Circular Economy Modeling and Analysis

Modeling and analysis underpin all NREL work in circular economy for energy materials. Using innovative research capabilities, NREL provides credible, objective analyses of clean energy systems throughout their life cycles.

Circular Economy for Energy Materials

This research aligns with one of NREL's critical objectives.

NREL performs technical, economic, social/behavioral, and regulatory analysis of clean energy technologies and supply chains. To identify the most promising circular economy pathways and strategies for a decarbonized, sustainable future, NREL analysts develop models that simulate the impacts of clean energy products and circular systems. The models use dynamic, systems approaches, such as agent-based modeling or life cycle assessment, to accurately capture the complexity of circular transitions.

Researchers assess trade-offs to enhance ecological and human benefit where possible to identify opportunities for circular transitions. Insights can inform future R&D and policy and investment decisions as well as guide better technology design to extend product lifetimes or more easily repair, reuse, or recover valuable materials and improve energy systems overall.

Tools Suite

NREL has developed a suite of tools to support circular economy modeling and analysis efforts.

BEIOM: Bio-Based Circular Carbon Economy Environmentally Extended Input Output Model

Quantifies economy-wide environmental and socio-economic impacts of new products or product portfolios

Circular Economy Agent-Based Model

Models how interactions between a system’s actors might help maximize circularity

CELAVI: Circular Economy Lifecycle Assessment and Visualization Framework

Quantifies environmental, social, and economic impacts of circular economy transitions

PVICE: Photovoltaics in the Circular Economy

Quantifies the material and energy impacts of PV system designs, lifetime, reliability, and disposal

LIBRA: Lithium-Ion Battery Resources Analysis

Evaluates global trends in supply and demand for critical materials in lithium-ion batteries

MFI: Materials Flow through Industry Tool

Identifies and assesses energy and material demands and carbon emissions from the supply chain

Selected Publications

Also see PV circular economy publications.

Role of the Social Factors in Success of Soar Photovoltaic Reuse and Recycle Programmes, Nature Energy (2021)

Do We Need a New Sustainability Assessment Method for the Circular Economy? A Critical Literature Review, Frontiers in Sustainability (2021)

Manufacturing Energy and Greenhouse Gas Emissions Associated with Plastics Consumption, Joule (2021)

Research and Development Priorities for Silicon Photovoltaic Module Recycling to Support a Circular Economy, Nature Energy (2020)

Design for Recycling Principles Applicable to Selected Clean Energy Technologies: Crystalline-Silicon Photovoltaic Modules, Electric Vehicle Batteries, and Wind Turbine Blades, Journal of Sustainable Metallurgy (2020)

Research Staff

Garvin Heath

Distinguished Member of the Research Staff

Annika Eberle

Research Engineer, Modeling and Analysis

Alberta Carpenter

Researcher V, Environmental Engineering

Margaret Mann

Group Manager III, Decision Support Analysis


Garvin Heath

Distinguished Member of the Research Staff