Atlantic Offshore Wind Transmission Study
The Atlantic Offshore Wind Transmission Study evaluates coordinated transmission solutions to enable offshore wind energy deployment along the U.S. Atlantic Coast, addressing gaps in existing analyses.
State renewable energy targets and the national goal of 30 gigawatts (GW) of offshore wind energy by 2030 show strong government support for offshore wind energy development. Meeting the goal of 30 GW by 2030 could unlock a pathway to 110 GW by 2050. Ensuring adequate and timely transmission access for offshore wind is critical to achieving state and national deployment goals.
The Atlantic Offshore Wind Transmission Study will evaluate multiple pathways to offshore wind goals through coordinated transmission solutions along the U.S. Atlantic Coast in the near term (by 2030) and long term (by 2050) under various combinations of electricity supply and demand while supporting grid reliability and resilience and ocean co-use.

This 2-year study will:
- Evaluate coordinated transmission solutions to enable offshore wind deployment along the U.S. Atlantic Coast, addressing gaps in previous analyses
- Compare different transmission technologies and topologies, quantify costs, assess reliability and resilience, and evaluate key environmental and ocean co-use issues
- Produce timely results to inform decision making and offer feasible solutions, data, and models that may benefit stakeholders in their own planning processes.
Researchers from NREL and Pacific Northwest National Laboratory will conduct this study by creating multiple scenarios of interstate, interregional transmission topologies (size, shape, branching, and location of transmission lines) between now and 2030 and 2050.
Project Objectives
The Atlantic Offshore Wind Transmission Study, funded by the U.S. Department of Energy Wind Energy Technologies Office, is designed to:
- Identify scenarios and pathways of offshore wind energy deployment with transmission topologies (such as radial lines, backbones, or a meshed network), sequencing, and build-out in U.S. Atlantic waters between now and 2030 and 2050 that meet or exceed reliability and resilience criteria
- Quantify impacts—such as economics, reliability, and resilience—of multiple offshore wind energy and transmission scenarios and pathways, including during periods of system stress caused by typical and extreme weather situations
- Characterize and compare transmission technologies for the different scenarios, including land-based and offshore substations and cabling, as well as cost and benefit trade-offs for high-voltage alternating current and direct current technologies
- Identify if there is a critical point (either in time or in gigawatts of offshore wind energy deployed) after which the benefits of a coordinated transmission framework will outweigh the benefits of radial generator lead lines (transmission lines from each offshore wind plant to shore)
- Evaluate reliability and resilience of various topologies, considering component reliability and cable failures
- Collect data and develop models that are readily usable by the offshore wind energy industry for conducting analyses and studies.
All activities will closely engage with and draw expertise from a technical review committee that will provide input throughout the project on assumptions, scenarios, and the modeling framework.
Project Schedule
In the first year (Nov. 1, 2021–Oct. 31, 2022), the team will:
- Create a technical review committee with a wide range of stakeholders and subject-matter expertise
- Establish plausible land-based and offshore transmission expansion scenarios for 2030 and 2050 end dates, including feasible routing, points of interconnection, and landing points that consider environmental and community impacts
- Identify the critical point at which the benefits of a coordinated transmission framework will outweigh the benefits of a generation lead-line approach and assess how transmission will evolve over time
- Begin to evaluate system operations, cost, and reliability of the established, plausible scenarios.
In the second year (Nov. 1, 2022–Oct. 31, 2023), the team will:
- Complete production cost modeling, capital investment estimation, and reliability studies
- Perform stability analysis, transient-fault-behavior analysis, and resilience studies for the land-based and offshore grid
- Deliver the final report.
TASK 1
Offshore Wind Data Collection, Modeling Framework, and Formation of Technical Review Committee
TASK 2
Transmission Expansion Planning
Envision future grids
TASK 3
Production Cost and Resource Adequacy
Simulate operability
TASK 4
Technology Characterization
Evaluate cost, performance, and siting
TASK 5
Reliability and Offshore Grid
Evaluate reliability of the grid by studying contingency analyses
TASK 6
Resilience and Extreme Weather
Evaluate grid operation during cascading events due to extreme weather
TASK 7
Review by Technical Review Committee and Final Report
Project Tasks
The project will include seven tasks, the first six of which will be conducted contemporaneously, with ongoing findings influencing the number of iterations needed:
- Offshore Wind Data Collection, Modeling Framework Selection, and Technical Review
Committee Formation: The team will assemble a technical review committee composed of representatives from
regional transmission organizations/independent system operators, utilities systems,
state agencies, original equipment manufacturers, and others to provide input, feedback,
and guidance to ensure the highest degree of relevance and usefulness of the study
results.
- Transmission Expansion Planning: The team will evaluate the cost-optimal generation and transmission options under
a variety of conditions and determine plausible scenarios using input from the technical
review committee and NREL's Regional Energy Deployment System model.
- Production Cost and Resource Adequacy Modeling: To simulate operability, the team will use PLEXOS to model production costs and NREL's
Probabilistic Resource Adequacy Suite to model resource adequacy.
- Technology Characterization: The team will conduct a preliminary feasibility analysis of offshore transmission
system technologies, including marine substations, transmission from marine substations
to land-based substations, and undersea cabling for the scenarios developed in previous
tasks. The team will also collect information to screen for cable routes that avoid
military-sensitive areas, cultural areas, fisheries, and other areas of key ocean
use to ensure that cable routes meet marine regulations and address environmental
considerations.
- Reliability and Offshore Grid Evaluation: To evaluate the reliability of the grid, the team will use the Chronological AC Power
Flow Automated Generation Tool to translate modeled production costs into hourly power
flow models, perform dynamic contingency analysis with the Dynamic Contingency Analysis Tool, and evaluate dynamic stability impacts of offshore wind generation using an impedance
scan tool. They will also use power systems computer aided design (PSCAD) for electromagnetic
transient simulations and ETRAN for electromagnetic-transient-phasor cosimulations
to evaluate the performance of offshore grid topologies during fault events.
- Resilience and Extreme Weather Assessment: To evaluate grid operation during dynamic cascading events due to extreme weather,
the team will use the Electric Grid Resilience and Assessment System.
- Technical Review Committee Review and Final Report Delivery: The team will prepare a final report for technical review.
Contacts
Melinda Marquis
Offshore Wind Grid Integration Lead – National Renewable Energy
Melinda.Marquis@nrel.gov