Theory Manual for the Tuned Mass Damper Module in FAST $$\mathrm{v}8$$

William La Cava & Matthew A. Lackner Department of Mechanical and Industrial Engineering University of Massachusetts Amherst Amherst, MA 01003 wlacava@umass.edu, lackner@ecs.umass.edu

March 31, 2015

This manual describes new functionality in FAST 8 that simulates the addition of tuned mass dampers (TMDs) in the nacelle for structural control. For application studies of these systems, refer to [1–6]. The TMDs are two independent, 1 DOF, linear mass spring damping elements that act in the fore-aft (x) and side-side (y) directions. We first present the theoretical background and then describe the code changes.

1 Theoretical Background

1.1 Definitions

O: origin point of global inertial reference frame

P: origin point of non-inertial reference frame fixed to nacelle where TMDs are at rest

TMD: origin point of a TMD

G: axis orientation of global reference frame

N: axis orientation of nacelle reference frame with unit vectors $\hat{i}, \hat{j}, \hat{k}$

 $\vec{r}_{_{TMD/O_G}} = \left[\begin{array}{c} x \\ y \\ z \end{array} \right]_{_{TMD/O_G}}$: position of a TMD with respect to (w.r.t.) *O* with orientation *G*

$$\vec{r}_{_{TMD/P_N}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{_{TMD/P_N}}$$
: position of a TMD w.r.t. P_N

 \vec{r}_{TMD_X} : position vector for TMD_X

 $\vec{r}_{_{TMD_Y}}$: position vector for TMD_Y

$$\vec{r}_{P/O_G} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{P/O_G}$$
: position vector of nacelle w.r.t. O_G

 $R_{_{\!\!N/G}\!\!:}$ 3 x 3 rotation matrix transforming orientation
 G to N

$$R_{_{G/N}} = R_{_{N/G}}^T$$
: transformation from N to G

$$\vec{\omega}_{_{N/O_N}} = \left[\begin{array}{c} \dot{\theta} \\ \phi \\ \psi \end{array} \right]_{_{N/O_N}}: \text{ angular velocity of nacelle in orientation } N; \text{ defined likewise for } G$$

 $\dot{\vec{\omega}}_{_{N/O_N}}=\vec{\alpha}_{_{N/O_N}};$ angular acceleration of nacelle

$$\vec{a}_{G/O_G} = \left[\begin{array}{c} 0 \\ 0 \\ -g \end{array} \right]_{/O_G} : \text{ gravitational acceleration in global coordinates}$$

$$\vec{a}_{G/O_N} = R_{N/G} \vec{a}_{G/O_G} = \begin{bmatrix} a_{G_X} \\ a_{G_Y} \\ a_{G_Z} \end{bmatrix}_{O_N} : \text{ gravity w.r.t. } O_N$$

1.2 Equations of motion

The position vectors of the TMDs in the two reference frames O and P are related by

$$\vec{r}_{\scriptscriptstyle TMD/O_G} = \vec{r}_{\scriptscriptstyle P/O_G} + \vec{r}_{\scriptscriptstyle TMD/P_G}$$

Expressed in orientation N,

$$\begin{split} \vec{r}_{_{TMD/O_N}} &= \vec{r}_{_{P/O_N}} + \vec{r}_{_{TMD/P_N}} \\ \Rightarrow \vec{r}_{_{TMD/P_N}} &= \vec{r}_{_{TMD/O_N}} - \vec{r}_{_{P/O_N}} \end{split}$$

Differentiating,¹

$$\dot{\vec{r}}_{_{TMD/P_N}} = \dot{\vec{r}}_{_{TMD/O_N}} - \dot{\vec{r}}_{_{P/O_N}} - \vec{\omega}_{_{N/O_N}} \times \vec{r}_{_{TMD/P_N}}$$

differentiating again gives the acceleration of the TMD w.r.t. P (the nacelle position), oriented with N:

$$\ddot{\vec{r}}_{_{TMD/P_N}} = \ddot{\vec{r}}_{_{TMD/O_N}} - \ddot{\vec{r}}_{_{P/O_N}} - \vec{\omega}_{_{N/O_N}} \times (\vec{\omega}_{_{N/O_N}} \times \vec{r}_{_{TMD/P_N}}) - \vec{\alpha}_{_{N/O_N}} \times \vec{r}_{_{TMD/P_N}} - 2\vec{\omega}_{_{N/O_N}} \times \dot{\vec{r}}_{_{TMD/P_N}}$$
(1)

The right-hand side contains the following terms:

¹Note that $(Ra) \times (Rb) = R(a \times b)$.

 $\ddot{\vec{r}}_{_{TMD/O_N}}$: acceleration of the TMD in the *inertial* frame O_N

$$\begin{split} \ddot{\vec{r}}_{P/O_N} &= R_{N/G} \dot{\vec{r}}_{P/O_G} \text{: acceleration of the Nacelle origin } P \text{ w.r.t. } O_N \\ \vec{\omega}_{N/O_N} &= R_{N/G} \vec{\omega}_{N/O_G} \text{ : angular velocity of nacelle w.r.t. } O_N \\ \vec{\omega}_{N/O_N} &\times (\vec{\omega}_{N/O_N} \times \vec{r}_{TMD/P_N}) \text{ : Centrifugal force} \\ \vec{\alpha}_{N/O_N} &\times \vec{r}_{TMD/P_N} \text{: Euler force} \\ 2 \vec{\omega}_{N/O_N} &\times \dot{\vec{r}}_{TMD/P_N} \text{ : Coriolis force} \end{split}$$

The acceleration in the inertial frame $\ddot{\vec{r}}_{{}_{TMD/O_N}}$ can be replaced with a force balance

$$\ddot{\vec{r}}_{_{TMD/O_N}} = \begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix}_{_{TMD/O_N}} = \frac{1}{m} \begin{bmatrix} \sum F_X \\ \sum F_Y \\ \sum F_Z \end{bmatrix}_{_{TMD/O_N}} = \frac{1}{m} \vec{F}_{_{TMD/O_N}}$$

Substituting the force balance into Equation 1 gives the general equation of motion for a TMD:

$$\ddot{\vec{r}}_{TMD/P_N} = \frac{1}{m} \vec{F}_{TMD/O_N} - \ddot{\vec{r}}_{P/O_N} - \vec{\omega}_{N/O_N} \times (\vec{\omega}_{N/O_N} \times \vec{r}_{TMD/P_N}) - \vec{\alpha}_{N/O_N} \times \vec{r}_{TMD/P_N} - 2\vec{\omega}_{N/O_N} \times \dot{\vec{r}}_{TMD/P_N}$$
(2)

We will now solve the equations of motion for TMD_X and TMD_Y .

TMD_X : The external forces $\vec{F}_{_{TMD_X/O_N}}$ are given by

$$\vec{F}_{_{TMD_X/O_N}} = \begin{bmatrix} -c_x \dot{x}_{_{TMD_X/P_N}} - k_x x_{_{TMD_X/P_N}} + m_x a_{_{G_X/O_N}} + F_{ext_x} + F_{StopFrc_X} \\ F_{Y_{_{TMD_X/O_N}}} + m_x a_{_{G_Y/O_N}} \\ F_{Z_{_{TMD_X/O_N}}} + m_x a_{_{G_Z/O_N}} \end{bmatrix}$$

 TMD_X is fixed to frame N in the y and z directions so that

$$r_{_{TMD_X/P_N}} = \begin{bmatrix} x_{_{TMD_X/P_N}} \\ 0 \\ 0 \end{bmatrix}$$

The other components of Eqn. 2 are:

$$\begin{split} \vec{\omega}_{\scriptscriptstyle N/O_N} \times (\vec{\omega}_{\scriptscriptstyle N/O_N} \times \vec{r}_{\scriptscriptstyle TMD_X/P_N}) &= x_{\scriptscriptstyle TMD_X/P_N} \begin{bmatrix} -(\dot{\phi}_{\scriptscriptstyle N/O_N}^2 + \dot{\psi}_{\scriptscriptstyle N/O_N}^2) \\ \dot{\theta}_{\scriptscriptstyle N/O_N} \dot{\phi}_{\scriptscriptstyle N/O_N} \\ \dot{\theta}_{\scriptscriptstyle N/O_N} \dot{\psi}_{\scriptscriptstyle N/O_N} \end{bmatrix} \\ \\ & 2\vec{\omega}_{\scriptscriptstyle N/O_N} \times \dot{\vec{r}}_{\scriptscriptstyle TMD_X/P_N} = \dot{x}_{\scriptscriptstyle TMD_X/P_N} \begin{bmatrix} 0 \\ 2\dot{\psi}_{\scriptscriptstyle N/O_N} \\ -2\dot{\phi}_{\scriptscriptstyle N/O_N} \end{bmatrix} \end{split}$$

$$\vec{\alpha}_{\scriptscriptstyle N/O_N} \times \vec{r}_{\scriptscriptstyle TMD_X/P_N} = x_{\scriptscriptstyle TMD_X/P_N} \begin{bmatrix} 0 & - \vec{\psi}_{\scriptscriptstyle N/O_N} \\ \vec{\psi}_{\scriptscriptstyle N/O_N} & - \vec{\phi}_{\scriptscriptstyle N/O_N} \end{bmatrix}$$

Therefore $\ddot{x}_{_{TMD_X/P_N}}$ is governed by the equations

$$\ddot{x}_{TMD_X/P_N} = (\dot{\phi}_{N/O_N}^2 + \dot{\psi}_{N/O_N}^2 - \frac{k_x}{m_x}) x_{TMD_X/P_N} - (\frac{c_x}{m_x}) \dot{x}_{TMD_X/P_N} - \ddot{x}_{P/O_N} + a_{G_X/O_N}$$
(3)
$$+ \frac{1}{m_x} (F_{ext_X} + F_{StopFrc_X})$$

The forces $F_{Y_{TMD_X/O_N}}$ and $F_{Z_{TMD_X/O_N}}$ are solved noting $\ddot{y}_{_{TMD_X/P_N}} = \ddot{z}_{_{TMD_X/P_N}} = 0$:

$$F_{Y_{TMD_X/O_N}} = m_x \left(-a_{G_Y/O_N} + \ddot{y}_{P/O_N} + (\ddot{\psi}_{N/O_N} + \dot{\theta}_{N/O_N} \dot{\phi}_{N/O_N}) x_{TMD_X/P_N} + 2\dot{\psi}_{N/O_N} \dot{x}_{TMD_X/P_N} \right) (4)$$

$$F_{Z_{TMD_X/O_N}} = m_x \left(-a_{G_Z/O_N} + \ddot{z}_{P/O_N} - (\ddot{\phi}_{N/O_N} - \dot{\theta}_{N/O_N} \dot{\psi}_{N/O_N}) x_{TMD_X/P_N} - 2\dot{\phi}_{N/O_N} \dot{x}_{TMD_X/P_N} \right) (5)$$

TMD_Y: The external forces \vec{F}_{TMD_Y/P_N} on TMD_Y are given by

$$\vec{F}_{TMD_Y/P_N} = \begin{bmatrix} F_{X_{TMD_Y/O_N}} + m_y a_{G_X/O_N} \\ -c_y \dot{y}_{TMD_Y/P_N} - k_y y_{TMD_Y/P_N} + m_y a_{G_Y/O_N} + F_{exty} + F_{StopFrcy} \\ F_{Z_{TMD_Y/O_N}} + m_y a_{G_Z/O_N} \end{bmatrix}$$

 TMD_Y is fixed to frame N in the x and z directions so that

$$r_{TMDYX/P_N} = \begin{bmatrix} 0\\ y_{TMDY/P_N}\\ 0 \end{bmatrix}$$

The other components of Eqn. 2 are:

$$\begin{split} \vec{\omega}_{\scriptscriptstyle N/O_N} \times (\vec{\omega}_{\scriptscriptstyle N/O_N} \times \vec{r}_{\scriptscriptstyle TMD_Y/P_N}) &= y_{\scriptscriptstyle TMD_Y/P_N} \begin{bmatrix} \dot{\theta}_{\scriptscriptstyle N/O_N} \dot{\phi}_{\scriptscriptstyle N/O_N} \\ -(\dot{\theta}_{\scriptscriptstyle N/O_N}^2 + \dot{\psi}_{\scriptscriptstyle N/O_N}^2) \\ \dot{\phi}_{\scriptscriptstyle N/O_N} \dot{\psi}_{\scriptscriptstyle N/O_N} \end{bmatrix} \\ \\ & 2\vec{\omega}_{\scriptscriptstyle N/O_N} \times \dot{\vec{r}}_{\scriptscriptstyle TMD_Y/P_N} = \dot{y}_{\scriptscriptstyle TMD_Y/P_N} \begin{bmatrix} -2\dot{\psi}_{\scriptscriptstyle N/O_N} \\ 0 \\ 2\dot{\theta}_{\scriptscriptstyle N/O_N} \end{bmatrix} \\ \\ & \vec{\alpha}_{\scriptscriptstyle N/O_N} \times \vec{r}_{\scriptscriptstyle TMD_Y/P_N} = y_{\scriptscriptstyle TMD_Y/P_N} \begin{bmatrix} -\ddot{\psi}_{\scriptscriptstyle N/O_N} \\ 0 \\ \vdots \\ \theta_{\scriptscriptstyle N/O_N} \end{bmatrix} \end{split}$$

Therefore $\ddot{y}_{{}_{TMD_Y/P_N}}$ is governed by the equations

$$\ddot{y}_{_{TMD_Y/P_N}} = (\dot{\theta}_{_{N/O_N}}^2 + \dot{\psi}_{_{N/O_N}}^2 - \frac{k_y}{m_y}) y_{_{TMD_Y/P_N}} - (\frac{c_y}{m_y}) \dot{y}_{_{TMD_Y/P_N}} - \ddot{y}_{_{P/O_N}} + a_{_{G_Y/O_N}} + \frac{1}{m_y} (F_{ext_Y} + F_{StopFrc_Y})$$

$$(6)$$

The forces $F_{X_{TMD_Y/O_N}}$ and $F_{Z_{TMD_Y/O_N}}$ are solved noting $\ddot{x}_{_{TMD_Y/P_N}} = \ddot{z}_{_{TMD_Y/P_N}} = 0$:

$$F_{X_{TMD_Y/O_N}} = m_y \left(-a_{G_X/O_N} + \ddot{x}_{P/O_N} - (\ddot{\psi}_{N/O_N} - \dot{\theta}_{N/O_N} \dot{\phi}_{N/O_N}) y_{TMD_Y/P_N} - 2\dot{\psi}_{N/O_N} \dot{y}_{TMD_Y/P_N} \right)$$
(7)
$$F_{Z_{TMD_Y/O_N}} = m_y \left(-a_{G_Z/O_N} + \ddot{z}_{P/O_N} + (\ddot{\theta}_{N/O_N} + \dot{\phi}_{N/O_N} \dot{\psi}_{N/O_N}) y_{TMD_Y/P_N} + 2\dot{\theta}_{N/O_N} \dot{y}_{TMD_Y/P_N} \right)$$
(8)

1.3 State Equations

Inputs: The inputs are the nacelle linear acceleration and angular position, velocity and acceleration:

$$\vec{u} = \begin{bmatrix} \vec{r}_{P/O_G} \\ \vec{R}_{N/G} \\ \vec{\omega}_{N/O_G} \\ \vec{\alpha}_{P/O_G} \end{bmatrix} \Rightarrow \begin{bmatrix} \ddot{\vec{r}}_{P/O_N} \\ \vec{\omega}_{N/O_N} \\ \vec{\alpha}_{N/O_N} \end{bmatrix} = \begin{bmatrix} \vec{R}_{N/G} \ddot{\vec{r}}_{P/O_G} \\ \vec{R}_{N/G} \vec{\omega}_{N/O_G} \\ \vec{R}_{N/G} \vec{\alpha}_{P/O_G} \end{bmatrix}$$

States: The states are the position and velocity of the TMDs along their respective DOFS in the Nacelle reference frame:

$$\vec{R}_{TMD/P_N} = \begin{bmatrix} x \\ \dot{x} \\ y \\ \dot{y} \end{bmatrix}_{TMD/P_N} = \begin{bmatrix} x_{TMD_X/P_N} \\ \dot{x}_{TMD_X/P_N} \\ y_{TMD_Y/P_N} \\ \dot{y}_{TMD_Y/P_N} \end{bmatrix}$$

The equations of motion can be re-written as a system of non-linear first-order equations of the form

$$\dot{\vec{R}}_{{}_{TMD}}=A\vec{R}_{{}_{TMD}}+B$$

where

$$A(\vec{u}) = \begin{bmatrix} 0 & 1 & 0 & 0\\ (\dot{\phi}_{P/O_N}^2 + \dot{\psi}_{P/O_N}^2 - \frac{k_x}{m_x}) & -(\frac{c_x}{m_x}) & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & (\dot{\theta}_{P/O_N}^2 + \dot{\psi}_{P/O_N}^2 - \frac{k_y}{m_y}) & -(\frac{c_y}{m_y}) \end{bmatrix}$$

and

$$B(\vec{u}) = \begin{bmatrix} 0\\ -\ddot{x}_{P/O_N} + a_{G_X/O_N} + \frac{1}{m_x}(F_{ext_X} + F_{StopFrc_X})\\ 0\\ -\ddot{y}_{P/O_N} + a_{G_Y/O_N} + \frac{1}{m_y}(F_{ext_Y} + F_{StopFrc_Y}) \end{bmatrix}$$

The inputs are coupled to the state variables, resulting in A and B as $f(\vec{u})$.

1.4 Outputs

The output vector \vec{Y} is

$$\vec{Y} = \left[\begin{array}{c} \vec{F}_{_{P_G}} \\ \vec{M}_{_{P_G}} \end{array} \right]$$

The output includes reaction forces corresponding to $F_{Y_{TMD_X/O_N}}$, $F_{Z_{TMD_X/O_N}}$, $F_{X_{TMD_Y/O_N}}$, and $F_{Z_{TMD_Y/O_N}}$ from Eqns. 4, 5, 7, and 8. The resulting forces \vec{F}_{P_G} and moments \vec{M}_{P_G} acting on the nacelle are

$$\vec{F}_{P_{G}} = R_{N/G}^{T} \left[\begin{array}{c} k_{x}x_{_{TMD/P_{N}}} + c_{x}\dot{x}_{_{TMD/P_{N}}} - F_{StopFrc_{X}} - F_{ext_{x}} - F_{X_{_{TMD_{Y}/O_{N}}}} \\ k_{y}y_{_{TMD/P_{N}}} + c_{y}\dot{y}_{_{TMD/P_{N}}} - F_{StopFrc_{Y}} - F_{ext_{y}} - F_{Y_{_{TMD_{X}/O_{N}}}} \\ -F_{Z_{_{TMD_{X}/O_{N}}}} - F_{Z_{_{TMD_{Y}/O_{N}}}} \end{array} \right]$$

and

$$\vec{M}_{P_{G}} = R_{_{N/G}}^{T} \left[\begin{array}{c} M_{_{X}} \\ M_{_{Y}} \\ M_{_{Z}} \end{array} \right]_{_{N/N}} = R_{_{N/G}}^{T} \left[\begin{array}{c} -(F_{Z_{_{TMD_{Y}/O_{N}}}})y_{_{TMD/P_{N}}} \\ (F_{Z_{_{TMD_{X}/O_{N}}}})x_{_{TMD/P_{N}}} \\ (-F_{Y_{_{TMD_{X}/O_{N}}}})x_{_{TMD/P_{N}}} + (F_{X_{_{TMD_{Y}/O_{N}}}})y_{_{TMD/P_{N}}} \end{array} \right]$$

Stop Forces The extra forces $F_{StopFrc_X}$ and $F_{StopFrc_Y}$ are added to output forces in the case that the movement of TMD_X or TMD_Y exceeds the maximum track length for the mass. Otherwise, they equal zero. The track length has limits on the upwind (UW) and downwind (DW) ends in the x direction (X_UWSP and X_DWSP), and the positive and negative lateral ends in the y direction (Y_PLSP and Y_NLSP). If we define a general maximum and minimum displacements as x_{max} and x_{min} , respectively, the stop forces have the form

$$F_{StopFrc} = - \begin{cases} k_S \Delta x & : (x > x_{max} \land \dot{x} <= 0) \lor (x < x_{min} \land \dot{x} >= 0) \\ k_S \Delta x + c_S \dot{x} & : (x > x_{max} \land \dot{x} > 0) \lor (x < x_{min} \land \dot{x} < 0) \\ 0 & : \text{otherwise} \end{cases}$$

where Δx is the distance the mass has traveled beyond the stop position and k_S and c_S are large stiffness and damping constants.

2 Code Modifications

The TMD function is submodule called in ServoDyn. In addition to references in ServoDyn.f90 and ServoDyn.txt, new files that contain the TMD module are listed below.

2.1 New Files

- TMD.f90 : TMD module
- TMD.txt : registry file

include files, inputs, states, parameters, and outputs shown in Tables 1 and 2

• TMD_Types.f90 : automatically generated

InitInput	Input u	Parameter p	State x	Output y
InputFile	$\ddot{\vec{r}}_{P/O_G}$	m_x	$\vec{tmd_x}$	Mesh
Gravity	$\vec{R}_{_{N/O_G}}$	c_x		
$\vec{r}_{_{N/O_G}}$	$\vec{\omega}_{_{N/O_G}}$	k_x		
	$\vec{\alpha}_{_{P/O_G}}$	m_y		
		c_y		
		k_y		
		$K_S = \begin{bmatrix} k_{SX} & k_{SY} \end{bmatrix}$		
		$C_S = \begin{bmatrix} c_{SX} & c_{SY} \end{bmatrix}$		
		$P_{SP} = \begin{bmatrix} X_{DWSP} & Y_{PLSP} \end{bmatrix}$		
		$P_{SP} = \begin{bmatrix} X_{UWSP} & Y_{NLSP} \end{bmatrix}$		
		Fext		
		Gravity		
		TMDX_DOF		
		TMDY_DOF		
		X_{DSP}		
		Y_{DSP}		

Table 1: Summary of field definitions in the TMD registry. Note that state vector $t \vec{md}_x$ corresponds to \vec{R}_{TMD/P_N} , and that the outputs \vec{F}_{P_G} and \vec{M}_{P_G} are contained in the MeshType object (y.Mesh). X_{DSP} and Y_{DSP} are initial displacements of the TMDs.

2.2 Variables

The input, parameter, state and output definitions are summarized in Table 1. The inputs from file are listed in Table 2.

3 Acknowledgements

The authors would like to thank Dr. Jason Jonkman for reviewing this manual.

References

- Matthew A. Lackner and Mario A. Rotea. Passive structural control of offshore wind turbines. Wind energy, 14(3):373–388, 2011.
- [2] Matthew A. Lackner and Mario A. Rotea. Structural control of floating wind turbines. Mechatronics, 21(4):704-719, 2011.
- [3] Hazim Namik, M. A. Rotea, and Matthew Lackner. Active structural control with actuator dynamics on a floating wind turbine. In <u>Proceedings of the 51st AIAA Aerospace Sciences</u> <u>Meeting</u>, pages 7–10, 2013.

Field Name	Field Type	Description
TMD_CMODE	int	Control Mode (1:passive, 2:active)
TMD_X_DOF	logical	DOF on or off
TMD_Y_DOF	logical	DOF on or off
TMD_X_DSP	real	TMD_X initial displacement
TMD_Y_DSP	real	TMD_Y initial displacement
TMD_X_M	real	TMD mass
TMD_X_K	real	TMD stiffness
TMD_X_C	real	TMD damping
TMD_Y_M	real	TMD mass
TMD_Y_K	real	TMD stiffness
TMD_Y_C	real	TMD damping
TMD_X_DWSP	real	DW stop position (maximum X mass displacement)
TMD_X_UWSP	real	UW stop position (minimum X mass displacement)
TMD_X_K_SX	real	stop spring stiffness
TMD_X_C_SX	real	stop spring damping
TMD_Y_PLSP	real	positive lateral stop position (maximum Y mass displacement)
TMD_Y_NLSP	real	negative lateral stop position (minimum Y mass displacement)
TMD_Y_K_S	real	stop spring stiffness
TMD_Y_C_S	real	stop spring damping
TMD_P_X	real	x origin of P in nacelle coordinate system
TMD_P_Y	real	y origin of P in nacelle coordinate system
TMD_P_Z	real	z origin of P in nacelle coordinate system

Table 2: Data read in from TMDInputFile.

- [4] G. Stewart and M. A. Lackner. Optimization of a passive tuned mass damper for reducing loads in offshore wind turbines. <u>IEEE Transactions on Control Systems Technology</u>, 21(4):1090–1104, 2013.
- [5] Gordon M. Stewart and Matthew A. Lackner. The effect of actuator dynamics on active structural control of offshore wind turbines. <u>Engineering Structures</u>, 33(5):1807–1816, 2011.
- [6] Gordon M. Stewart and Matthew A. Lackner. The impact of passive tuned mass dampers and windwave misalignment on offshore wind turbine loads. Engineering Structures, 73:54–61, 2014.