Φ

 

= 

( 

∑ 

k 

wk 

βk 

ηk 

, max 

k 

η

 

ηk 

∆ Sk

 

( t )

 

βk 

, min 

k 

η

 

ηk

 

∆ Sk( t )

 

βk 

, max 

k 

∆ Pk

 

( t )

 

βk 

, min 

k

 

∆ Pk( t )

 

βk 

) 

. (C.27) 

Proof of Theorem 2. Taking the Laplace transform of the expression for ∆ Pk 

in (C.25) and substi- 

tuting into (C.16) yields: 

∆ Sk( s ) = βk 

ηk

 

s 

∆ P ( s ) . (C.28) 

Rearranging (C.17) to solve for ∆ P ( s ) and substituting in yields: 

∆ Sk( s ) = βk 

ηk

 

η 

∆ S ( s ) . (C.29) 

Then, to ensure (C.2) is always satisfied we simply set: 

∆ S

 

( t ) ≥ 

η

 

ηk 

∆ Sk

 

( t )

 

βk 

and

 

∆ S ( t ) ≤ 

η

 

ηk

 

∆ Sk( t )

 

βk 

∀ k ∈ K (C.30) 
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and similarly require: 

∆ P

 

( t ) ≥ 

∆ Pk

 

( t )

 

βk 

and

 

∆ P ( t ) ≤

 

∆ Pk( t )

 

βk 

∀ k ∈ K (C.31) 

to satisfy (C.3).

 

C.2 Discussion 

Though the construction of outer approximations is not negatively affected by time-varying pa- 

rameters ∆ S

 

k( t ) ,

 

∆ Sk( t ) , ∆ P

 

k( t ) , or

 

∆ Pk( t ) , the proof of Theorem 2 essentially says the inner 

approximation bounds should be set by the most constrained individual resource for every time 

t . Thus, in practice, such inner approximations can only present nonzero resource if every de- 

vice in the aggregation can move in the same direction at the same time. This constraint can be 

accommodated somewhat by grouping similar resources, but in this study, we instead choose to 

pursue a heuristic approach of scaling the outer approximation bounds by constant fractions. We 

select fractions to apply to the right-hand sides of (C.13) and (C.14) based on moderate-scale ex- 

periments where we optimally schedule individual vehicle charging to fulfill aggregate dispatch 

requests. 
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Appendix D. Time-of-Use Rates 

D.1 Rates Used in the Study 

As described in detail below, we construct TOU rates that attempt to mimic RTP patterns as 

closely as possible while enforcing the user-specified season and block structure. While the 

formulation is general and could be used to construct any number of rates with different numbers 

of seasons, blocks, and restrictions on season and block length, in this study, we analyze two 

rates: one with season and two blocks (TOU-1-2) and another with four seasons and four blocks 

(TOU-4-4). 

In all cases, the rates we construct are only intended to represent the energy portion of a typical 

retail tariff. Other common tariff components include distribution, transmission, and line items to 

cover specific utility programs (e.g., efficiency, or clean energy). Seasons are defined as groups of 

contiguous days that can wrap around the first day of the year (i.e., December 31 and January 1 

can be in the same season). Blocks are defined separately for weekdays and weekend days, but in 

both cases, they consist of groups of contiguous hours that can wrap around at midnight (i.e., 11 

p.m.–2 a.m. and 12 a.m.–1 a.m. can be in the same block). Seasons must persist for a minimum 

number of days; blocks must be at least as long as a minimum number of hours. 

The rates for TOU-1-2 are listed in Table D.1 and shown in Figure D.1. As expected, the rates 

are lower overnight than in daytime and on lower on the weekend than weekdays. For both 

day types, lower rates start at midnight. The transition to daytime prices happens at 7 a.m. on 

weekdays and at 9 a.m. on weekends. Overall, the prices range from 2.9 cents/kWh overnight on 

weekends to 5.5 cents/kWh during the day on weekdays. 

Table D.1. TOU Tariff with 1 Season and 2 Blocks (TOU-1-2)

 

Season Day Type Block Rate (cents/kWh) Qualitative Description

 

1 

Weekday 

1 4.2 Early morning/overnight (midnight to 7 a.m.) 

2 5.5 Daytime through evening (7 a.m. to midnight)

 

Weekend 

1 2.9 Early morning/overnight (midnight to 9 a.m.) 

2 4.8 Daytime through evening (9 a.m. to midnight)

 

The rates for TOU-4-4 are listed in Table D.2 and shown in Figure D.2. In this case, 32 prices 

are in effect over the course of the year. Although it is much more complex than TOU-1-2, 

TOU-4-4 is still a much coarser price signal than is a full RTP, which has 8,760 different energy 

prices. TOU-4-4 breaks up the year into a most-expensive winter season, a least-expensive spring 

season, a long summer season, and a very short fall season. The highest rates occur on winter 

weekend evenings (9.6 cents/kWh) and fall weekday evenings (7.5 cents/kWh). In general, 

daytime and evening prices are higher than overnight and early morning prices. Overall, the 

TOU-4-4 tariff is less intuitive than the TOU-1-2 tariff but it better reflects patterns evident in the 

DA energy prices from the Reference scenario PCM. Seasonal patterns include lower gross load 

in shoulder seasons, which is reflected in lower price seasons in March–May (Months 3-5) and 

October (Month 10). The spring shoulder season has particularly low prices due to a confluence 

of higher-than-average wind and solar generation with lower-than-average load; April is the 

month where this pattern is most evident. Winter and summer seasons have higher prices, with 

blocks following different patterns based on load and availability of variable generation. In the 

70 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



 

(a) Weekday energy prices

 

(b) Weekend energy prices 

Figure D.1. TOU tariff with 1 season and 2 blocks (TOU-1-2). The blocks 

are required to be at least 4 hours long. January is at the top of the y-axes. 

summer season, which has lower-than-average wind generation, prices generally follow gross 

load, which is highest in the afternoon and evening hours and lowest in the early morning hours. 

In the winter season, wind generation is high, particularly in late-evening to overnight hours; 

this generally yields a high price period in the early evening when net load is highest, followed 

by a lower price overnight period, and then a higher-priced early morning period when wind 

generation decreases (see Figure D.3 and Figure D.4).

 

(a) Weekday energy prices

 

(b) Weekend energy prices 

Figure D.2. TOU tariff with 4 seasons and 4 blocks (TOU-4-4). The seasons are required to be at least 

30 days long and the blocks are required to be at least 4 hours long. January is at the top of the y-axes. 
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Table D.2. TOU Tariff with 4 Seasons and 4 Blocks (TOU-4-4)

 

Season Day Type Block Rate (cents/kWh) Description

 

1 

Weekday 

1 0.8 Winter very early morning 

2 3.3 Winter early morning 

3 6.6 Winter daytime 

4 6.0 Winter evening

 

Weekend 

1 5.2 Winter very early morning 

2 1.4 Winter early morning 

3 5.6 Winter daytime 

4 9.6 Winter evening

 

2 

Weekday 

1 1.8 Spring overnight/early morning 

2 3.8 Spring morning 

3 2.3 Spring afternoon 

4 2.7 Spring evening

 

Weekend 

1 1.6 Spring overnight/early morning 

2 1.7 Spring morning 

3 3.3 Spring afternoon/early evening 

4 3.5 Spring evening

 

3 

Weekday 

1 3.2 Summer very early morning 

2 2.6 Summer early morning 

3 4.2 Summer morning 

4 4.7 Summer afternoon and evening

 

Weekend 

1 2.6 Summer very early morning 

2 2.9 Summer early morning 

3 3.4 Summer morning 

4 4.3 Summer afternoon and evening

 

4 

Weekday 

1 3.8 Fall overnight/early morning 

2 2.1 Fall early morning 

3 3.7 Fall daytime 

4 7.5 Fall evening

 

Weekend 

1 3.3 Fall overnight/early morning 

2 2.8 Fall early morning 

3 5.2 Fall daytime 

4 6.1 Fall evening
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(a) Month-hour average load

 

(b) Month-hour average net load 

Figure D.3. Average month-hour load and net load for modeled year in ISO-NE.

 

(a) Month-hour average wind generation

 

(b) Month-hour average solar PV generation 

Figure D.4. Average month-hour Wind and PV Generation for modeled year in ISO-NE. 
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D.2 Formulation 

We compute TOU rates for energy based on the notion that, given a certain number of seasons 

and blocks, we would like the TOU tariff to mimic actual RTP patterns as closely as possible. 

Also, the TOU rates need to recover a similar amount of revenue. Lacking a more appropriate 

target for this study, we require the TOU tariff to recover at least as much revenue as the RTP 

tariff, assuming load is fixed to the Reference scenario load profile in both cases. 

The problem as stated can be written as a mathematical program, which is documented in sub- 

section D.2.2. Unfortunately, as written, the program is a non-convex mixed-integer nonlinear 

program (MINLP) that we were unable to solve at the required scale (365 days of data) with 

commercial solvers. We were able to solve moderate-sized problems (30-60 days of data) after 

replacing bilinear terms (indicated below) with piecewise linear approximations, which trans- 

formed the non-convex MINLP into a convex mixed-integer quadratic program (MIQP). As part 

of working to get the problem to solve, we implemented the ability to compute feasible start- 

ing points with an agglomerative clustering approach16. It proved to produce better solutions 

(as measured by our objective function) on its own as than solving the convex formulation from 

either a simple or the clustered starting point. There might be ways to adjust the formulation to 

work more cleanly with one or more commercial solvers. In the meantime, the rates described 

in Section D.1 were essentially computed with agglomerative clustering (described below) and 

then finalized by solving the optimization problem with season and block structure fixed to the 

clustering result. 

D.2.1 Notation 

Table D.3. Set and Element Symbols

 

Symbol Description

 

T Set of all time stamps 

D Set of all days 

W Set of all weekday types (weekend/holiday and weekday) 

H Set of all hours within a day 

S Set of all TOU tariff seasons 

B Set of all TOU tariff blocks 

t Time stamp 

d Day 

w Weekday type 

h Hour of the day 

s TOU tariff season 

b TOU tariff block

 

16https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html 
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Table D.4. Superscripts

 

Symbol Description

 

TOU TOU tariff results 

ISO Wholesale market results

 

Table D.5. Index Sets

 

Symbol Description

 

t ∈ T Time stamps for which we have wholesale energy prices 

d ∈ D Days of the year 

w ∈ W Weekday types (weekend/holiday and weekday) 

h ∈ H Local time hours of each day 

s ∈ S Seasons defined in the TOU tariff 

b ∈ B Blocks of time defined in the TOU tariff

 

Table D.6. Subsets

 

Symbol Description

 

Tw , d 

⊂ T Time stamps that map to weekday type w and day d 

Tw , h 

⊂ T Time stamps that map to weekday type w and local time hour h

 

Table D.7. Parameters

 

Symbol Description

 

lt 

Baseline system load in time stamp t 

pt 

Wholesale energy price in time stamp t 

|S | Number of TOU seasons (compile-time parameter) 

|B| Number of TOU blocks (compile-time parameter) 

n

 

S Minimum season length in days 

n

 

B Minimum block length in hours
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Table D.8. Variables

 

Symbol Description

 

πs , w , b 

(continuous) TOU tariff price 

ρTOU
t 

(continuous) TOU revenue in time t 

ρTOU (continuous) Total TOU revenue 

ρ ISO
t 

(continuous) Wholesale market revenue in time t 

ρ ISO (continuous) Total wholesale marekt revenue 

µS 

s , d 

(binary) Indication of active days d for season s 

µB 

s , w , b , h 

(binary) Indication of active hours h for block b in season s and weekday type w 

λs , w , b , t 

(continuous, positive) Load at time t assigned to season s weekday type w and time 

block b 

σS 

s , d 

(binary) Start-up day of season s 

τS 

s , d 

(binary) Shut-down day of season s 

σB 

s , w , b , h 

(binary) Start-up hour of block b during season s and on weekday type w 

τB 

s , w , b , h 

(binary) Shut-down hour of block b during season s and on weekday type w

 

D.2.2 Description 

The objective is to minimize the difference between TOU and wholesale energy prices: 

min ∑ 

t ∈ T 

( 

ρ
TOU
t 

− ρ
ISO
t 

)2 

(D.1) 

subject to the constraint that the TOU rate should generate enough revenue to cover wholesale 

market costs under marginal price compensation and baseline load conditions: 

∑ 

t ∈ T 

ρ
TOU
t 

≥ ∑ 

t ∈ T 

ρ
ISO
t 

. (D.2) 

Wholesale market revenue per time period is not a variable, but a parameter precomputed from 

the load and price parameters lt 

and pt : 

ρ
ISO
t 

= lt 

· pt 

, ∀ t ∈ T . (D.3) 

Load lt 

is allocated to the TOU tariff blocks (variable λs , w , b , t 

≥ 0) using indicator variables µS 

s , d 

and µB 

s , w , b , h: 

λs , w , b , t 

≤ lt 

· µ
S 

s , d 

∀ t ∈ Tw , d 

(D.4) 

λs , w , b , t 

≤ lt 

· µ
B 

s , w , b , h 

∀ t ∈ Tw , h 

, (D.5) 
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and an equation that makes certain that all load is allocated: 

∑ 

s ∈ S , w ∈ W , b ∈ B 

λs , w , b , t 

= lt 

∀ t ∈ T . (D.6) 

Doing so provides enough information to calculate the TOU revenue, which is a bilinear function 

of allocated load λs , w , b 

multiplied by the chosen TOU rate πs , w , b: 

ρ
TOU
t 

= ∑ 

s ∈ S , w ∈ W , b ∈ B 

πs , w , b 

· λs , w , b , t 

∀ t ∈ T . (D.7) 

Unit commitment-like constraints enforce minimum uptimes for seasons and minimum contin- 

uous hours for blocks, both of which are enforced using circular time. Other constraints enforce 

the sequential nature of seasons and blocks, assign each time period to a season and a block, and 

ensure each season and block is only used once. 

The following constraints apply to all s ∈ S and all d ∈ D . Season start-up: 

σ
S 

s , d 

≥ µ
S 

s , d 

− µ
S 

s , d − 1 

(D.8) 

σ
S 

s , d + µ
S 

s , d − 1 

≤ 1; (D.9) 

Season shutdown: 

τ
S 

s , d 

≥ µ
S 

s , d − 1 

− µ
S 

s , d 

(D.10) 

τ
S 

s , d 

≤ µ
S 

s , d − 1; (D.11) 

Season linkage: 

µ
S 

s , d 

= µ
S 

s , d − 1 + σ
S 

s , d 

− τ
S 

s , d; (D.12) 

Season order: 

σ
S 

s + 1 , d 

= τ
S 

s , d; (D.13) 

Enforce minimum season length of n

 

S days: 

∑ 

{dd | ( dd > d − n

 

S) ∧ ( dd < = d )} 

σ
S 

s , dd + ∑ 

{dd | dd > d +|D|− n

 

S } 

σ
S 

s , dd 

≤ µ
S 

s , d; (D.14) 

Assign one season per day: 

∑ 

s ∈ S 

µ
S 

s , d 

= 1; (D.15) 

Use of each season at most once: 

∑ 

d ∈ D 

σ
S 

s , d 

≤ 1 . (D.16) 

These constraints apply to all s ∈ S , all w ∈ W , all b ∈ B , and all h ∈ H . Block start-up: 

σ
B 

s , w , b , h 

≥ µ
B 

s , w , b , h 

− µ
B 

s , w , b , h − 1 

(D.17) 

σ
B 

s , w , b , h + µ
B 

s , w , b , h − 1 

≤ 1; (D.18) 
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Block shutdown: 

τ
B 

s , w , b , h 

≥ µ
B 

s , w , b , h − 1 

− µ
B 

s , w , b , h 

(D.19) 

τ
B 

s , w , b , h 

≤ µ
B 

s , w , b , h − 1; (D.20) 

Block linkage: 

µ
B 

s , w , b , h 

= µ
B 

s , w , b , h − 1 + σ
B 

s , w , b , h 

− τ
B 

s , w , b , h; (D.21) 

Block order: 

σ
B 

s , w , b + 1 , h 

= τ
B 

s , w , b , h; (D.22) 

Enforce minimum block length of n

 

B hours: 

∑ 

{hh | ( hh > h − n

 

B) ∧ ( hh < = h )} 

σ
B 

s , w , b , hh + ∑ 

{hh | hh > h +|H |− n

 

B } 

σ
B 

s , w , b , hh 

≤ µ
B 

s , w , b , h; (D.23) 

Assign one block per hour: 

∑ 

b 

µ
B 

s , w , b , h 

= 1; (D.24) 

Use of each block at most once: 

∑ 

h 

σ
B 

s , w , b , h 

≤ 1 . (D.25) 

Altogether, this formulation is a non-convex nonlinear integer program with a convex quadratic 

objective, | T | bilinear constraints and O ( | S | · | D | )+ O ( | S | · | W | · | B | · | H | ) binary variables. 

D.2.3 Practical Implementation 

The above formulation can be transformed into a convex MIQP by linearizing the bilinear term in 

Equation D.7. We do this by assigning: 

xs , w , b , t 

= 

1

 

2 

( 

πs , w , b + λs , w , b , t 

) 

(D.26) 

ys , w , b , t 

= 

1

 

2 

( 

πs , w , b 

− λs , w , b , t 

) 

. (D.27) 

Then, our quantity of interest: 

zs , w , b , t 

= πs , w , b 

· λs , w , b , t 

(D.28) 

can also be computed as: 

zs , w , b , t 

= x2 

s , w , b , t 

− y2 

s , w , b , t 

. (D.29) 

Linearization is completed by replacing x2 

s , w , b , t 

and y2 

s , w , b , t 

with piecewise linear approximations. 

The resulting formulation has many more continuous and binary variables, and it generally scales 

with | S | · | W | · | B | · | T | . 

TOU tariffs can also be computed with clustering, either to use directly or to provide a starting 

point for the mathematical programming formulation. Because of our need to form contiguous 
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seasons and blocks, we chose to use the agglomerative clustering module17 available in Python 

package scikit-learn.18 

We apply agglomerative clustering first to define seasons and then to define blocks. Seasons 

are clustered based on average RTP per day. Blocks are clustered based on average RTP per 

hour within a given season and day type. We supply the algorithm with explicit linking graphs 

that define which days are adjacent to which other days (for clustering days into season) and 

which hours are adjacent to which other hours (for clustering hours into blocks). The algorithm 

returns the requested number of clusters, and all clusters consist of contiguous days or hours, 

where contiguity is defined circularly by specifying that December 31 and January 1 are adjacent 

as are 11 p.m.-12 a.m. and 12 a.m.-1 a.m. However, the algorithm does not have an option for 

specifying minimum cluster sizes. We therefore enforce that constraint as a post-processing 

step. After clustering days into seasons, and clustering hours into blocks for each combination of 

season and day type, we have a complete specification of the TOU temporal structure. TOU rates 

are then computed by assigning the average RTP price within each season, day type and block 

combination.

 

17https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html 

18https://scikit-learn.org/stable/index.html 
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Appendix E. Optimal Dispatch Formulations 

The general charging flexibility model: 

∆ Sk( t ) = ∆ Sk( t − 1 )+ ∆ Pk( t ) δ t (E.1) 

∆ Pk

 

( t ) ≤ ∆ Pk( t ) ≤

 

∆ Pk( t ) (E.2) 

∆ Sk

 

( t ) ≤ ∆ Sk( t ) ≤

 

∆ Sk( t ) , (E.3) 

which in this study appears in individual vehicle (4.12-4.14), aggregate outer approximation 

(4.16-4.18), and aggregate scaled outer approximation (4.16, 4.27, 4.28) flavors, can be dis- 

patched optimally once an objective function is specified. In this case, k ∈ K represents a single 

flexibility resource k in an arbitrary collection of flexibility resources K , each of which could be 

at a single vehicle or an aggregate level. 

E.1 Price-taking Dispatch 

The RTP and TOU dispatch mechanisms rely on dispatching (E.1-E.3) against a price signal p ( t ) . 

In this study, p ( t ) is an hourly profile in $/MWh, specified for each of 8,760 hours in the year. In 

the RTP case, it consists of the system-level energy prices for the simulated Reference scenario 

(SEAMS 2038 model with EV load but without EVMC). In the TOU case, after calculating the 

TOU tariff we expand it again into an "8760" profile that has many repeated values. (The same 

price applies in all hours assigned to a given season and weekday or weekend time block.) The 

simplest form of price-taking model maximizes the value of dispatching flexibility: 

max 

∆ Pk( t ) , ∆ Sk( t )
∑ 

k , t 

− p ( t ) ∆ Pk( t ) δ t (E.4) 

subject to the constraints (E.1-E.3), which is equivalent to minimizing charging costs. 

At high shares of EVMC participation, we find the dispatch produced by (E.1-E.4) increases 

overall system costs because the amount of load that is shifted is able to create, e.g., new system 

peaks. To mitigate this effect, we perform price-taking dispatch regularized by an aggregate ramp 

penalty price ρ ($/MW): 

max 

∆ Pk( t ) , ∆ Sk( t ) , ∆ P ( t ) , ∆ P+( t ) , ∆ P−( t )
∑ 

k , t 

− p ( t ) ∆ Pk( t ) δ t − ρ ∑ 

t 

( 

∆ P+( t )+ ∆ P−( t )
) 

(E.5) 

where ∆ P+( t ) and ∆ P−( t ) are the positive and negative parts of the aggregate ramp profile, 

calculated with the constraints: 

∆ P ( t ) = ∑ 

k 

∆ Pk( t ) (E.6) 

∆ P+( t ) − ∆ P−( t ) = ∆ P ( t ) − ∆ P ( t − 1 ) (E.7) 

∆ P+( t ) , ∆ P−( t ) ≥ 0 . (E.8) 

We find that exactly how we group flexibility resources into sets K that are dispatched in the 

same linear program does not significantly impact results, even for the formulation (E.1-E.3, E.5- 

E.8). In this study, ramp penalties are applied at the county level; that is, we dispatch individual 

vehicles in batches where each linear program contains all sample vehicles for a single county. 
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E.2 Disaggreation of Aggregate Dispatch Signal 

The disaggregation experiments in Section 4.2 calculate individual dispatch profiles to fulfill 

an aggregate dispatch request d ( t ) . In this study, we measure error with a 1-norm and solve the 

linear program: 

min 

∆ Pk( t ) , ∆ Sk( t ) , E+( t ) , E 

−( t )
∑ 

t 

E+( t )+ E 

−( t ) (E.9) 

s.t. ( E . 1 − E . 3 ) (E.10) 

E+( t ) − E 

−( t ) = 

( 

∑ 

k 

∆ Pk( t ) 

) 

− d ( t ) (E.11) 

E+( t ) , E 

−( t ) ≥ 0 , (E.12) 

which is equivalent to minimizing the mean absolute error. Future work could explore solving the 

disaggregation problem in the least-squares sense or directly factoring in the expected effects of 

buying back dispatch deviations at real-time prices. 
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