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ABSTRACT 
 
The measurement of solar radiation to characterize the solar 
climate for renewable energy and other applications is a 
time-consuming and expensive operation. Full climate cha-
racterization may require several decades of measure-
ments—a prospect that is not practical for an industry intent 
on rapid deployment of solar technologies. This study de-
monstrates that the consistency of the solar resource in both 
time and space varies widely across the United States. The 
mapped results here illustrate regions with high and low 
variability and provide readers with quick visual informa-
tion to help them decide where and how long measurements 
should be taken for a particular application. The underlying 
data that form these maps are also available from the Na-
tional Renewable Energy Laboratory to provide users the 
opportunity for more detailed analysis. 
 
 
1.  INTRODUCTION 
 
The characterization of the solar resource is often consi-
dered only in terms of magnitude—how much solar energy 
is available at an area of interest over a specific time period. 
But a complete characterization includes the variability of 
available solar radiation over time, whether it is on the scale 
of one second to the next, one day to the next, one season to 
the next, or even one decade to the next. One can also con-
sider variability of the solar resource in space—how it va-
ries over distance. Both of these realms are driven by cli-
mate and its myriad complexities—primarily the amount 
and type of clouds and how they vary. Atmospheric forces 
and constituents have a strong impact on the solar radiation 
absorbed, reflected, or otherwise prevented from reaching 

the surface of the earth, and as the climate varies, so does 
the solar radiation available for a solar energy venture. 
 
Knowledge of this variability is important for improving the 
design of a system (by adding properly sized storage capa-
bilities, for instance) and understanding the performance of 
a solar conversion system (e.g., understanding how the ex-
tremes can enhance or degrade system performance or dur-
ing which season they occur most frequently). Still, long 
before that, knowledge of the resource variability could pro-
vide critical information for determining how long and 
where to conduct a measurement campaign to provide data. 
That concept is the focus of this paper.  
 
For solar energy applications, the literature is currently very 
limited on the topic of solar irradiance variability at the re-
gional or continental scale, and it is usually limited even 
further to global horizontal irradiance (GHI). See, for exam-
ple, [1–5]. This provided the impetus for the research de-
scribed here. In a previous phase of this investigation [6], 
these authors showed that the resource in direct normal irra-
diance (DNI) is always substantially more variable than that 
in GHI, thus corroborating other reports (e.g., [7] and [8]). 
An important finding of that phase of the study showed that 
the long-term annual average GHI could be estimated within 
±5% after only one or two years of local measurements. In 
contrast, a similar approximation of the long-term annual 
average DNI could take 10–15 years. Furthermore, if a sin-
gle year of DNI measurement is by chance performed dur-
ing the climatological best period, the annual DNI can be 
typically too optimistic by about 8% to 15%, depending on 
location. Similarly, if it is performed by chance during the 
climatological worst year, it can be too pessimistic by about 
13% to 23%. (Variance in cloudiness affects good years and 



bad years in roughly equal amounts, but additional aerosol 
burdens from volcanic activity can only lower DNI—hence, 
the stronger variability effect during bad years.) 
 
Although modeled solar data are commonly available, the 
source of data with the lowest uncertainty is generally ob-
tained from radiometers located at a target location. Data 
sets spanning decades are not only accurate measures of the 
magnitude but also a definitive source of data to determine 
variability. A single year of data—no matter how accurate—
cannot assume to represent all years by any statistical meas-
ure (especially for DNI) because climate factors influence 
radiation differently each year. However, if advance know-
ledge indicates an area of interest has low interannual varia-
bility, one could reason that a shorter period of time could 
yield a data set likely to hold means and variability similar 
to those seen over longer time spans. Likewise, knowledge 
of lower spatial variability could provide justification for 
using a solar resource data set from the measurement loca-
tion for a location some distance away. Because of the high 
cost of solar measurements, these are attractive prospects. 
Knowledge of variability then becomes valuable when de-
ciding how long to make measurements at a particular loca-
tion and whether the character of the solar resource at that 
location can be extended to other nearby locations. 
 
 
2. METHODOLOGY FOR IRRADIANCE VARIABLITY 
ANALYSIS 
 
Eight years (1998–2005) of data from the National Solar 
Radiation Database (NSRDB) [9] have been analyzed in 
both realms of temporal and spatial variability. The analysis 
summarizes the values in each 10-x-10-km cell of the satel-
lite-derived irradiance data in the NSRDB (derived from the 
State University of New York at Albany model, hereafter 
SUNY model) and calculated monthly mean daily totals, 
annual mean daily totals, and the mean daily total for the 
entire eight-year period.  
 
2.1 Temporal Variability 
 
For each cell, eight annual values are used to calculate a 
coefficient of variation (COV). The eight-year mean irra-
diance <Ep> and each annual value Ei are used to derive the 
standard deviation of the data set, according to  
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The temporal COV is 
 
 Ct = σt / < Ep >. 
 
The COV in this report are expressed as percentages. Al-
though the actual scatter in the data is likely larger than 
what the COV indicates, the COV expresses the likelihood 
of data falling within the resulting value range around the 
mean. More specifically, outlier years could exceed the 
range defined by <Ep> ±σt because, by assuming a Gaussian 
distribution of the monthly or annual total irradiance, there 
is only a 66% likelihood that measurements for any given 
year will be within the distance from the mean just stated. 
Alternatively, one can assume a 95% likelihood that the 
individual data points are within a range twice as wide (i.e., 
<Ep> ±2σt). For applications in which so-called “bankable 
data” are required, and only a 5% margin of error is admiss-
ible, the use of the 95% confidence rule is highly recom-
mended. This translates into doubling all the COV numbers 
provided here. 
 
Using results from the NSRDB, the analysis just described 
was performed for DNI and for a global tilt irradiance (GTI) 
modeled for a surface tilted at the location’s latitude [10]. 
GTI is a combination of DNI and diffuse irradiance, which 
normally varies in opposition to DNI. Therefore, GTI’s va-
riability must be lower than that of DNI.  
 

 
 
Fig. 1: Interannual COV for DNI. Note similar patterns with 
GTI in Fig. 2, but higher magnitude for DNI by about a fac-
tor of two. 
 
 
 



 
 
Fig. 2: Interannual COV for GTI. See comment under Fig. 
1. 
 
To understand the variability in a seasonal scope, the 
process was repeated on monthly bins of data (e.g. the eight  
 

Januaries, Februaries, etc.). The results, expressed as per-
centages, represent a measure of the variability in the solar 
resource over time at the cell’s geographic location. The 
resulting COV for DNI and GTI for all cells plotted as con-
tour maps of the United States are shown in Figs. 1 and 2, 
respectively, providing a quick visual measure of differenc-
es in interannual variability for a 66% confidence level. The 
DNI temporal COV for the 48 United States for this analysis 
ranges from a low of 0.49% in south-central Washington 
State to a high of 15.8% in northwest Washington State—an 
interesting contrast of climate within a single state. See dis-
cussion in Section 3.  
 
Although the geographical patterns of temporal variability 
between DNI and GTI are very similar, the magnitude of  
the variability in DNI is about twice that in GTI, thus con-
firming an earlier report, which was based on a longer, 30-
year dataset [8]. Similar plots for the monthly DNI and GTI 
temporal COV are shown in Figs. 3 and 4, respectively. 
Note the significant changes in the pattern of variability 
among months, with a strong seasonal modulation (summer 
versus winter). 

 

 
 
Fig. 3: DNI interannual COV by month. 

 



 
 
Fig. 4: GTI interannual COV by month.

2.2 Spatial Variability 
 
The eight-year daily total means for each 10-x-10-km cell 
can also be compared with a matrix of surrounding cells to 
determine the variability of the solar resource within the 
matrix, as depicted in Fig. 5. 
 

 
 
Fig. 5: 3x3 grid layout with anchor cell in the center and 
eight surrounding neighbor cells. 
 
Here, the standard deviations of the surrounding cells are 
calculated as  
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and the spatial COV is  
 
 Cs = σs / Ep. 
 
The process is applied to both DNI and GTI for each pixel. 
The same process is also applied to the eight-year means on 
a monthly level (e.g., the means of all Januaries, Februaries, 
etc.). 
 
Two matrix sizes are analyzed: 3x3, as shown above in Fig. 
5, and a larger matrix of 5x5. These represent areas of ap-
proximately 30x30 and 50x50 km, respectively, and like-
wise roughly represent an area within 15 and 25 km of a 
measurement site. The results for annual DNI spatial varia-
bility and both spatial matrixes, expressed as percentages, 
are mapped in Fig. 6, which provides a quick visual repre-
sentation of how the solar resource varies with distance, still 
with a 66% confidence level. Similarly, the results for an-
nual GTI are shown in Fig. 7.  



 
 
Fig. 6: DNI annual spatial COV for 3x3 cell matrix (upper) 
and 5x5 cell matrix (lower). Note similar patterns but differ-
ent magnitudes (binning scales are identical). 
 
For DNI and the 3x3 matrix, the values range from 0.12% in 
central Missouri to about 11.5% along a corridor between 
Los Angeles and San Bernardino, California. Greater varia-
bility tends to occur in coastal areas (particularly the Cali-
fornia coast) and mountainous areas. Greater variability is 
seen in the 5x5 matrix, which is to be expected because of 
the microclimate effects of topography. Further, the general 
pattern of high and low variability (though of different mag-
nitudes) is quite similar between the 3x3 and 5x5 maps, 
indicating that, in locations of significant variability, the 
magnitude of Cs is much a function of distance, which could 
be expected. The monthly spatial DNI and GTI maps for the 
5x5 matrix are shown in Figs. 8 and 9. The monthly 3x3 
matrixes are not presented here because of the similarity of 
variability patterns with the 5x5 matrixes.  
 

 
 
Fig. 7: GTI annual spatial COV for 3x3 cell matrix (upper) 
and 5x5 cell matrix (lower). Note similar patterns but differ-
ent magnitudes (binning scales are identical). 
 
3. DISCUSSION 
 
These maps indicate that a wide range of variability exists in 
the solar resource in the United States, and the values range 
from insignificant (in the context of measurements and eco-
nomic analyses) to highly significant. Climatological 
records are normally defined for periods of 30 years to en-
compass as many potential climatic effects as possible. Us-
ers are cautioned that the much shorter eight-year period 
used here may not be long enough to produce definitive 
variability values for all climate regions. Consequently, the 
uncertainty of this analysis has not been defined.  
 
Some sources of potential error have been identified, how-
ever. In particular: 
 
  



• There was no major volcanic eruption during 1998–2005. 
The temporal variability over a 30-year period, such as 
1976–2005, would be larger. 

• The SUNY model was run with long-term average aero-
sol data, thus eliminating the interannual variability in this 
variable, which has a strong effect on DNI. This is anoth-
er reason why all the calculated DNI temporal COVs (and 
in a lesser way, the GTI temporal COVs) are most likely 
underestimated.  

• The data used in this analysis are affected by the “Eugene 
syndrome” that has been found in the then-current version 
of the SUNY model [6]. This problem creates prohibitive-
ly overestimated monthly-average DNI in areas with ex-
tended cloudy periods combined with possible snow on 
ground, such as Eugene, Oregon, in winter. This problem 
most likely leads to overestimated COVs for the temporal 
variability and (to a lesser extent) the spatial variability. 
This may explain, at least in part, the large gradient in 
temporal variability within Washington State that was 
mentioned in Section 2.1. It is anticipated that future re-
leases of the NSRDB will be cured of this problem. 

• Other artifacts in the SUNY model or its input data may 
also create false levels of variability. For instance, in the 
area of White Sands National Monument in southern New 
Mexico, difficulties in evaluating the magnitude and time 

variations of the ground albedo might affect the spatial 
COV results presented here.  

 
The National Renewable Energy Laboratory plans to update 
this data set by drawing on data from a longer period of 
record when it becomes available; however, most of the 
results here are very likely accurate enough to give a fairly 
representative relative variability of the solar resource over 
most of the United States. These results also indicate that, 
for some areas, the variability is somewhat lower than the 
uncertainty of solar radiation measurements. For example, 
large geographic regions display a GTI interannual COV 
(temporal or spatial with a 66% confidence level) of less 
than 3%, which is a nominal uncertainty for high-quality 
measurements. In all cases, good climatological knowledge 
of the target area of interest is critical to understanding, in-
terpreting, and applying these results.  
 
High-resolution versions of these maps showing each pixel 
are available from the National Renewable Energy Labora-
tory along with the underlying data. In addition to the COV 
percent data covered in this paper, the variability for each 
pixel expressed in Wh/m2 is also available. These data and 
documentation are available for internet download from 
http://rredc.nrel.gov/solar/new_data/variability . 

 

 
 
Fig. 8: DNI spatial COV by month. Note the significant seasonal influence on the pattern of variability throughout the year. 
 



 
 
Fig. 9: GTI spatial COV by month. 
 
 
4. CONCLUSION 
 
Using the variability statistics presented here, users can bet-
ter understand the extent of measurements required to best 
characterize the solar resource for a particular application. 
In areas with low interannual variability, a shorter local 
measurement period may suffice. In areas with low spatial 
variability, a measurement station could possibly represent 
the solar resource at nearby locations, which would negate 
the need for additional stations within about 50 km.  
 
An analyst can also use this information to better build con-
fidence in a data set as sufficient for a specific analysis. Ad-
ditionally, an analyst or planner can use this data to help 
understand the consistency of future plant performance and 
how that relates to the economic viability of constructing a 
power plant at a particular location.  
 
As could be expected, the DNI COV are noticeably larger 
than the GTI COV, therefore putting concentrator systems at 
a disadvantage compared with flat-plate systems, as far as 
solar resource variability is concerned. For applications that 
require “bankable data” and 95% confidence levels, it is 
recommended to double the COV values in the maps. 
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