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About this Guide 
The dynamics of wind turbine rotor blades are generally expressed in rotating frames attached to the 
individual blades. The tower-nacelle subsystem sees the combined effect of all rotor blades, not the 
individual blades. This is because the rotor responds as a whole to excitations such as aerodynamic gusts, 
control inputs, and tower-nacelle motion—all of which occur in a nonrotating frame. Multi-blade 
coordinate transformation (MBC) helps integrate the dynamics of individual blades and express them in a 
fixed (nonrotating) frame. MBC involves two steps: transformation of the rotating degrees of freedom, 
and transformation of the equations of motion. Ref [1] details the MBC operation. However, a summary 
of the MBC concept and underlying transformations is provided in this manual.  

This guide describes usage of MBC3, a MATLAB-based script we have developed to perform multi-
blade coordinate transformation of wind turbine system matrices. In its current form, MBC3 is applicable 
to system matrices generated by FAST1 only. The system matrices may have arbitrary--but physically 
consistent—sizes. These matrices may also optionally include control, disturbance, output, and feed-
forward matrices. Also, the associated state, control, and disturbance vectors may have states that are 
partly referred to the fixed frame and partly to the rotating frame. A key feature of MBC3 is that it can 
handle variable-speed operation and turbines with dissimilar blades. Depending on the analysis objective, 
a user may generate system matrices either in the first-order (state-space) form or the second-order 
(physical-domain) form. MBC3 can handle both the first- and second-order system matrices. These 
matrices in general govern the aero-hydro-servo-elastic behavior of a wind turbine. Following multi-blade 
coordinate transformation, MBC3 also performs eigenanalysis, results of which are presented in different 
formats to aid modal and stability analysis. MBC3 automatically detects if optional matrices (e.g., control, 
disturbance, output, and feed-forward matrices) are present and performs multi-blade coordinate 
transformation accordingly. 

Multi-blade coordinate transformation has several applications3, but is essential to modal and stability 
analyses. Commonly, wind turbine researchers first compute the periodic state-space matrix, time-average 
it over the rotor rotational period, and then apply conventional eigenanalysis to compute modal and 
stability characteristics. Direct averaging, however, eliminates all periodic terms that contribute to system 
dynamics, thereby producing errors. While averaging itself is not always a bad approach, it must follow 
MBC. Reference [1] provides sample results that illustrate this point. Main advantages of MBC are: 
capturing cumulative dynamics of the rotor blades and its interaction with the tower-nacelle subsystem, 
well-conditioning of system matrices by eliminating non-essential periodicity, and filtering operation1. 

This guide provides step-by-step instructions on how to load system matrices from FAST to MATLAB, 
how to perform multi-blade coordinate transformation on these matrices, and how to interpret the 
transformed matrices.  The guide also describes the inputs to MBC3. The script runs fast (usually in a few 
seconds). If this guide does not help resolve a problem you may have with script execution, contact us.  In 
future, we will upgrade MBC3 so it could be directly integrated with FAST or any other aeroelastic code.
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1 Introduction 
The dynamics of wind turbine rotor blades are generally expressed in rotating frames attached to the 
individual blades. The tower-nacelle subsystem sees the combined effect of all rotor blades, not the 
individual blades. This is because the rotor responds as a whole to excitations such as aerodynamic gusts, 
control inputs, and tower-nacelle motion—all of which occur in a nonrotating frame. Multi-blade 
coordinate transformation (MBC) helps integrate the dynamics of individual blades and express it in a fixed 
(nonrotating) frame. MBC offers several benefits. First, it properly models the dynamic interaction between 
the nonrotating tower-nacelle and the spinning rotor. Second, it offers physical insight into rotor dynamics 
and how the rotor interacts with fixed-system entities, such as wind, controls, and tower-nacelle subsystem. 
Third, MBC filters out all periodic terms except those which are integral multiples of ΩN, where Ω is the 
rotor angular speed and N is the number of rotor blades. A wind turbine system is basically a periodic 
system; equations governing its dynamics show periodic parameters, which arise because of the periodic 
interaction between the rotating subsystem (rotor) and the nonrotating entities (tower, nacelle, wind, 
controls, and gravity). The blade equations usually contain all harmonics. MBC behaves as a filter, 
allowing only specific harmonics of blade motion to be felt by the fixed system. This filtering action also 
renders the system equations numerically well-conditioned; all nonessential periodic terms are eliminated. 
MBC is widely used in the helicopter field. Miller4 used it to analyze the flap-motion related stability and 
control. Coleman and Feingold5 used it to analyze the rotor in-plane motion (lag motion); it was the first 
successful attempt to understand the helicopter ground resonance problem, which had been eluding the 
earlier researchers. However, these efforts applied the MBC only in a heuristic fashion. Hohenemser and 
Yin6 provided the first mathematically sound basis. Later, Johnson3 provided a systematic mathematical 
basis and thorough exposition of the MBC. Using this mathematical basis, Bir et al7 developed a numerical 
MBC approach that could be applied to a general helicopter system governed by arbitrary degrees of 
freedom; the approach was used for stability and response analysis of several helicopters. 
Because MBC offers so many benefits, it is receiving attention in the wind turbine field. Bir and 
Butterfield8 included MBC in a stability analysis scheme and predicted an instability caused by coalescence 
between the rotor in-plane and the tower motions. They also showed how MBC provides a physical insight 
into the rotor in-plane motion. In the turbine field, Malcolm9 appears to be the first to provide a 
mathematical form of the turbine equations following application of the MBC.  His prime motivation was 
to relate the inflow characteristics with the turbine response and to extract linearized models from general 
aeroelastic codes such as ADAMS10. McCoy11 extended this effort to obtain linear time-invariant system 
equations required in the standard control design approaches. Hansen12 used MBC for improved modal 
dynamics to avoid stall-induced vibrations and later combined it with an eigenvalues approach to study the 
aeroelastic stability characteristics of a three-bladed turbine13. Riziotis et al14 applied MBC to analyze 
stability of two three-bladed turbines: one stall-regulated and the other pitch-regulated. Bir and Jonkman 
used MBC in conjunction with FAST to study aeroelastic characteristics of a 5-MW turbine in both land-
based and offshore configurations15. 
All attempts at MBC thus far, both in the helicopter and wind turbine fields, have assumed the rotor speed 
to be constant and the rotor blades to be similar. A modern wind turbine is rarely constant-speed. Also, 
turbines may not have identical blades, structurally or aerodynamically. We need an MBC approach that 
overcomes the two limitations. 

This paper provides a new MBC scheme that is applicable to a variable-speed turbine, which may also have 
dissimilar blades. The scheme also covers control, disturbance, output, and feed-forward matrices, which 
have been ignored to date. Depending on the analysis objective, wind turbine researchers may generate 
system matrices either in the first-order (state-space) form or the second-order (physical-domain) form. We 
develop MBC relations for both these forms. In literature, MBC is also referred to as the Fourier coordinate 
transformation (FCT) and as the Coleman transformation. 

Though MBC has several applications, it is essential to and mostly used for modal and stability analyses. 
Commonly, wind turbine researchers first compute the periodic state-space matrix, time-average it over the 
rotor rotational period, and then apply conventional eigenanalysis to compute modal and stability 
characteristics. The averaging, however, eliminates all periodic terms that contribute to system dynamics 
and can cause erroneous results. While averaging itself is not a bad approach, it must follow MBC1. 
Theoretically, a Floquet analysis—not averaging—must follow MBC. However, in normal cases, MBC 
eliminates the dominant periodic terms; the remaining periodic terms (N/rev, 2N/rev,..., etc. for a an N-
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bladed turbine) usually have a negligible magnitude and, therefore, direct averaging of MBC-transformed 
matrices suffices. 

Section 2 summarizes the MBC concept and how it relates the blade coordinates to rotor coordinates. 
Section 3 shows how we transform the system matrices from rotating to nonrotating (fixed) coordinates, 
which is the objective of MBC. We develop transformation relations for both first- and second-order 
matrices. Section 4 describes the inputs required by MBC3 and Section 5 explains how MBC3 is executed. 
Section 6 describes the MBC3-generated outputs; these include MBC-transformed system matrices and 
eigenanalysis results. Section 7 lists the MATLAB scripts required for MBC and identifies our website 
from which these scripts, along with sample I/O files, may be accessed. Section 8, the concluding section, 
summarizes the future plans. 

2 MBC Concept and Associated Transformation 
The turbine equations (i.e., the coupled tower-nacelle-rotor equations) are generally derived using mixed 
degrees of freedom, some of which may be in the rotating frame and the other in the nonrotating frame. 
This is sometimes desirable. For example, in some simulations studies, we may be interested in studying 
the tower response in the ground-fixed (nonrotating) frame and the blades response in their respective 
rotating frames. Often, however, we are interested in understanding the coupled behavior of tower-nacelle-
rotor system. In such cases, it is desirable to express the full system behavior in a fixed frame. MBC helps 
us achieve this through a rotating-frame to nonrotating-frame coordinate transformation. 

Consider a rotor with N blades that are spaced equally around the rotor azimuth. In such a case, the azimuth 
location of bth blade is given by 

N
bb

πψψ 2)1( −+=        (1) 

where Ψ is the azimuth of the first (reference) blade (see Figure 1 in which N, the number of blades, is 3). 
We assume that 0=ψ implies the first blade is vertically up.  

Let qb be a particular rotating degree of freedom for the 
bth blade. The MBC is a linear transformation that relates 
the rotating degrees of freedom to new degrees of freedom 
defined as follows3 
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Figure 1: Rotor nonrotating frame (XNR,YNR,ZNR) 

Mathematically, the new degrees of freedom are the projections of the blade degrees of freedom onto the 
nonrotating (fixed) frame, which is the frame (XNR, YNR, ZNR) shown in Figure 1. The axis XNR is directed 
along the shaft axis and ZNR lies in the vertical plane. In literature, 

0, , , /2nc ns N
q q q q are called nonrotating 

degrees of freedom; we call these rotor coordinates because they express the cumulative behavior of all 
rotor blades (and not individual blades) in the fixed frame. The physical interpretation of each rotor 
coordinate depends on the degree of freedom it refers to. For example, if qb is a flap degree of freedom, 
then q0 is the rotor coning, q1c is the rotor tip-path-plane fore-aft tilt about an axis that is horizontal and 
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normal to the rotor shaft, and q1s is the rotor tip-path-plane side-side tilt about an axis that is vertical and 
normal to the rotor shaft. If qb is a lag degree of freedom, then q0 is the rotor collective lag, q1c is the 
horizontal displacement of the rotor center-of-mass in the rotor plane, and q1s is the vertical displacement of 
the rotor center-of-mass in the rotor plane8. Other degrees of freedom may be interpreted using equations 
(2) and drawing supporting sketches. The rotor modes corresponding to qnc and qns (n>1) and qN/2 are called 
reactionless modes because they do not cause any transference of moments or forces from the rotor to the 
hub (fixed frame). The value of n goes from 1 to (N-1)/2 if N is odd, and from 1 to (N-2)/2 if N is even. The 
qN/2 mode, called the differential mode, exists only if the number of blades is even3. 

Most of the wind turbines in the world are three-bladed. Therefore, we will assume N to be 3 in the rest of 
this paper. The formulation developed in the paper for N=3, however, is general and can be readily 
extended for more blades. Setting N=3 in equations (2), we obtain 
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We will call q1c the cosine-cyclic mode and q1s the sine-cyclic mode. These two cyclic modes, together 
with the coning mode, q0, lead to coupling of the rotor with the rest of the turbine.  Equations (3) determine 
the rotor coordinates, given the blade coordinates. The inverse transformation, yielding the blade 
coordinate given the rotor coordinates, is 

3,2,1;sincos0 =++= bqqqq bsbcb ψψ   (4) 
 

3 Transformation of System Matrices 
Most aeroelastic codes generate linear equations in the second-order form and, if required (for 
controls, for example), transform these to a first-order form. We derive MBC relations for both 
the second- and first-order systems. 

3.1 Second-Order System Matrices 
Second-order system equations may be written as 

wFFuKXXCXM d+=++  (5a) 

and the associated output equations as 
wDDuXCXCY ddv +++=  (5b) 

where M, C, K, F, and Fd are respectively the mass, damping, stiffness, control, and disturbance matrices. 
The u and w are respectively the control and disturbance vectors. The size of the M, C, and K matrices is 
n×n, where n is the number of system degrees of freedom. The size of the u, w, and Y vectors is and 
respectively, where nc is the number of control variables, nw is the number of disturbance states, and no is 
the number of outputs. Note that the C matrix contains gyroscopic terms in addition to the structural 
damping terms, even though we designate it as a damping matrix. Similarly, K contains centrifugal terms in 
addition to the structural and aerodynamic stiffness terms. Also, each of these matrices contains direct and 
cross-coupling terms. For example, M contains direct blade inertias as well as blade-tower coupling 
inertias. However, the formulation we develop does not require a user to explicitly partition any of the 
matrices into sub-matrices delineating direct and cross-coupling terms. The partitioning is implicit in the 
definition of the coordinates vector X (also called the physical vector in literature). Assume that X is 
expressed as 
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where XF is a nF×1 column vector representing the nF fixed-frame-referenced degrees of freedom and 
j

bq is the jth rotating degree of freedom for the bth blade. As is evident from (6), m is the number of rotating 
degrees of freedom for each blade. Thus the length n of vector X thus equals nF+3m, the total number of 
degrees of freedom for the full system. Most often, aeroelastic codes, e.g. FAST, assume that the physical 
vector has the form (6). If not, we can always perform simple rows and columns exchange to transform 
system equations (5) such that the physical vector X assumes the form (6). 
There are two methods to transform equations (5) to the nonrotating frame: the operational method and the 
substitution method3. In the operational method, we apply the following summation operators to the 
rotating-frame equations of motion: 
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where rot-eqns refers to the rotating-frame equations of motion. Note the similarity of summation operators 
in equations (3) and (7). To accomplish these operations, we first need that the rot-eqns are available in an 
analytical form showing all periodic terms explicitly; the periodic terms involve trigonometric functions of 
sin(kΨb) and cos(kΨb) terms, where k in general can have any integer value depending on the system. First, 
we must express all products of trigonometric functions as sums of trigonometric functions. Next, we must 
perform cumbersome operations to ensure that the value of each n in these trigonometric functions satisfies 
the requirements of equations (3). Finally, we use transformation (3) to convert the rot-eqns to the 
nonrotating frame. The operational method is thus quite tedious and applicable only if we have equations of 
motion available in an analytical form. 

All aeroelastic codes generate equations of motion in a numerical form and, therefore, are not amenable to 
the operational method. We must instead use the substitutional method. In this method, we substitute the 
rotational degrees of freedom with the rotor coordinate using equation (4). If we do so, the three rotational 
degrees of freedom ( jq1 , jq2 , jq3 ), corresponding to the jth degree of freedom for each of the three blades, 

may be transformed to nonrotating coordinates ( jq0 , j
cq , j

sq ) using the following relation: 
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Using (8), the full-system rotating-frame degrees-of-freedom vector, X , is expressed in terms of the 
nonrotating-frame degrees-of-freedom vector, XNR, as follows 

  NRXTX 1=   (10) 

where T1 is the block diagonal matrix: 
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Taking the first and second time derivatives of the two sides of equation (10), we obtain 

NRNRNR
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XTTXTXTX

XTXTX

)(2 23
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 (13) 

where Ω is the rotor angular velocity and Ω is the rotor angular acceleration. The T2 and T3 transformation 
matrices are given by 
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Substituting for X and its time derivatives from equations (10) and (13) in equations (5a) and (5b), we 
obtain the system equations of motion in the nonrotating frame as 

wFuFXKXCXM NRdNRNRNRNRNRNRNRNR +=++  (17) 

and 
wDuDXCXCY NRdNRNRNRNRdNRNRvNR +++=   (18) 

The subscript NR identifies the associated quantity to be in the nonrotating frame. The various matrices 
appearing in equations (17) and (18) are as follows 
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Note that the variable-speed operation affects only the stiffness matrix. Also, the disturbance matrix stays 
unchanged; this is because the disturbance w is already in the nonrotating frame. If Fc and mc are the 
number of controls in the fixed and rotating frames respectively, then the control vectors u and uNR are 
related as follows: 

  NRcuTu 1=    (20) 

where 
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where Fo and mo are the number of outputs in the fixed and rotating frames respectively. Note that 
Fc+3xmc equals nc, the total number of control variables. Similarly, Fo+3xmo equals no, the total number of 
disturbance states. In summary, following the application of MBC, the rotating-frame second-order 
equations (5a) and (5b) are transformed to the nonrotating-frame equations (17) and (18).  

3.2 First-Order System Matrices 
First-order system equations are generally expressed as 

   wBBuAzz d++=     (24) 

where z is the state-space vector. The A, B, and Bd are respectively the system dynamics, control, and 
disturbance matrices. The u and w are the control and disturbance vectors. The associated output equations 
are 

 wDDuCzY d++=   (25) 

The size of the A matrix is N×N, where N is the number of system states. The size of the u, w, and Y 
vectors is and respectively, where nc is the number of control variables, nw is the number of disturbance 
states, and no is the number of outputs. From this information, the sizes of the remaining matrices can be 
readily inferred. These sizes are listed later in the guide (see Table 1).The state-space vector, z, is related to 
the physical vector, X, as follows: 
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Using equations (26), (8-16) and (20-23), equations (24) and (25) are transformed to the nonrotating frame 
as follows: 

wBuBzAz NRdNRNRNRNRNR ++=  (27) 

and 
wDuDzCY NRdNRNRNRNRNR ++=  (28) 

The subscript NR identifies the associated quantity to be in the nonrotating frame. The various matrices 
appearing in equations (27) and (28) are as follows 
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In summary, following the application of MBC, the rotating-frame first-order equations (24) and (25) are 
transformed to the nonrotating-frame equations (27) and (28). Also, note that the dynamics matrix, A, is 
influenced by the variable rotor speed. 

4 Input Description 
MBC3 is a post-processor for FAST; its inputs come from a FAST output file. Typically, for a 
given wind turbine model, a user first runs FAST with the option to generate state-space matrices. 
These matrices and other ancillary data are stored in a FAST output file named *.lin, where * 
represents the name (without extension) of the input file supplied by the user to FAST. Thus if 
test01.fst is the name of the user input file to FAST with an option to generate linear model, then 
FAST would generate an output file named test01.lin (suffix ‘.lin’ is automatically appended by 
FAST). This file contains system matrices at each of the NΨ azimuth steps; NΨ is specified by the 
user via the parameter NAzimStep in the FAST input file. The FAST output file also contains the 
vector Ψ, which is the vector of reference-blade azimuth positions at the NΨ  steps. The reference 
azimuth, ψ, is defined via Equation (1). The user then loads the *.lin file into MATLAB using the 
GetMats command (see next section). The loaded file includes data items that MBC3 uses as 
inputs. Table 1 lists these inputs and their descriptions. 

Table 1. Inputs to MBC3 

Input 
parameter 

Description See 
Eqn. 

Symbol Size 

NActvDOF Number of degrees of freedom 5a n scalar 

N Number of states 24 N scalar 

NAzimStep Number of azimuth steps at which system matrices 
are input 

- NΨ scalar 

Azimuth Vector of azimuth positions, in degrees, of the 
reference blade (i.e. blade 1) at which system 
matrices are input 

- Ψ NΨ 

Omega Vector of rotor speeds at specified azimuths 
(rad/sec) 

19 Ω  NΨ 

OmegaDot Vector of rotor accelerations at specified azimuths 
(rad/sec2) 

19 Ω  NΨ 

AMat First-order system matrices at NΨ azimuth locations 24 A N×N×NΨ 

BMat First-order control matrices at NΨ  azimuth 
locations 

24 B N×Nc×NΨ 
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BdMat First-order disturbance matrices at NΨ  azimuth 
locations 

24 Bd N×Nw×NΨ 

CMat First-order output matrices associated with states at 
NΨ  azimuth locations 

25 C No×Nc×NΨ 

DMat Output matrices associated with controls at NΨ  
azimuth locations 
(same for first- and second-order systems) 

5b & 
25 

D No×Nc×NΨ 

DdMat Output matrices associated with disturbances at NΨ  
azimuth locations 
(same for first- and second-order systems) 

5b & 
25 

Dd No×Nw×NΨ 

MassMat Second-order system mass matrices at NΨ  azimuth 
locations 

5a M n×n×NΨ 

DampMat Second-order system damping matrices at NΨ  
azimuth locations 

5a C n×n×NΨ 

StffMat Second-order system stiffness matrices at NΨ  
azimuth locations 

5a K n×n×NΨ 

FMat Second -order control matrices at NΨ  azimuth 
locations 

5a F n×Nc×NΨ 

FdMat Second-order system disturbance matrices 5a Fd n×Nw×NΨ 

VelCMat Second -order output matrices associated with 
velocities at NΨ  azimuth locations 

5b Cv No× n×NΨ 

DspCMat Second -order output matrices associated with 
displacements at NΨ  azimuth locations 

5b Cd No×n×NΨ 

RotTriplet-
IndicesStates 

The ith row in this matrix identifies the ith rotating –
frame dof associated with blades 1, 2, and 3  

-- -- m×3 

RotTripletInd
-icesCntrlInpt 

The ith row in this matrix identifies the ith rotating-
frame control associated with blades 1, 2, and 3  

-- -- mc×3 

RotTripletIn-
dicesOutput 

The ith row in this matrix identifies the ith rotating-
frame output associated with blades 1, 2, and 3 

-- -- mo×3 

In the above Table, the 1st column lists the names of the inputs required by MBC3. It should be 
emphasized that the user does not explicitly input any of the parameters; these are loaded 
automatically into MATLAB via the command GetMats. The 2nd column provides a brief 
description of the input parameters. Entries in the 3rd and 4th columns refer to equation numbers 
and symbols used in this guide for the various parameters. The last column lists the sizes of these 
parameters. The sizes of the various matrices are automatically identified by the MBC3 code and 
checked to ensure compatibility with inputs n and N. As described in Section 4, n equals nF+3m, 
where nF is the degrees of freedom referenced to the fixed frame and m is the number of rotating 
degrees of freedom for each blade. Nc is the total number of control parameters, which equals 
Fc+mc, where Fc is number of controls referenced to the fixed frame and mc is the number of 
controls referenced to each rotating-blade frame. No is the total number of outputs, which equals 
Fo+mo, where Fo is number of outputs referenced to the fixed frame and mo is the number of 
outputs referenced to each rotating-blade frame. 

Note that all inputs to MBC3, listed in the first column of Table 1, must come from the FAST-
generated *.lin output file. In general, however, some inputs to MBC3 may not be available in the 
FAST output file. For example, a user may execute FAST with options to generate only first-
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order matrices and exclude disturbances. In such a case, second-order matrices as well as 
disturbance-related matrices (BdMat and DdMat) will not appear in the FAST output file. MBC3 
automatically detects which optional matrices (e.g., control, disturbance, output, and feed-forward 
matrices) are present or not and performs multi-blade coordinate transformation accordingly. 

The user should also note that FAST always generates the first-order system matrix, AMat, even 
if only a second-order system analysis is requested. 

5 Executing MBC3 
As described in the previous section, inputs to MBC3 come from FAST output. A user first runs 
FAST with the option to generate state-space matrices. These matrices and other ancillary data 
are stored in a FAST output file named *.lin, where * represents the name (without extension) of 
the input file supplied by the user to FAST. Thus if test01.fst is the name of the user input file to 
FAST with an option to generate linear model, then FAST would generate an output file named 
test01.lin (suffix ‘.lin’ is automatically appended by FAST). The user then performs the following 
simple steps: 

Step 1: Open MATLAB (ensure that paths have been set to directories where MBC3-relaed 
scripts and FAST output files reside). Issue the command: 

GetMats 

The following message will appear in the workspace screen followed by a prompt sign. 

ENTER: 

------------------------------------------------- 

Name of FAST linearization output file to process 

(omit the .lin extension when entering the name)  

<--------------------------------------------------- 

< 

At the prompt sign, type the name of the FAST output file that without the extension .lin. Thus, if 
test01.lin is the name of the FAST output file, you would type 

test01 

To confirm if the inputs listed Table 1 have been loaded successfully into MATAB, type who and 
check the parameters that appear in the workspace.  

Step 2: Issue the command: 

mbc3 

If the MBC execution is successful, the following message will appear in the workspace screen: 

   Multi-Blade Coordinate transformation completed 

Type who to confirm that the MBC-related outputs, described in the next section, have been 
generated. 

Next, should you be interested in azimuth-averaged first-order system matrix and associated 
eigenanalysis results, type  

cce 
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Note that azimuth-averaging of system matrices zeros out all periodic terms; which is equivalent 
to retaining just the constant-coefficient terms in the system equations. In literature, therefore, this 
operation is often referred to as the constant-coefficient equations (CCE) approximation. After 
you have issued the cce command and the constant-coefficient-approximation eigenanalysis is 
successful, the following message will appear: 

   cce.m completed 

Note that cce performs eigenanalysis only on the first-order system matrix, A. Type who to 
confirm if the cce-related outputs, listed in Table 3, are generated. 

Note that after you have loaded FAST-generated variables into MATLAB (using the GetMats 
command), you have three options to issue further commands: execute only mbc3, execute only 
cce, or execute both mbc3 and cce (the sequence is immaterial). If you choose the last option, 
outputs generated from each command, together with the original inputs, will be present in the 
MATLAB workspace. The next section describes the outputs generated by mbc3 and cce 
commands.. 

6 Output Description 
The command mbc3, described in the previous section, generates two sets of outputs: a) MBC-
transformed matrices and b) eigen-results associated with the azimuth-averaged MBC-
transformed system matrices. These outputs are listed in Table 2. 

 
Table 2. MBC3-Generated Outputs 

Output Parameter Description Symbol See 
Eqn. 

Size 

MBC_A MBC-transformed first-order system 
matrices at NΨ  azimuth locations 

ANR 27 N×N×NΨ 

MBC_AvgA MBC-transformed first-order system 
matrix (azimuth-averaged) 

-- -- N×N 

MBC_B MBC-transformed first-order control 
matrices at NΨ  azimuth locations 

BNR 27 N×Nc×NΨ 

MBC_Bd MBC-transformed first-order 
disturbance matrices at NΨ  azimuth 
locations 

BdNR 27 N×Nw×NΨ 

MBC_C MBC-transformed output matrices, 
associated with states, at NΨ  azimuth 
locations 

CNR 28 No×N×NΨ 

MBC_D MBC-transformed output matrices, 
associated with controls, at NΨ  azimuth 
locations 

DNR 28 No×Nc×NΨ 

MBC_Dd MBC-transformed output matrices, 
associated with disturbances, at NΨ  
azimuth locations 

DdNR 28 No×Nw×NΨ

MBC_M MBC-transformed mass matrix at NΨ  
azimuth locations 

MNR 17 n×n×NΨ 

MBC_Dmp MBC-transformed damping/gyroscopic CNR 17 n×n×NΨ 
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matrix at NΨ  azimuth locations 

MBC_K MBC-transformed stiffness matrix at NΨ  
azimuth locations 

KNR 17 n×n×NΨ 

MBC_F MBC-transformed second-order control 
matrices at NΨ  azimuth locations 

FNR 17 n×Nc×NΨ 

MBC_Fd MBC-transformed second-order 
disturbance matrices at NΨ  azimuth 
locations 

FdNR 17 n×Nw×NΨ 

MBC_Vc Second -order output matrices associated 
with velocities at NΨ  azimuth locations 

CvNR 18 No× n×NΨ 

MBC_Dc Second -order output matrices associated 
with displacements at NΨ  azimuth 
locations 

CdNR 18 No×n×NΨ 

MBC_DampedFrequency MBC-transformed and azimuth-
averaged system damped frequencies 
in rad/sec 

-- -- M×1 

MBC_DampedFrequencyHz  MBC-transformed and azimuth-
averaged system damped frequencies 
in Hz 

-- -- M×1 

MBC_DampingRatio MBC-transformed and azimuth-
averaged system damping ratios 

-- -- M×1 

MBC_DecrementRate MBC-transformed and azimuth-
averaged system decrement rates 

-- -- M×1 

MBC_EigenVects MBC-transformed and azimuth-
averaged system eigenvectors 

-- -- N×N 

MBC_Evals MBC-transformed and azimuth-
averaged system eigenvalues 

-- -- N×1 

MBC_ModeShapeMagnitude MBC-transformed and azimuth-
averaged system modal amplitudes 

-- -- n×M 

MBC_ModeShapePhaseDeg  MBC-transformed and azimuth-
averaged modal phases (deg) 

-- -- n×M 

MBC_NaturalFrequency MBC-transformed and azimuth-
averaged natural frequencies in 
rad/sec 

-- -- M×1 

MBC_NaturalFrequencyHz MBC-transformed and azimuth-
averaged natural frequencies in Hz 

-- -- M×1 

cc MBC-transformed and azimuth-
averaged system eigenvalues 
(showing complex conjugate 
eigenvalues only with non-negative 
imaginary parts) 

-- -- M×1 

MBC_eigenVects MBC-transformed and azimuth-
averaged system eigenvectors 

-- -- n×M 
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associated with MBC_eigenVals 

Symbols in the fifth column identify sizes of the MBC3-generated outputs. All symbols, except 
M, are defined in Section 4. Before we define M, note that eigenvalues of a real system matrix 
appear as real or as complex conjugate values. A pair of complex conjugate eigenvalues refers to 
the same mode. Only one of these conjugate eigenvalues, say the eigenvalue with the positive 
imaginary part, suffices to yield modal frequency and damping; the other eigenvalue, the one with 
the negative imaginary part, does not provide any additional information. Accordingly, we output 
eigen-results corresponding to only those eigenvalues which are either real or have positive 
imaginary parts. Now, we are ready to define M; it equals N-mn, where mn is the number of 
eigenvalues with negative imaginary parts. Thus, elements of vectors MBC_DampedFrequency, 
MBC_DampedFrequencyHz,  MBC_DampingRatio, MBC_DecrementRate, MBC_NaturalFrequency,  
MBC_NaturalFrequencyHz, and MBC_eigenVals correspond to those eigenvalues whose imaginary 
parts are either zero or positive.  

The command cce, as described in the previous section, generates azimuth-averaged system 
matrix A and its eigen-results. Table 3 lists these outputs. 

 
Table 3. CCE-Generated Outputs 

Output Parameter Description Size 

AvgEigenvectors  Eigenvectors of azimuth-averaged system matrix N×N 

AvgEvals Eigenvalues of azimuth-averaged system matrix N×1 

AvgeigenVects Eigenvectors of azimuth-averaged system matrix n×M 

AvgeigenVals Eigenvalues of azimuth-averaged system matrix M×1 

AvgDampedFrequency  Damped frequencies of azimuth-averaged system matrix (rad/s) M×1 

AvgDampedFrequencyHz Damped frequencies of azimuth-averaged system matrix (Hz) M×1 

AvgNaturalFrequency Natural frequencies of azimuth-averaged system matrix (rad/s) M×1 

AvgNaturalFrequencyHz Natural frequencies of azimuth-averaged system matrix (Hz) M×1 

AvgDecrementRate Decrement rates of azimuth-averaged system matrix M×1 

AvgDampingRatio Damping ratios of azimuth-averaged system matrix M×1 

AvgModeShapeMagnitude Modal amplitudes of azimuth-averaged system matrix n×M 

AvgModeShapePhaseDeg Modal phases of azimuth-averaged system matrix (deg) n×M 

The decrement rates, listed in Tables 2 and 3, are simply the negatives of the real parts of the 
associated eigenvalues. We recommend that these rates be used while presenting stability analysis 
results. Alternately, damping ratios may be used. However, problem can arise if an eigenvalue 
has zero imaginary part (i.e., it represents a rigid-body mode); in such a case, the damping ratio 
would be either infinity or indeterminate. 

7 Downloading and Verifying MBC-Specific Files 
MATLABS scripts required to carry out the MBC operation are mbc3.m, eianalysis.m, 
get_new_seq.m, and row_col_xtion.m. The mbc3.m is the main script and calls the other three. 
The script GetMats.m is required to load select contents of the FAST-generated linear-data output 
file to the MATLAB workspace. The cce.m script is not required for MBC. It is, however, 



 

 16

included to allow an interested user to obtain eigen-results of an azimuth-averaged system matrix. 
The cce.m script calls eianalysis.m to perform eigenanalysis. These scripts, along with sample I/O 
files and this manual, may be downloaded from our website: 

http://wind.nrel.gov/designcodes/postprocessors/ 

If the download is successful, you should see the main folder named MBC and two subfolders 
named Source and CertTest. The main folder contains the user’s manual. The Source subfolder 
contains the MATLAB scripts required for MBC and CCE operations. The CertTest subfolder 
contains a test input file named test01.lin and a subfolder named TestFiles. The file test01.lin was 
generated by FAST with options to output 1st-order state matrices including control, disturbance 
and output matrices. You may open this file to examine these matrices and supporting 
information describing state vectors, number of azimuth steps, etc (for a description of the 
contents of this file, see FAST user’s manual, which is available on our website). Currently, we 
have only one test input file; we will include more in the future. The subfolder TestFiles contains 
the output file Filetest01.mat, which is a MATLAB binary file generated using the sequence of 
commands GetMats, mbc3, and cce described in Section 5. If you are curious, you may load this 
file into MATLAB and examine its contents (Tables 1-3 provide a description of these contents). 

To verify that you have successfully loaded the required files, set the pathname to the CertTest 
subfolder in your MATLAB workspace. Next issue the command: CertTest. This command 
performs MBC and CCE operations and compares the outputs resulting from these operations 
with those in the provided Filetest01.mat output file. The results of this comparison are displayed 
in the MATLAB workspace. ‘No difference’ displayed for all variables implies successful 
verification. Now you may use FAST to generate state matrices for a turbine of your interest and 
follow steps described in Section 5 to perform MBC or CCE or both. 

 

8 Future Plans 
Though the MBC formulation developed in this paper assumes a three-bladed turbine, the 
formulation is general enough to be readily extendable to a turbine with more than three blades. 
In future, depending on demand by the users, we will update both the theory basis and the scripts 
to accommodate rotors with three or more blades. Note that we will exclude two-bladed rotors 
because, even though an MBC-like transformation is theoretically possible for a two-bladed rotor; 
such a transformation will not provide any of the benefits listed in Section 1. 

As mentioned earlier, the current MBC scripts work with FAST only. The future versions will 
accept data (state matrices, etc) from any rotary-system aeroelastic code. We will also write a 
FORTRAN-based MBC utility and integrate it into FAST. This will allow a user to invoke MBC 
operation directly from the FAST input file. 

Finally, we will update the theory basis to explain the filtering operation of MBC and include 
additional I/O files to demonstrate this operation. We will also include results to show application 
of MBC to rotor with dissimilar blades. 
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