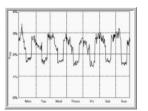
Evaluation of Potential Methods for Large Scale Inverter Commissioning Sag Testing

EPRI Power Quality Research Project Discussion


Session 6 – Grid Simulators for Models and Standards Validation: 6th International Workshop on Grid Simulator Testing of Wind Turbine Power Trains and Other Renewable Technologies

Mark Stephens, PE EPRI | Program Manager Customer Side PQ Research and Services <u>942 Corridor Park Blvd, Knoxville, TN 37932</u> Desk: <u>865-218-8022</u> | Mobile: <u>865-773-3631</u> www.epri.com | <u>http://mypq.epri.com</u> | <u>mstephens@epri.com</u>

 Image: Market and Market

EPRI and Power Quality Key Issues Driving Program 1's Research

Proactive PQ

 Getting maximum value from PQ data streams

Coping with Increased Grid Complexity

 Improving Customer Service and Satisfaction

2022 Power Quality Project Set 1C:

Achieving Cost-Effective Edge-of-Grid PQ Compatibility

Summary of 2022 Projects and Deliverables

P001.007: System Compatibility Research

- **Objective:** Characterize the PQ issues surrounding dual-function circuit breakers (Project 1) and evaluate a series injection mitigation technology (Project 2).
- Description:
 - <u>Project 1:</u> The 2014 National Electrical Code (NEC[®]) requires both Arc Fault and Ground Fault protection on kitchen and laundry circuits and AFCI breakers in the entire home. Specifically, the AF/GFCI breakers have been shown to trip during power quality events. This project will seek to understand the mechanisms and solutions.
 - <u>Project 2:</u> This project aims to conduct an array of PQ tests to better understand and quantify the series Injection mitigation technology known as the Sag Fighter. This is a continuation of a previous effort where the results were not conclusive.
- Deliverable(s):
 - Evaluation of Dual Function Circuit Breakers against PQ Issues (Technical Report)
 - Technology Assessment and Application Guide for the Sag Fighter (Technical Report)

P001.008: PQ Impact Assessment and Sensitivity of Grid-Connected Loads and DER

- **Objective:** Determine the feasibility of large-scale DER inverter voltage sag testing
- Descript easily ac voltage and solving the voltage sag performance problem

ing commissioning is not simulation tools or large

- **Deliverable(s):** Potential Methods for Large Scale Inverter Commissioning Sag Testing (Technical Report)

P001.009: Strategies and Tools for Edge-of-Grid PQ Detection and Analysis

- Objective: Develop EPRI Handbook for Conducting Power Quality Assessments.
- Description: Utility PQ engineers need resources to understand how to conduct all types of PQ Investigations. The project aims to develop a clear step-by-step handbook to document steps for conducting PQ Assessments for a myriad of PQ Issues (Sags, Grounding, Surge, Harmonics, Radiated Emissions, etc.). This work will be used in future EPRI training programs as well as in development of future PQ Investigator algorithms.
- Deliverable(s): EPRI PQ Assessment Handbook Version 1.0 (Technical Report)

EPRI Power Quality Research Program P001.008 2022 Project: Potential Methods for Large Scale Inverter Commissioning Sag Testing

- Project Objective: Determine the feasibility of large-scale DER inverter voltage sag testing
- Description: Field verification of the voltage sag settings and response large-scale PV inverters during commissioning is not easily accomplished, therefore not required.
- This project seeks to research feasible approaches for verification using field simulation tools and/or large voltage sag generators.
- Deliverable(s): Potential Methods for Large Scale Inverter Commissioning Sag Testing (Technical Report)

Why Test at Commissioning?

EPRI Research Funder: Concerns Raised by TVA

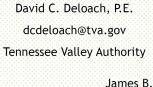
36,937 MW

Summer Net Capacity

Adding 7,000 to 10,000 MW of solar energy by 2040

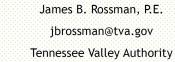
Robust and Diverse Energy Portfolio*

Generating Assets


- 3 Nuclear Sites (7 Units)
- 5 Coal-Fired Sites (25 Units)
- 29 Hydroelectric Sites (109 Units)
- 1 Pumped-Storage Site (4 Units)
- 9 Combustion Turbine Gas Sites (86 Units)
- 8 Combined Cycle Gas Sites (14 Units)
- 1 Co-Generation Unit
- 14 Solar Energy Sites

www.tva.com/about-tva/

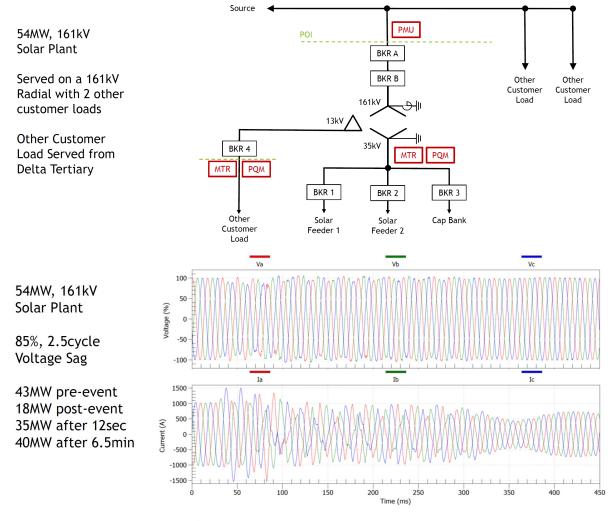
FDA Conference May 2-3, 2022

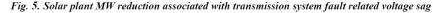

Case Studies for Utility Scale Solar Facility Performance and Power Quality Issues

D. Nathan Hooker, P.E. dnhooker@tva.gov

Tennessee Valley Authority

Anthony M. Murphy, P.E. ammurphy@tva.gov Tennessee Valley Authority


Jonathan P. Sides, P.E. jpsides@tva.gov Tennessee Valley Authority


www.TRUC.org

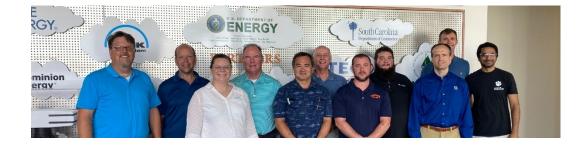
2022 Georgia Tech Fault & Disturbance Analysis Conference

TVA Case Study: Sudden Solar Plant MW Reduction Due to Transmission System Fault and Related Voltage Sag

Adding 7,000 to 10,000 MW of solar energy by 2040

Robust and Diverse Energy Portfolio*

Generating Assets


- 3 Nuclear Sites (7 Units)
- 5 Coal-Fired Sites (25 Units)
- 29 Hydroelectric Sites (109 Units)
- 1 Pumped-Storage Site (4 Units)
 9 Combustion Turbine Gas Sites
- (86 Units)
- 8 Combined Cycle Gas Sites (14 Units)
- 1 Co-Generation Unit
- 14 Solar Energy Sites

www.tva.com/about-tva/

What if this occurs in 2040 when > 27% of Generation will be solar in TVA's Territory?

DOMINION ENERGY INNOVATION CENTER SITE VISIT (August 31, 2022)

On-Site Participants Left to Right:

Mark Stephens (EPRI), Scott Bunton (EPRI), Meredyth Crichton (Clemson, Executive Director, Dominion Energy Innovation Center), Joe Hodges (DESC), Joey Jeffcoat (DESC), Jeff Inabinet (DESC), Jonathan Sides (TVA), Christopher Burge (TVA), David Deloach (TVA), Russel Moore (Clemson), Moazzam Nazir (Clemson). Participant Not Shown: Dusty Rhoad (Clemson)

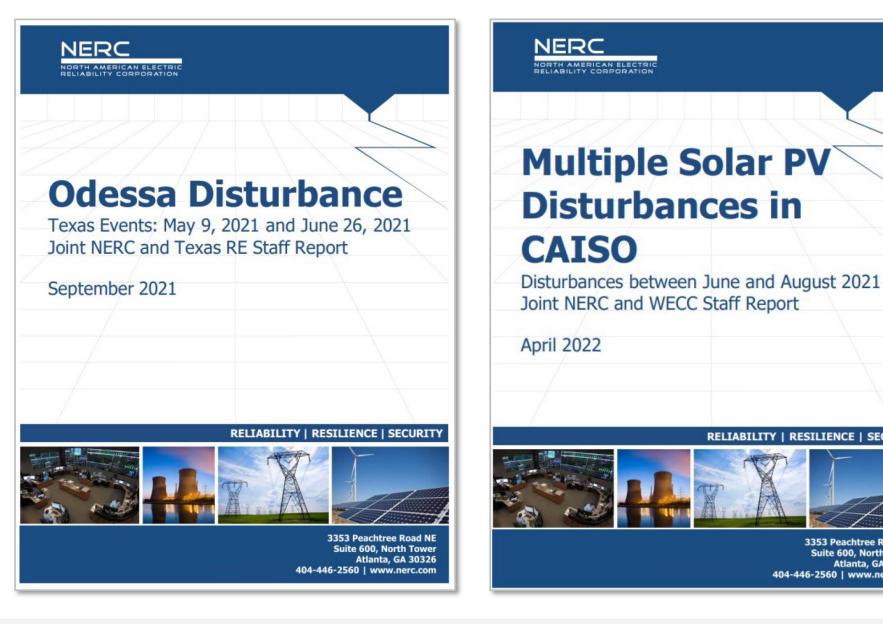
Virtual Participants in WebEx Only:

Gokhan Ozkan (Clemson, eGrid Lead Researcher), Tom Key (EPRI), Curtiss Fox (EPRI), Yiwei Ma (EPRI), Naeema Blankenship (AEP), Chuck Brewster (EPRI), Michael Whaley (Powerco), Robin Pittwood (Powerco), Matthew Edwards (SRP), James Rossman (TVA), Adelina Mejia-Zelaya (ComEd)

DOMINION ENERGY INNOVATION CENTER SITE VISIT: LARGE SCALE INVERTER TESTING

EPRI Meeting Goals:

- 1) To gain a better understanding of the capabilities of the Dominion Energy Innovation Center.
- 2) To learn about the challenges of large-scale inverter sag testing.
- To Discuss mobile applications of testing technology.
- 4) Learn what the test center has done with others in this realm.
- 5) Involvement of EPRI Power Quality Research Funders (via WebEx or in person).


Meeting Format:

Site Tour and Discussions plus WebEx with Interested Program 1 EPRI Research Funders

Time	Item	Location
9:00-9:20	Introductions and Kick-Off	EIC Conference Room 101
9:30- 11:00	Laboratory Tour	Labs
11:30-12:30	Lunch	GEC Boardroom
1 PM to 3 PM	WebEx - Quick Intro: Discussion of EPRI's Research Project on Large Scale Inverter Testing - Experience and Considerations with Large Scale Inverter Testing (Curtis Fox, EPRI, TBD – Innovation Center) - Utility Discussion of Need for Capabilities - Dominion Energy Innovation Center Overview and Capabilities - Next Steps	GEC Boardroom
3:00-3:30	Concluding Discussions and Action Items	GEC Boardroom

Recent NERC Reports

Recent Related NERC Reports

IEEE PES Energy Development and Power Generation Committee

Wind and Solar Power Plant Interconnection and Design Subcommittee

> Chairman: Tom Key Vice Chair: Jens Boemer Secretary: Nath Venkit

Subcommittee Website: http://sites.ieee.org/pes-edpgcom-wspp

Date: Wednesday July 20, 2022 Time: 8:00 - 10:00am MT Location: IEEE PES 2022 Denver General Meeting

PES

RELIABILITY | RESILIENCE | SECURITY

3353 Peachtree Road NE

404-446-2560 | www.nerc.com

Suite 600, North Tower

Atlanta, GA 30326

Rich Bauer

Office (404) 446-9738 Cell (404) 357-9843 rich.bauer@nerc.net

Table ES.1: Overview of Disturbances						
Disturbance and Name	Initiating Fault Event	Description of Resource Loss*				
June 24, 2021 "Victorville"	Phase-to-Phase Fault on 500 kV Line	Loss of 765 MW of solar PV resources (27 facilities) Loss of 145 MW of DERs				
July 4, 2021 "Tumbleweed"	Phase-to-Phase Fault on 500 kV Line	Loss of 605 MW of solar PV resources (33 facilities) Loss of 125 MW at natural gas facility Loss of 46 MW of DERs				
July 28, 2021 "Windhub"	Single-Line-to-Ground Fault on 500 kV Circuit Breaker	Loss of 511 MW of solar PV resources (27 facilities) Loss of 46 MW of DERs				
August 25, 2021 "Lytle Creek Fire"	Phase-to-Phase Fault on 500 kV Line	Loss of 583 MW of solar PV resources (30 facilities) Loss of 212 MW at natural gas facility Loss of 91 MW at a different natural gas facility				

* All events occurred in afternoon (12:00 and 4:00 p.m. Pacific)

Ref: Multiple Solar PV Disturbances in CAISO Disturbances between June and August 202, Joint NERC and WECC Staff Report, April 2022

Casio Solar Loss Event Report

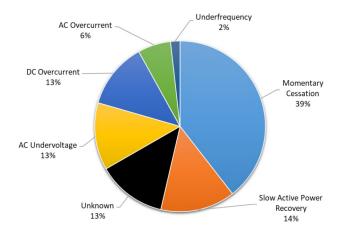


Figure 2.1: June 24 Disturbance Causes of Solar PV Reduction

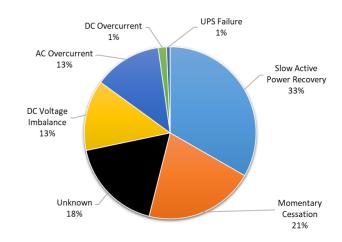


Figure 2.2: July 4 Disturbance Causes of Solar PV Reduction

Table 2.1: 0

NERC

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

Cause of Reduction	June 24 [MW]	July 4 [MW]	July 28 [MW]	August 25 [MW]
Slow Active Power Recovery	111	193	184	91
Momentary Cessation	310	120	192	447
Cause Unknown	103	103	112	24
Inverter DC Voltage Unbalance	-	77	15	4
Inverter AC Overcurrent	49	74	17	13
Inverter DC Overcurrent	98	9	47	3
Inverter UPS Failure	-	4	-	-
Inverter Overfrequency	-	-	43	18
Inverter Underfrequency	14	-	-	-
Inverter AC Undervoltage	100	-	16	-
Total	785	566	626	600

Causes of Reduction

Causes of Solar PV Reduction

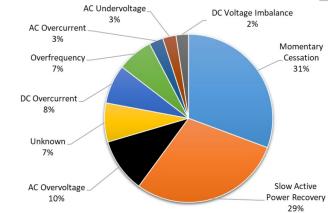


Figure 2.3: July 28 Disturbance Causes of Solar PV Reduction

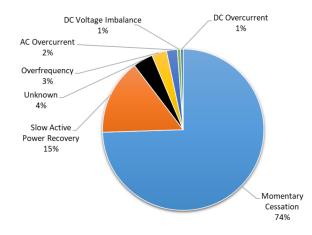
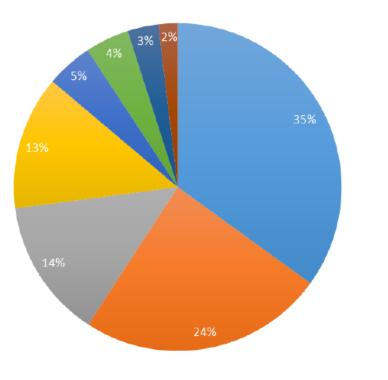


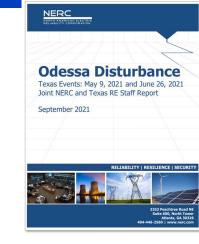
Figure 2.4: August 25 Disturbance Causes of Solar PV Reductions

Ref: Multiple Solar PV Disturbances in CAISO Disturbances between June and August 202, Joint NERC and WECC Staff Report, April 2022

NERC

Multiple Solar PV


June and August 202


Disturbances in CAISO

Toint NFRC and WECC Staff Report April 2022

Odessa Report

Table 1.1: Causes of Reduction					
Cause of Reduction	Reduction [MW]				
PLL Loss of Synchronism	389				
Inverter AC Overvoltage	269				
Momentary Cessation	153				
Feeder AC Overvoltage	147				
Unknown	51				
Inverter Underfrequency	48				
Not Analyzed	34				
Feeder Underfrequency	21				

PLL Loss of Synch
Inverter AC Overvoltage
Momentary Cessation
Feeder AC Overvoltage
Unknown
Inverter Underfrequency
Not Analyzed
Feeder Underfrequency

Ref: Odessa Disturbance Texas Events: May 9, 2021 and June 26, 2021 Joint NERC and Texas RE Staff Report September 2021

Odessa Report Findings: Performance Assessment and Mitigation

- There is presently no NERC Reliability Standard that obligates or that gives appropriate authority for Reliability Coordinators (RCs), TOPs, or Balancing Authorities (BAs) to assess the performance of an interconnected facility, identify abnormalities, and execute corrective actions to eliminate this abnormal performance.
- In most cases, the systemic underlying issue is that performance requirements are not established or are not clear.
- The lack of performance validation (validating that the facility is performing as expected) leads to these large-scale and widespread events with many affected facilities rather than addressing underlying systemic issues before they become larger events.
- RCs, TOPs, and BAs should be performing performance assessments and validation for their generation fleet, identifying any unreliable operation of connected resources, and addressing those issues in a timely manner

What do Standards Say?

Relevant Standards: IEEE 1547-2018 Field Test Requirements

• Neither High / Low-Voltage Ride-Through test is not part of commissioning (NR).

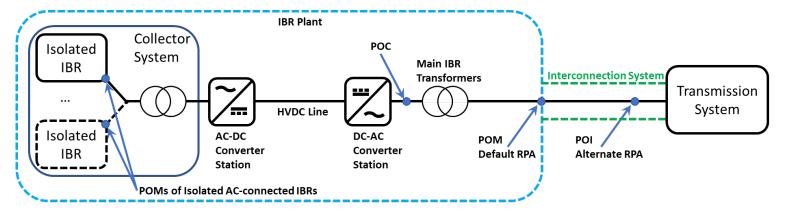

Requirement	Compliance at PCC achieved by:	Type tests	DER evaluation	Commissioning tests
6.4 Voltage				
6.4.1 Mandatory voltage tripping requirements	DER System	R	Design: R ^a Installation: R ^b	D
	Composite	L	Design: R ^a Installation: R ^b	D
6.4.2.1 General requirements and	DER System	R	R	D
exceptions	Composite	L	R	D^a
6.4.2.2 Voltage disturbances within continuous operation	DER System	R	Design: R ^a Installation: R ^b	D
region	Composite	L	R	D^a
(This is a top-lev	6.4.2.3 Low-volta el heading and requireme		the subclauses below	r.)
6.4.2.3.2 Low-voltage ride-	DER System	R	R	NR
through capability	Composite	L	R	$\mathbf{D}^{\mathbf{a}}$
6.4.2.3.3 Low-voltage ride-	DER System	R	R	NR
through performance	Composite	L	R	\mathbf{D}^{a}
(This is a top-lev	6.4.2.4 High-volta el heading and requireme		the subclauses below	r.)
6.4.2.4.2 High-voltage ride-	DER System	R	NR	NR
through capability	Composite	L	R	Da
6.4.2.4.3 High-voltage ride-	DER System	R	NR	NR
through performance	Composite	L	R	\mathbf{D}^{a}
6.4.2.5 Ride-through of	DER System	R	NR	NR
consecutive voltage disturbances sbunton@epri.com	Composite	L	R	Da

Table 43—Interconnection test specifications and requirements for DER that shall meet requirements at the PCC

	LEGEND					
DER	DER system is fully compliant at PCC*-no supplemental DER device needed					
system	*Individual DER units that are considered fully compliant at the PoC may only be considered fully					
	compliant at the PCC if the impedance between the PoC and the PCC is less than 0.5% on the DER rated apparent power and voltage base.					
Composite	Composite of partially compliant DER that is, as a whole, fully compliant at PCC*—may need one or more supplemental DER device(s).					
	*Individual DER units that are considered fully compliant at the PoC shall not be considered fully					
	compliant at the PCC if the impedance between the PoC and the PCC is equal to or greater than 0.5% on					
	the DER rated apparent power and voltage base.					
NR	Not Required					
R	Required					
L	Limited type testing is limited to partial compliance of the individual DER unit or DER system in order to evaluate the DER unit or DER system performance characteristics for later use in the DER evaluation that verifies full compliance of the composite DER at the PCC. The DER unit or DER system may not have any compliance at all with certain requirements, leaning on the supplemental equipment to comply.					
D	Dependent on DER Design Evaluation					
NA	Not Applicable					

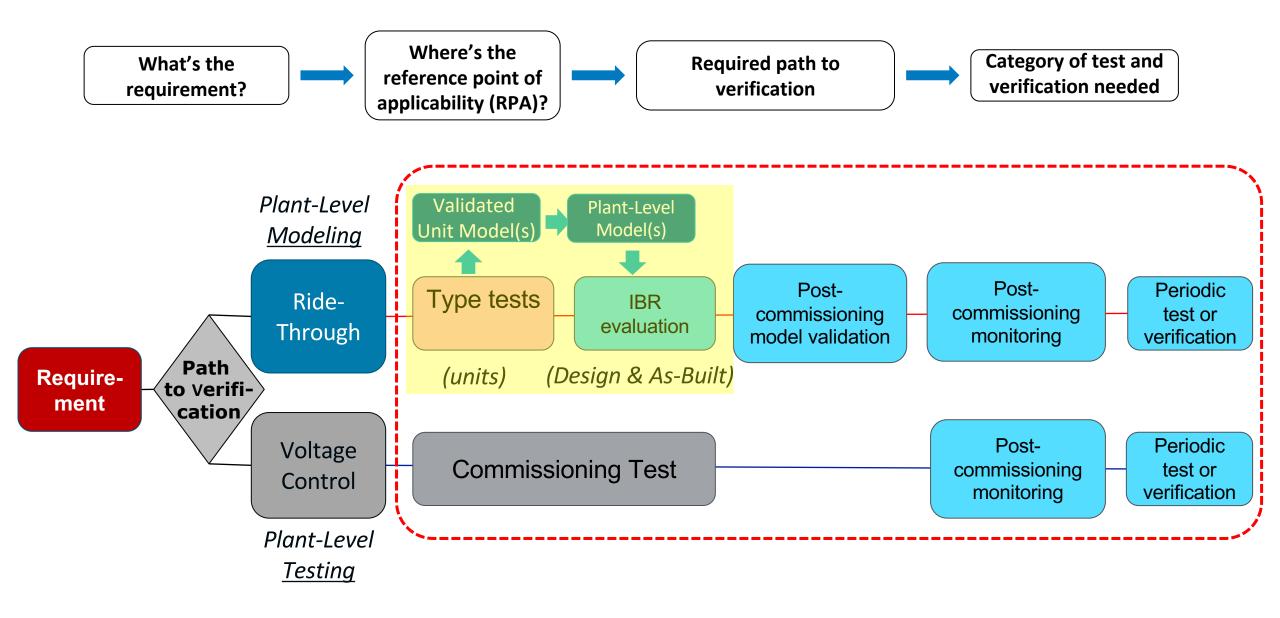
^aAlign trip settings at DER devices and substation. ^bVerify correct installation settings.

Relevant Standards: Excerpt from IEEE 2800-2022 Field Test Requirements

IBR – Inverter Based Resources RPA- Reference Point of Applicability POC – Point of Connection POM – Point of Measurement HVDC – High Voltage Direct Current

Voltage Disturbance Ride-through Requirements (Clause 7.2.2)

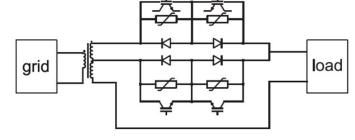
Applicable RPA	IBR Unit-level Tests	IBR Plant-level Verifications at the RPA						
	Test Types	Design Evaluation	Evaluation— As-built Installation	Tests— Commissioning	Validation— Post Commissioning Model	Monitoring— Post- Commissioning	Testing— Periodic	Verification— Periodic
				Entity Re	sponsible			
	Device Manufacturer / IBR Unit / Supplemental IBR	TS Operator/TS Owner / IBR Developer	TS Operator/TS Owner / IBR Developer	TS Operator/TS Owner / IBR Developer	TS Operator/TS Owner / IBR Developer / IBR Operator	TS Operator/TS Owner / IBR Developer	TS Operator/TS Owner / IBR Developer	TS Operator/TS Owner / IBR Developer
	Clause 7 Response to TS Abnormal Conditions							
POC* & POM **	R	R	R	NR	R	R	D	D

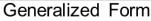

*See requirements in clause 7.2.2.3

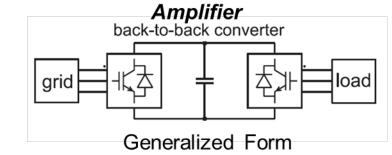
** See requirements in clause 7.2.2.1, 7.2.2.2, 7.2.2.4, and 7.2.2.6

Ref: IEEE 2800-2022 Standard for Interconnection and Interoperability of Inverter-Based Resources Interconnecting with Associated Transmission Systems

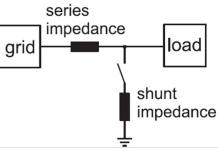
IEEE 2800/P2800.2 Test and Verification Framework Requires Models




How Could Testing be Done?

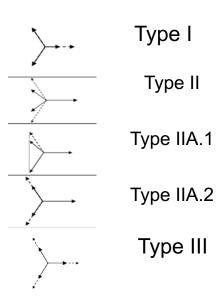

Test Equipment ? Common Sag Generator Types

- The *transformer-switch* type uses some form of switching to switch from nominal to reduced voltage for the testing.
 - Most such voltage-sag generators use electronic switches employing either an insulated gate bipolar transistor (IGBT), or a silicon-controlled rectifier (SCR).
 - Units up to 1000A per phase are currently commercially available.
- The *amplifier* type and includes a controller, a waveform generator, a dataacquisition system, and a power-amplification section.
 - This waveform generator can simulate any point-on-wave and provide varying magnitude, duration, frequency, and harmonics, thereby allowing a user more precise control of the voltage-sag characteristics.
 - The amplifier sag generator typically employs multiple power conversions—requiring transformer isolation.
- A third form of sag generator is commonly referred to as the *impedance divider* type, which uses a thyristor-controlled reactor to switch impedances for creating voltage sags.
 - Generally, the impedance-divider sag generator weighs less than the other types of sag generators and provides maximum power.
 - May have limited available sag depth adjustments.

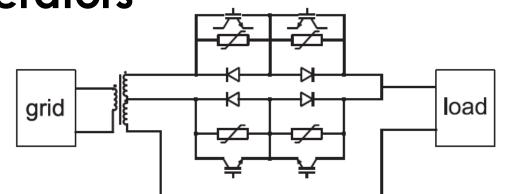

Transformer-Switch

Generalized Form

EPRI: Pioneered Transformer-Switch Type



200A EPRI Tri-Mode Porto-Sag


Sag Types Per IEEE 1668

Transformer-Switch Type Sag Generators

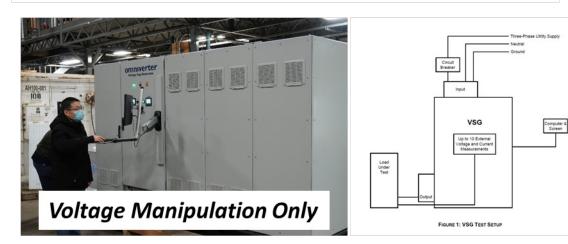
- The transformer type uses some form of switching to switch from nominal to reduced voltage for the testing.
- Contactors can be used, but typically cannot provide precise switching nor can they allow phase-angle control of sags.
- Most such voltage-sag generators use electronic switches employing either an insulated gate bipolar transistor (IGBT), or a silicon-controlled rectifier (SCR).
- Units up to 200A per phase are currently commercially available with larger ones (600A and 1000A) pending.
- EPRI Experience with Testing Smaller IBRs with Transformer-Switch Type: Continually Blew Snubber Circuits in the Generator.
 - Switched to Amplifier Based Systems for IBR

Generalized Form

200A EPRI Tri-Mode Porto-Sag

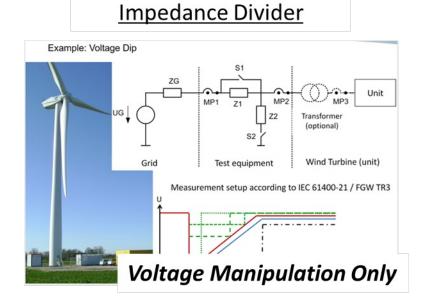
20A VSG

Voltage Sag Generator (VSG) (Omniverter)

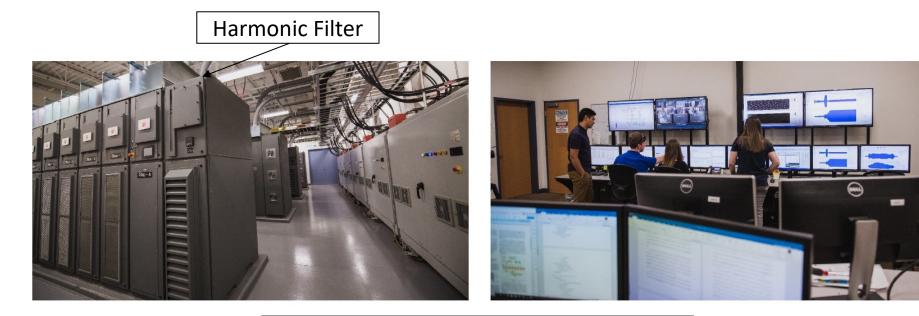


Sag Corrupter (Powerside) (200A)

Approaches

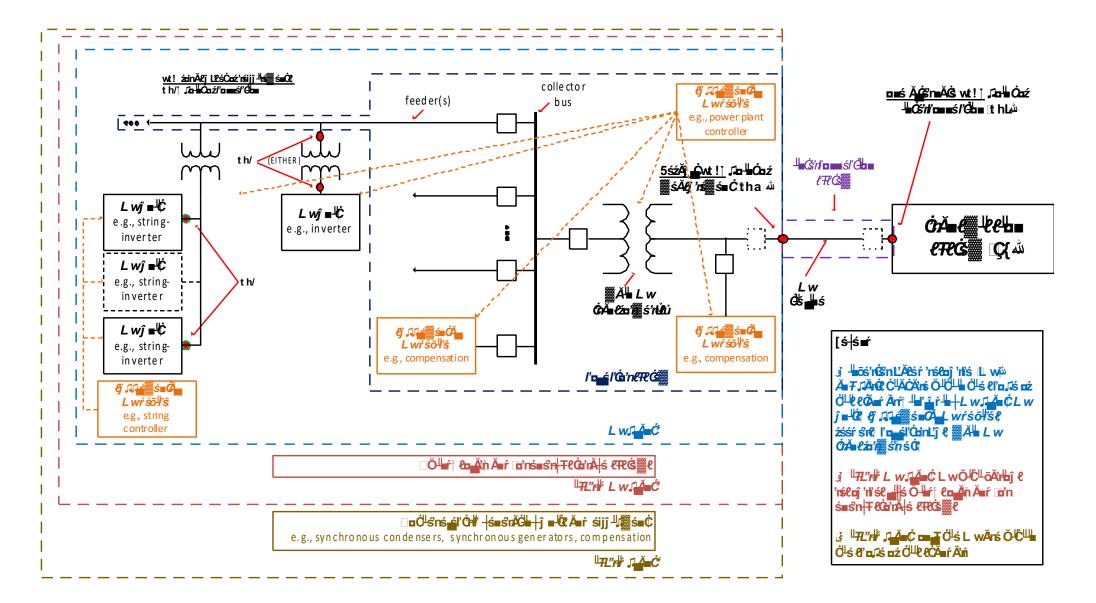

Large Transformer-Switch Type Voltage Sag Generator

Amplifier/Grid Simulator Based Systems

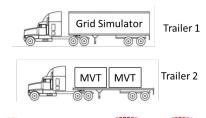


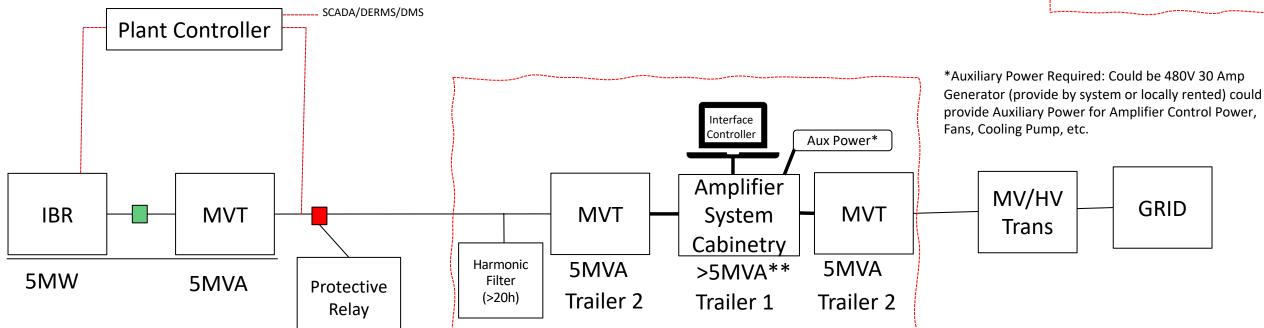
Voltage & Frequency Manipulation

DOMINION ENERGY INNOVATION eGrid


15 MW HIL Grid Simulator Performance Specifications

Test Power	15000 kVA
Frequency range	4565 Hz
Sequence capability	3 and 4 wire
High Voltage Ride Through HVRT	100145%
Low Voltage Ride Through LVRT	1000%
Unsymmetrical LVRT	yes
Power quality PQ evaluation	yes


Imagining The Mobile Test System


IEEE 2800 Transmission Connected IBR Options

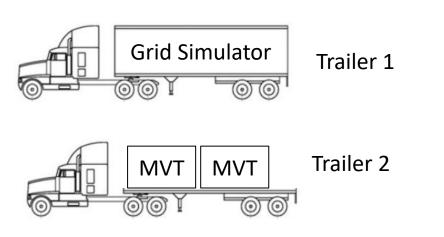
Brainstorming Mobile Test System Components

Test Setup Medium Voltage Transformers (MVTs):

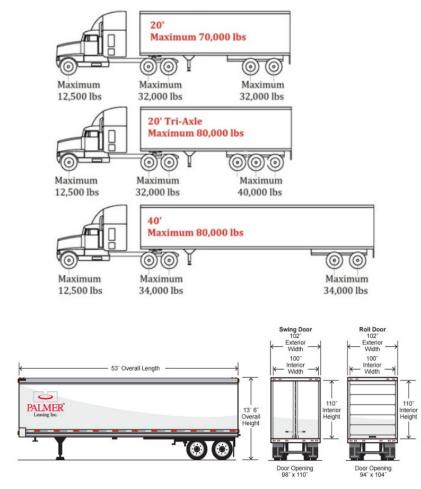
- May not need to be continuous power rated.
- Must have multiple Taps to Interface with different System Voltages

Approach: Test Plant Controller and 1 or 2 IBRs. Make sure other IBR units are set with the same parameters. **Amplifier System:

- Must have a Grid-Friendly Active Front End.
- Must be rated for current and how long it can sustain current.
- Must be able to absorb current and not trip.


Standardized Connectors and Cabling

Point-of-measurement (POM)


Point-of-connection (PoC)

Should Fit within Standard Trailer Dimensions Weight Capacities.

Standard Sizes and Weights

Ref: Sag Specialized Transport, <u>https://osagespecial.com</u>

Questions to Consider

- Can we take "off-the-shelf" grid simulator hardware and "Trailerize"?
- What is the optimal sized system for Mobile Testing?
- Can system fit within Standard Tractor Trailer Weight and Size Dimensions?
- Have any OEM/Vendor attempted this before?
- What are the electrical SCR requirements for the test hardware?
- Who would best "own" equipment and perform tests?
- If successful, could this be part of future Commissioning Requirements?

Safety/Arc-Flash Considerations Must be incorporated.

Conclusions

Conclusions/Final Thoughts

- As NERC has noted the lack of performance validation (validating that the facility is performing as expected) leads to these large-scale and widespread events with many affected facilities rather than addressing underlying systemic issues before they become larger events.
- The best technology for mobile testing is to be determined.
 - Amplifier based systems offer the widest range of test capabilities (Voltage and Frequency)
- If done during commissioning, Mobile Field Testing of large-scale PV Installations should help improve the reliability of the evolving grid.

Collaboration Welcomed!