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▶ few transmission-connected SGs

▶ distribution as passive aggregate load

▶ focus on balanced three-phase systems

▶ grid-forming IBRs in distribution

▶ active distribution systems

▶ unbalanced, single-phase, …

Increased complexity and dynamic interactions across distribution/transmission boundary

Challenges to standard models and analysis methods 

conventional multi-machine system emerging system 

▶ centralized generation ▶ decentralized generation 
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▶ distribution modeled as balanced load

▶ balanced, three-phase, & constant voltage

▶ focus on frequency regulation & stability

Distribution

▶ transmission will absorb any imbalance

▶ substation modeled as infinite/slack bus

▶ unbalanced, single-phase, & constant freq.

▶ focus on voltage regulation & stability

System commonly decomposed at distribution/transmission boundary

Today’s modeling assumptions & analysis 

Transmission 

▶ power flows to uncontrollable load at grid edge 
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▶ How do single-phase and three-phase grid-forming IBRs synchronize?

▶ What if all generation is moved to distribution?

▶ How do three-phase transformer winding configurations impact synchronization?

Today’s modeling assumptions & analysis vs. tomorrow’s system? 

Non-trivial dynamics and frequency stability questions 

▶ What if single-phase grid-forming IBRs are deployed at scale? 
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Problem setup & review of multi-phase power flow models 

▶ ”exterior” GFM converter bus 

d 
t θ = ω0 + mp(P⋆ − P),

d 

d V = −V + V⋆ + mq(Q⋆ − Q).
dt 

▶ ”interior” load/GFL converter PQ bus 

Overview of unbalanced multi-phase power flow models 
▶ detailed bus injection models for OPF [1] 
▶ branch flow models for radial networks (no ∆ ) with PQ nodes [2] 
▶ linearized models without single-phase, three-phase transformers [3] 
▶ full generality & structural properties for existence and uniqueness of solutions [4] 

[1] Girigoudar, Roald: Linearized three-phase optimal power flow models for distribution grids with voltage unbalance, IEEE CDC, 2021 
[2] Arnold, Sankur, Dobbe, Brady, Callaway, Von Meier: Optimal dispatch of reactive power for voltage regulation and balancing in unbalanced distribution systems, IEEE PESGM, 2016 
[3] Bernstein, Wang, Dall’Anese, Boudec, Zhao: Load Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity and Linear Models, IEEE TPWRS, 2018 
[4] Wang, Bernstein, Le Boudec, and Paolone: Existence and uniqueness of load-flow solutions in three-phase distribution networks, IEEE TPWRS, 2017 
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Key steps for stability analysis

▶ linearized power flow for standard branches E , E , E ∆, E∆ , E∆∆, E3π , E1π

▶ formalize overall network model via G & generalized incidence matrix B
▶ link graph topology to properties of linear model (e.g., symmetry, nullspace, …)
▶ conditions for generalized Kron reduction to remove PQ nodes
▶ reveal conditions on topology for dynamic stability

A graph-theoretic approach 

▶ connected graph G = (N , E) 
• nodes N := N1ϕ ∪N3ϕ 

• edges E := E3ϕ ∪ E1ϕ ⊆ N ×N 
• exterior nodes N ext  N ext ,    1ϕ 3ϕ and interior nodes N int 1 , ϕ N int3ϕ 

▶ three-phase branches 
• E3ϕ := E ∪ E ∪ E ∆ ∪ E∆ ∪ E∆∆ ∪ E3π
• Esync := E ∪ E3π ∪ E ∆ ∪ E1ϕ ⊆ E 
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Assumption 1 (Well-posed network)

1. G is simple, connected, and interior-exterior node
connected,

2. the number of transformer branches of a specific type,
voltage ratio, and orientation traversed by any path
between any two nodes is identical,

3. the graph G1ϕ := (N , E1ϕ) contains no path connecting any
three-phase nodes.

Basic assumptions on the network topology 

Definition 1 (interior-exterior node connected network) 
The network G is interior-exterior node connected if, for any 
interior node k ∈ N int, the subgraph Gsync := (N , Esync) ⊆ G 

contains a path to an exterior node l ∈ N3 
ext 
ϕ that, starting from 

k ∈ N int, traverses all edges from their primary terminal to 

their secondary terminal. 

∆

1 2

3π 3π ∆∆
3 4 5

1 2

3π 3π ∆∆
3 4 5

(a)

(b)

∆
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Lossless linearized branch models 

▶ linearized at trivial solution (i.e., nominal voltage, zero power) " # " # " #T " # 
Sδ,i,k Jii Jii Vδ,i▶ real and reactive powers Sδ,i,k = (Pδ,i,k, Qδ,i,k) ∈ R2ni = bi,kSδ,k,i Jik Jik Vδ,k▶ voltage phase angles and magnitudes Vδ,i = (θδ,i, vδ,i) ∈ R2ni | {z }

=:Ji,k▶ Ji,k ≽ 0, Jii ≽ 0, and Ji,k(νni , νnk ) = 02(ni+nk) with νn = (1n, 0n) 

Type Pii Rii Pik Rik 

transformer I3 03×3 I3 03×3 

transformer P1 P2 P1 P2 
∆ transformer I3 03×3 P3 P4 

transformer P1 P2 P1 P2 
∆ transformer P1 P2 P3 P4 

∆∆ transformer P1 P2 P1 P2 
Three-phase line I3 03×3 I3 03×3 

Single-phase branch 1 0 Ii,k 0nk×1 

" # " # 
Pii −RiiT −Pik −RikJii = , Jik = 
−Rii Pii Rik −Pik ⎡ ⎤ ⎡ ⎤ 

4 1 1 √ 0 1 −1
1 ⎢ ⎥ 3 ⎢ ⎥P1 := ⎣1 4 1⎦ , P2 := ⎣−1 0 1 ⎦12 12

1 1 4 1 −1 0 ⎡ ⎤ ⎡ ⎤ 
1 0 1 √ 1 0 −1

1 ⎢ ⎥ 3 ⎢ ⎥P3 := ⎣1 1 0⎦ , P4 := ⎣−1 1 0 ⎦4 12
0 1 1 0 −1 1 

7/14 



Network model & generalized Kron reduction 

▶ generalized oriented incidence matrix encodes topology⎡ ⎤ 
B1,1 . . . B1,|E| h i ⎢ ⎥ . .⎢ . ⎥B := B1 . . . B|E| = ⎣ .. . . .. ⎦ ∈ RnN ×nE 

B|N |,1 . . . B|N |,|E| 

▶ Bli ,l = Jlili and Bli,l = Jlilk 
and Bj,l = 02ni×2nl otherwise for all edges l ∈ N[1,|E|] 

▶ overall network model Sδ = BWBT Vδ partitioned into exterior and interior nodes | {z }
=:J " # " #" # 

Sext Vext 
δ Jext Jc δ 

Sint 
= 

JT Vint , 
δ c Jint δ | {z } | {z } | {z }

=Sδ =J =Vδ 

Lemma 1 (Generalized Kron reduction) 
If the network is connected and interior-exterior node connected, then Jint has full rank and 

JTc )Vext + JcJ −1Sδ,ext = (Jext − JcJ −1 
δ Sδ,int.int int 
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Grid-forming droop control of single-phase and three-phase VSCs 

▶ droop coefficient md = mp = mq/τ to simplify notation 

▶ single-phase GFM droop " # " #" # " # 
θ̇δ,i 1 0 0 θδ,i Pδ,i 

=− − md v̇δ,i τ 0 1 vδ,i Qδ,i | {z }
=:FiFTi 

▶ standard three-phase droop " # " #" # " # " # " # 
γ̇i 0 0 γi T Pδ,i θδ,i γi 

= − 1 − md (I2 ⊗ 13) , = E 
ϑ̇i 0 ϑi | {z } Qδ,i vδ,i ϑiτ 

=:ET 

√▶ single-phase droop & phase-balancing feedback Si = I2 ⊗ 12P4 [5] " # # " #� �" 
θ̇ 
δ,i 1 θδ,i Pδ,i 

=− FiFiT + kbal,iSiSTi − md v̇δ,i τ vδ,i, Qδ,i 

θ

VpΣ, qΣ v⋆+

θa

Vapa, qa v⋆a

θb

Vb

pb, qb v⋆b
θc

Vcpc, qc v⋆c

θb − θc +
2
3π

θa − θb +
2
3π θa − θc

[5] Bhagwat, Groß: Three-phase grid-forming droop control for unbalanced systems and fault ride through , IEEE PES GM, 2023 9/14 



Properties of the closed loop 

▶ closed-loop system matrix � �X 1Jcl := ET mdJ + FiFi 
T + kbal,iSiST 

i E,
i∈N ext τ 

▶ closed-loop dynamics after eliminating interior nodes 
d 
dt cl,intJ

Tx = −(Jcl,ext − Jcl,cJ−1 
cl,c)x = Jcl,red 

Theorem 1 (Nullspace of Jcl) 
Consider a connected network G = (E , N ) that satisfies Assumption 1. Assume that one of the 

following holds: 

1. there exists i ∈ N3 
ext 
ϕ such that kbal,i ∈ R>0, 

2. there exists at least one path between two exterior nodes that contains at least one ∆ 

branch and all ∆ branches are traversed in the same orientation. 

Then Jclξ = 06|N3ϕ|+2|N1ϕ| if and only if ξi ∈ span(νni ). 

leverages synchronization through subgraph Gsync := (N , Esync) with Esync := E ∪ E3π ∪ E ∆ ∪ E1ϕ 
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Results in the literature are special cases of Theorem 2:
▶ conditions for balanced three-phase network with standard three-phase droop control
▶ conditions for single-phase network with single-phase droop
▶ spontaneous phase-balancing of ∆ -connected single-phase GFM converters

Stability conditions 

Theorem 2 (Asymptotic stability) 
Consider a interior-exterior node connected network that satisfies Assumption 1. Moreover, one of 
the following holds: 

1. there exists a three-phase VSC i ∈ N3 
ext 
ϕ using standard three-phase droop control, 

2. there exists a three-phase VSC i ∈ N3 
ext 
ϕ using generalized three-phase droop control with 

kbal,i ∈ R>0, 
3. there exists at least one path between the two exterior nodes that contains at least one ∆ 

branch and all ∆ branches are traversed in the same orientations. 

Then, the system is asymptotically stable with respect to the subspace xi = νni for all i ∈ N ext . 
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Spontaneous phase-balancing of single-phase GFM converters [6] 

[6] Lu, Dhople, Zimmanck, Johnson: Spontaneous Phase Balancing in Delta-Connected Single-Phase Droop-Controlled Inverters, IEEE TPEL, 2022 
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Case study 
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Conclusions & Future Work 

Take home messages 

▶ linearized quasi-steady-state model of unbalanced multi-phase systems 
▶ tractable for dynamic stability analysis 
▶ highlights conditions on network topology for synchronization 

Ongoing work 

▶ steady-state analysis 
• sharing of load unbalance and voltage unbalance 
• bounds on voltage unbalance as function of load, network, and control gains 

▶ sensitivity analysis of linearization errors for typical branches 
▶ distributed control for mitigating phase imbalances in distribution systems 
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