

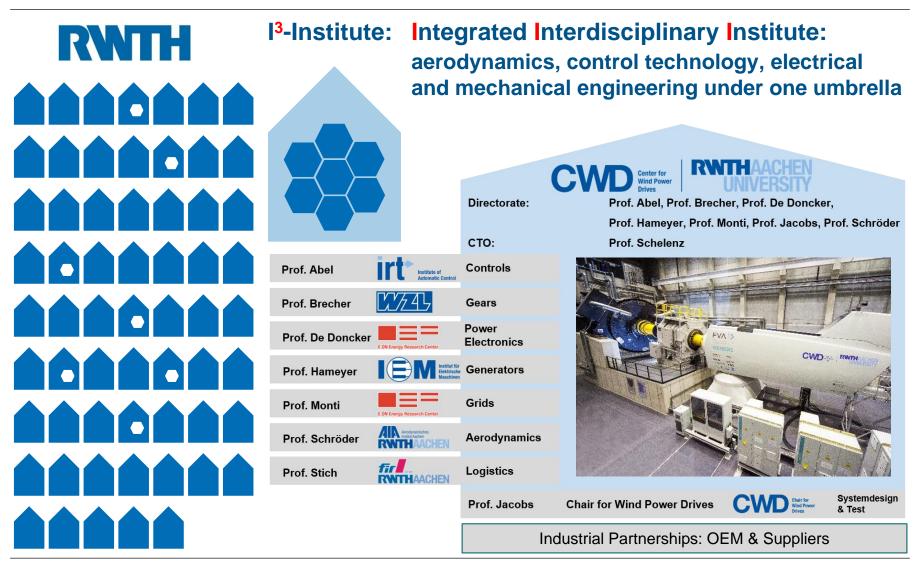
CertBench On the Impact of Mechanical-HiL on Electrical Properties of Wind Turbines

Uwe Jassmann

uwe.jassmann@cwd.rwth-aachen.de

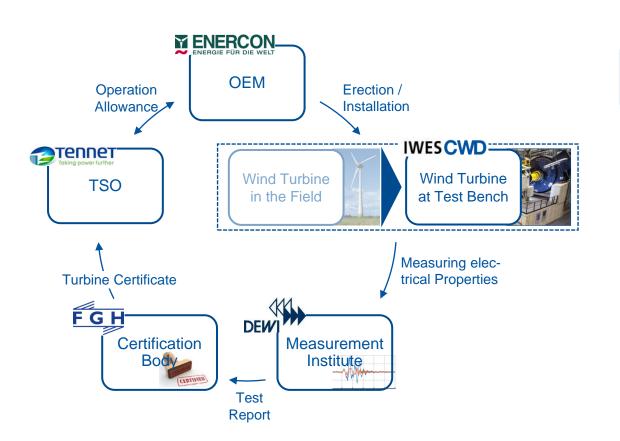
RWTH Aachen University Institute of Automatic Control Center for Wind Power Drives

Federal Ministry for Economic Affairs and Energy


on the basis of a decision by the German Bundestag

Center for Wind Power Drives

Overview



CertBench: Impact of Mech.-HiL on Electrical Properties of Wind Turbines 5th International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains | 15. Novembver 2018 | Uwe Jassmann

irt CWD RWTHAACHEN

Joint Research Project: CertBench

Certification Process Germany

Goals

- Definition of required modelling detail (rotor)
- Design of mechanicallevel HiL-Systems and Control
- Assessment of the grid emulator's influence
- Validation of results with the help of commercial ENERCON Turbine and field tests

3

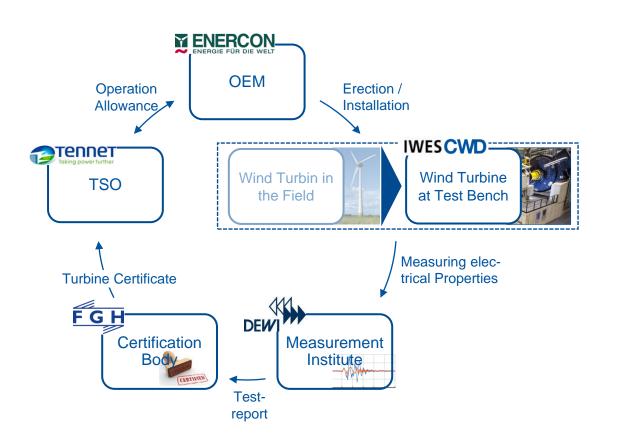
Required Rotor Modelling Detail

•	Aerodynamic	modelling details
---	-------------	-------------------

- BEM-based aeroelastic Code
- Static Cp-grid
- Tower shadow
- Structural properties
 - Inertia & Eigenfrequency

Relevant impact on electrical power only noticeable up to 10Hz (and realistic to apply)

		0Hz	2Hz	10Hz	20Hz
No.	Description of mode	MT1	MT2	MT3	MT4
1	1 st tower fore-aft swing	0.63	0.61	0.61	0.61
2	1 st tower lateral swing	0.63	0.63	0.63	0.63
3	1 st asym. blade flap bending axis	-	0.98	0.98	0.98
4	1 st asym. blade flap yaw axis	-	0.98	0.98	0.98
5	1 st collective blade flap	-	1.04	1.03	1.03
6	1 st sym.blade edgewise mode	-	1.76	1.76	1.76
7	1 st asym. blade edgewise mode	-	1.80	1.80	1.80
8	1 st rotor edgewise-drive train mode	2.91	2.46	2.45	2.45
9	2 nd asym. blade flap bending axis	-	-	2.80	2.80
10	2 nd asym. blade flap yaw axis	-	-	2.84	2.84
11	2 nd collective blade flap	-	-	2.90	2.90
12	2 nd rotor edgewise-drive train mode	-	5.87	4.51	4.50

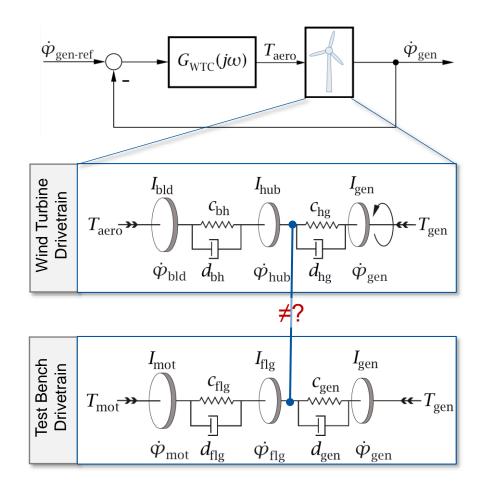

CW

Agreed Requirement

Joint Research Project: CertBench

Certification Process Germany

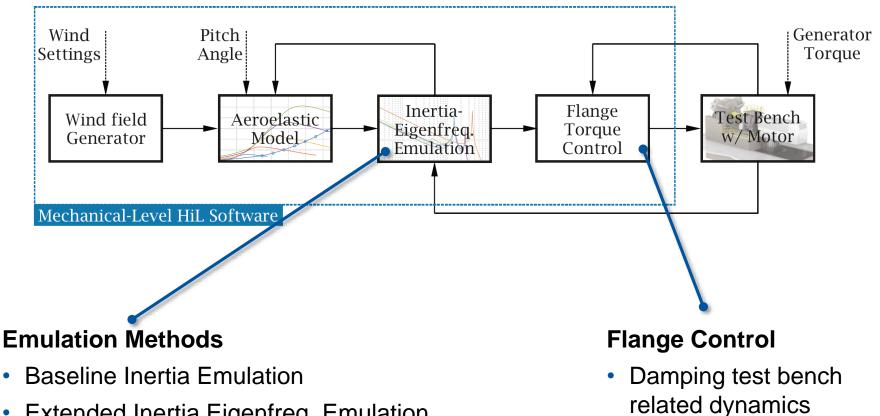
6



Goals

- Definition of required modelling detail (rotor)
- Design of mechanicallevel HiL-Systems and Control
- Assessment of the grid emulator's influence
- Validation of results with the help of commercial ENERCON Turbine and field tests

Requirements for MHiL


- Allow the operation of the wind turbine with activated WTC controller
- Reproduce rotor-drive train dynamics
- Apply "correct" rotor torque at flange

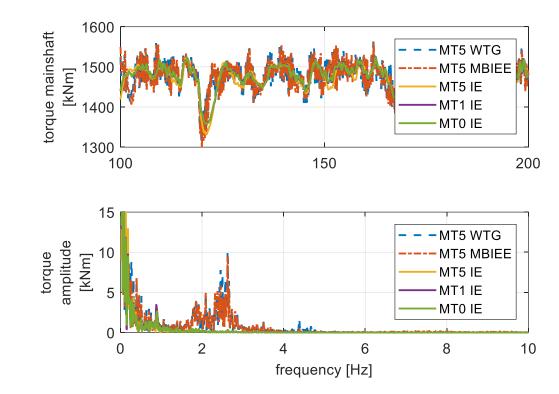
CertBench: Impact of Mech.-HiL on Electrical Properties of Wind Turbines 5th International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains | 15. Novembver 2018 | Uwe Jassmann

Mechanical-Level HiL System

Concept and Methods

- Extended Inertia Eigenfreq. Emulation
- Model-based Inertia Eigenfreq. Emulation •
- IMC-based Inertia Eigenfreq. Emulation

8



Mechanical-Level HiL System

Modelling depth and HiL-Methods

Comparison of Modelling Depth at 16m/s

- Baseline Inertia Emulation (IE)
 - Covers tower shadow only
 - Does not emulate 6P excitement when combined with MT5
- Model-Based Inertia Eigenfrequency Emulation (MBIEE)
 - Emulates WTG dynamics almost precisely
 - Over estimates damping of 2nd rotor drive train Eigenfreq. 4.5Hz

Performance Comparison at different wind speeds

- Power density spectrum of flange torque
- Characteristic is emulated also at high wind speeds
- Over estimation of damping remains at all wind speed level

Summary and Conclusion

Summary of preliminary results

- Rotor modelling up to 10-20 Hz agreed to be sufficient
- Robust and precise HiL-Methods are available, which
 - allow closed loop wind turbine operation
 - allow drive train dynamic emulation up to the 2nd rotor-drive train eigenfrequency
- Limiting factor seem to be the motor torque change rates

Future Work

- Experimental validation of the methods and modelling depths
- Expanding the simulation and assessment of all certification test cases
- Validation of HiL with commercial wind turbine and compare to field data
- Summarize requirements on system test bench hard- and software
- Transferring results to certification documents FGW TR3 and IEC61400-21

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Thank you for your attention

Uwe Jassmann

uwe.jassmann@cwd.rwth-aachen.de +49 241 80 28033 RWTH Aachen University Institute of Automatic Control Center for Wind Power Drives

