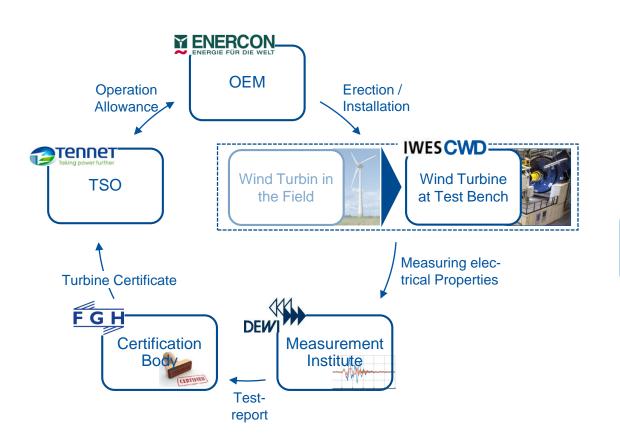


CertBench Experimental Experience with full-scale Wind Turbine Certification

Supported by:

on the basis of a decision by the German Bundestag

Federal Ministry for Economic Affairs and Energy


Jonas Bielemeier jonas.bielemeier@eonerc.rwth-aachen.de

RWTH Aachen University Institute for Automation of Complex Power Systems Center for Wind Power Drives

Joint Research Project: CertBench

Certification Process Germany

Goals

- Definition of required modelling detail (rotor)
- Design of mechanicallevel HiL-Systems and Control
- Assessment of the grid simulator's influence
- Validation of results with the help of commercial ENERCON Turbine and field tests

Motivation, Objective & Basis for tests

- Motivation:
 - Compare electrical properties of a wind turbine at
 - Grid simulator
 - Public grid
- Objective:
 - Demonstrate reproducibility of the properties at the PCC of the public grid by means of a converter-based grid simulator
- Basis

3

- FGW TR 3 Rev. 24 [TR3] (and draft of rev. 25)
- Selection of tests with regard to investigations of the sensitivity of electrical quantities (three-phase currents and voltages)

[TR3] FGW, Technische Richtlinie 3: Bestimmung der elektrischen Eigenschaften von Erzeugungseinheiten und -anlagen am Mittel-, Hoch- und Höchstspannungsnetz

Overview of tests according to FGW TR 3

No	Test		
1	Active power peaks	12	Power Quality (NR) – general procedures
2	Power limited operation	13	Power Quality – Switching
3	Power limitation at overfrequency	14	Power Quality – Flicker
4	P-gradient after loss of power	15	Power Quality – Harmonics
5	Restart time after loss of power	16	Power Quality – Asymmetry
6	Q-behavior in normal operation	17	Disconnection of WT from grid
7	PQ-diagram	18	Confirmation of connection conditions
8	Votlage-dependent PQ- diagram	19	LVRT
9	Q control	20	HVRT
10	QU control (optional)		
11	cos		

Normal operation Reactive power output Switching of WT Active power setpoints Reactive power output for voltage variations Fault ride through behaviour

Omitted

4

CertBench: Experimental Experiences with full-scale Wind Turbine Certification 5th International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains | 15. Novembver 2018 | Jonas Bielemeier

Performing the tests on the system test bench

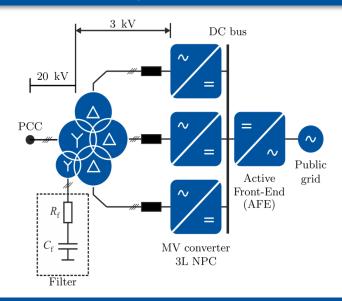
No	Test	
1	Active power peaks	
2	Power limited operation	
3	Power limitation at overfrequency	
4	P-gradient after loss of power	
5	Restart time after loss of power	
6	Q-behavior in normal operation	
7	PQ-diagram	
8	Votlage-dependent PQ-diagram	
9	Q control	
10	QU control	
11	cos¢(P) control	
12	Power Quality (NR) – general procedures	
13	Power Quality – Switching	
14	Power Quality – Flicker	
15	Power Quality – Harmonics	
16	Power Quality – Asymmetry	
17	Disconnection of WT from grid	
18	Confirmation of connection conditions	
19	LVRT	
20	HVRT	

5

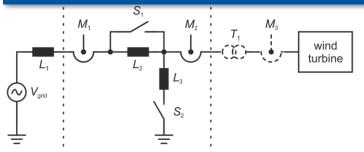
Behaviour during faults

- Objective:
 - Investigation of wind turbine behaviour during underand overvoltage events
- Execution:
 - By means of grid simulator and FRT container (at public grid), different voltage drops or overshoots are generated
- Expected result:
 - Converter of grid simulator can emulate the fault

Electrical Integration of the FRT-Container


Objective

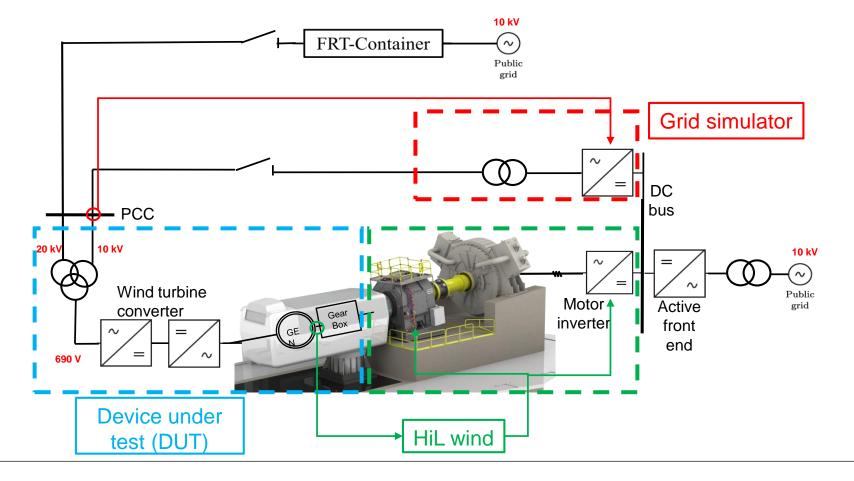
- Comparison of FRT-Container and grid simulator
 - Switch connection between direct connection to public grid and grid simulator
- HVRT-Capability
 - +30 % Overvoltage



CertBench: Experimental Experiences with full-scale Wind Turbine Certification 5th International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains | 15. Novembver 2018 | Jonas Bielemeier

Inverter-based grid simulator

FRT-Container



E.ON Energy Research Center

Comparison of grid simulator to FRT container

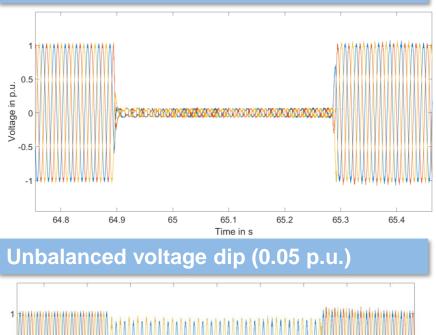
Conducting FRT tests with a connection of wind turbine to:

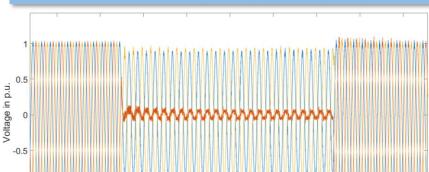
- The public grid via the FRT-container (in black at the top)
- The grid simulator (in red)

E.ON Energy Research Cente

CertBench: Experimental Experiences with full-scale Wind Turbine Certification 5th International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains | 15. Novembver 2018 | Jonas Bielemeier

Exemplary results of FRT tests

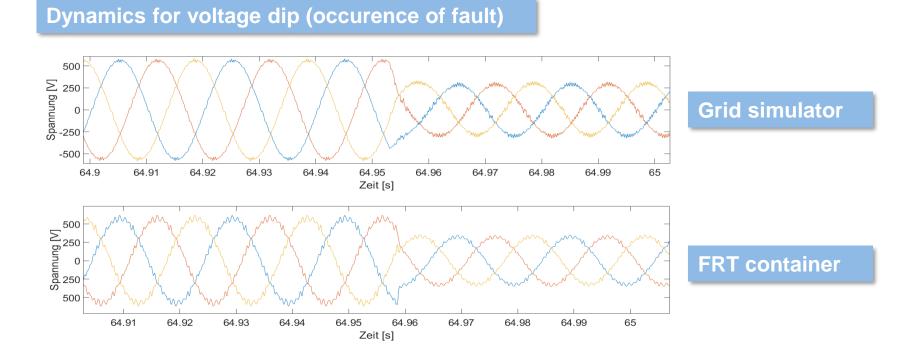

Different degrees of freedom for tests


- Residual voltage level
- Type of fault (2 phase / 3 phase)
- Load condition (None / Partial / Full)
- Wind turbine parameters, e.g. droop for reactive power injection

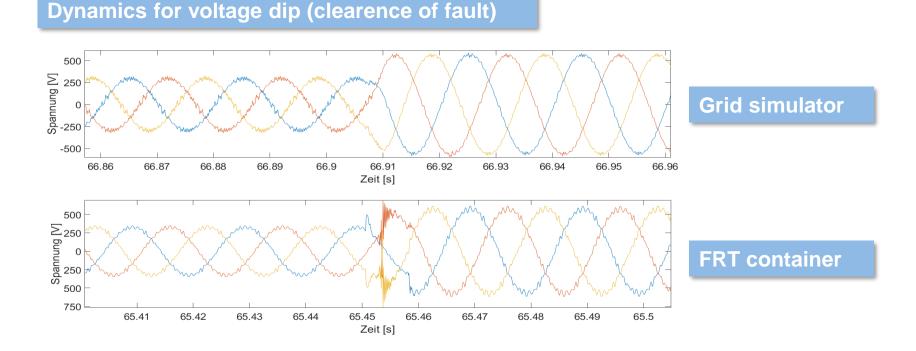
Indices for evaluation

- Voltage level
- Fault time
- Settling time

Balanced voltage dip (0.05 p.u.)



CertBench: Experimental Experiences with full-scale Wind Turbine Certification 5th International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains | 15. Novembver 2018 | Jonas Bielemeier


Exemplary results: Dynamics of FRT tests (1)

- Large impact of series impedance of FRT container on ripple
- Smooth transition for grid simulator vs hard switching of container
- The tolerance limits according to IEC 61400-21 are complied with

Exemplary results: Dynamics of FRT tests (2)

- Smooth transition for grid simulator vs overshoot with container
- The tolerance limits according to IEC 61400-21 are complied with

Summary of preliminary results

- Sufficient capability of grid simulator for FRT tests
- Large impact of grid stiffness on results
- TR3 norm not sufficiently adapted for test benches

Future work

- Revision of fault definition in TR3 norm
- Closer mapping of FRT-container and grid simulator
- PHIL with grid simulator for adaptive grids to enable virtual placement of wind turbines for certification process
- Comparison with real faults?
- Analysis of harmonics possible with grid simulator?

Supported by:

*

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Jonas Bielemeier

jonas.bielemeier@eonerc.rwth-aachen.de

RWTH Aachen University Institute for Automation of Complex Power Systems Center for Wind Power Drives

Thank you for your attention

