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Motivation

• Most aggressive target of FreedomCAR program is the 
cost (2020 target is $8/kW for a 55 kW traction system).

• Meeting the cost target is critical for greater penetration of 
the vehicles market .

• NREL’s Advanced Power Electronics team is working on 
next-generation advanced cooling technologies 
(jets/sprays/micro-channels with single or two-phase) and 
novel packaging topologies.

• Advanced cooling technologies are used in conjunction 
with novel packaging topologies for identifying low-cost 
materials for cost (and weight) reductions while meeting 
the targets of performance and reliability.



Description of Technology
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Topologies

Baseline Topology
Topology 1 (very similar to the 
baseline topology, which uses 
Thermal Interface Material)

Topology 2 (Base plate cooling; does 
not involve Thermal Interface Material) Topology 3 (Direct Cooling of Direct 

Bonded Copper)



Thermal Materials Exploration Study – Steps

Thermal Materials Exploration Study

Part 1:

Exploring tradeoffs between 
thermal performance and 
cost for several topologies 

Part 2:
Evaluation of Thermal 

Stress and
Reliability Aspects 

Part 3:
Emerging technologies:  
1)LTCC substrates 
2)Organic substrates

• Performance: Peak temperatures of the switching devices (IGBTs and 
diodes) need to be below 150oC.

• Reliability: Power electronics need to meet life-cycle target of 15 years.



Thermal Materials Exploration Study – Comments

• Two layers that have potential opportunities for cost 
reduction are the substrate and the cold plate.

• Today’s preferred substrate, Aluminum Nitride (AlN) is 
expensive. 

• Low-cost LTCC technology has been well demonstrated in 
automotive electronics applications. Several issues, 
notably thermal disadvantages have slowed down the 
spread of this substrate technology [1].

• Silicon nitride (SiN) as a substrate would make economic 
sense if the cost is reduced to $5 per pound [2].

1. Fairchild, M.R., Snyder, R.B., Berlin, C.W., and Sarma, D.H.R., “Emerging Substrate 
Technologies for Harsh-Environment Automotive Electronics Applications,” SAE 2002-01-
1052.

2. Das, S., and Curlee, T.R., “The Cost of Silicon Nitride Powder: What Must It Be To 
Compete?” 1992, ORNL-6694.



Materials Exploration – Topology 1

Alternate materials are explored for each layer



Verification of CFD Model with Test

CFD Test

Average Heat 
Transfer Coefficient 

(W/m2.K) 
18,350 18,481

CFD (using Fluent) Test



”What-If” option of Design Explorer in “ANSYS 
Workbench Thermal Simulation” is used to 
automate materials exploration studies

Heat Transfer Coefficient = 18,350 W/(m^2.K)

Coolant Temperature = 105 oC

Heat load per IGBT heat load = 85 WHeat Load per Diode = 35 W

Thermal Conductivity is varied 
for all the layers according to 

the material

kcoldplate  ksolder  ksubstrate  kbaseplate

Bulk material costs are 
assigned on a volumetric 

basis 



Materials combination for cost reduction – Topology 1

Low-cost combination that meets the 
performance target (Cu-Mo, Graphite, 
SiN-Ideal)

Cost -> 842   Peak Temp -> 142 OC

Low-cost combination that meets the 
performance target (Cu-Mo, Graphite, 
Alumina, an LTCC substrate)

Cost -> 889   Peak Temp -> 149 OC



Substrate Materials for Cost Reduction – Topology 1
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Base Plate Materials for Cost Reduction – Topology 1
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Materials Exploration – Topology 2

• First level text – Arial 28 pt.
– Second level text – Arial 28 pt.

• Third level text – Arial 24 pt.
– Fourth level text – Arial 22 pt.

• Fifth level text – Arial 20 pt.

Base Plate Cooling



Materials Combination for Cost Reduction – Topology 2

Low-cost combination that meets the 
performance target (Cu-Mo, SiN-
Ideal)

Cost -> 662   Peak Temp -> 132 OC

Low-cost combination that meets the 
performance target (Cu-Mo, Alumina, 
an LTCC substrate)

Cost -> 682 Peak Temp -> 148 OC

Cost with Topology 1 -> 889



Substrate Materials for Cost Reduction – Topology 2
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Materials Exploration – Topology 3

Direct Cooling of Direct Bonded Copper



Materials Combination for Cost Reduction – Topology 3

Low-cost combination that meets the 
performance target (SnPb(63/37), 
SiN-Ideal)

Cost -> 339   Peak Temp -> 130 OC

Low-cost combination that meets the 
performance target (SnPb(63/37), 
Alumina, an LTCC substrate)

Cost -> 354 Peak Temp -> 149 OC

Topology 1 -> 889, Topology 2 -> 682



Substrate Materials for Cost Reduction – Topology 3

Silicon nitride, ideal

Alumina, an LTCC substrate
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Topology Effect on Junction Temperature 
Effect of Topology on Peformance
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Thermal Resistances – Contributions

100% 68% 61% 

Opportunity for further reduction in thermal 
resistance through surface enhancement



Surface Enhancement
U = h . A

U = h . 3 A

U = (2.2 h) . A

Effective area would be less than 3. Let’s assume it’s about 2.2:

U = h . (2.2 A) (in the test)

(for modeling purposes)

The assumption above might be all right for a first order approximation:

Baseline, h = 18, 350 W/(m2.K)     

Enhanced, h = 2.2 * h = 2.2 * 18, 350 = 40,000 W/(m2.K)

Targeted surface area enhancement is about 3



Combined Effects of Topology and Cooling Technology 
on Junction Temperature

Combined Effects of Topology and Cooling Technology on Performance
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Conclusions and Future Studies

• Advanced thermal control (advanced cooling technologies 
and novel packaging topologies) helps to meet 
FreedomCAR program’s key target of cost.

• Direct Backside Cooling (Topology 3) has the greatest 
potential for cost reduction.

• Using Advanced Thermal Control, low-cost LTCC 
substrate (alumina) has the potential to replace the 
traditional, more expensive HTCC substrate, AlN.

• Surface enhancement provides further opportunity for 
performance enhancement .

• Future studies would involve reliability aspects and 
emerging substrate technologies (LTCC and Organic).
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