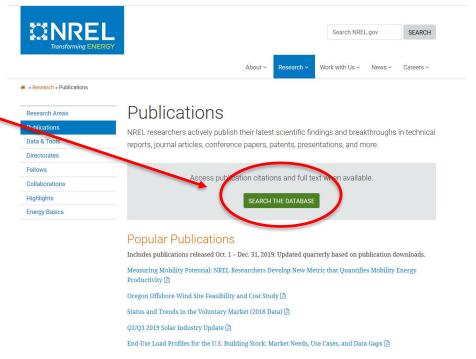


Webinar: National Renewable Energy Laboratory (NREL) Reviews the Duke Energy Carbon-Free Resource Integration Study

Bri-Mathias Hodge, Scott Haase (NREL) Ken Jennings (Duke Energy) January 17th, 2020

Agenda

- Webinar Welcome and Instructions Terri Edwards, Duke Energy
- **Study Purpose and Background** Ken Jennings, Duke Energy
- Integration with Clean Energy Plan Tim Profeta, Nicholas Institute
- NREL Phase 1 Analysis Scott Haase and Bri-Mathias Hodge, NREL
- Next Steps, Wrap Up Ken Jennings, Duke Energy


Background and Overview

- Duke Energy contracted with **National Renewable Energy Laboratory (NREL)**, an industryrespected, leading research institution, to conduct a study of the Carolinas' system.
- The study will be conducted in two phases. NREL recently completed **Phase 1** and has started **Phase 2**.
- Phase 1 is a **preliminary evaluation**; Phase 2 will incorporate costs and transmission impacts.
- As we advance towards a lower carbon future, these studies will help us understand the operational impacts, benefits and limitations of solar.
- The study will also inform other fleet transformation analyses, including how different clean energy technologies can contribute to a carbon-free future.

How to Access the Phase 1 Study

Final report posted here: <u>https://www.nrel.gov/docs/fy20osti/74337.pdf</u>

Phase 1: What is Covered and What Isn't

Covered	Not Covered
How different resource mixes could contribute to carbon-free energy on the DEC and DEP Systems	Comprehensive system planning including unit commitment/economic dispatch for energy and reserves
Impacts of integrating significant amounts of new solar photovoltaic (PV) power into Duke's service territory under a variety of scenarios	Constraints of thermal generation and must-run units (assumed to be flexible)
Curtailment quantities with limited system flexibility	Detailed interconnection analysis or transmission considerations
Introducing other scenarios such as wind, storage and how they contribute to total annual percentage of carbon-free generation	Market models and cost of various options

- Webinar Welcome and Instructions Terri Edwards, Duke Energy
- **Study Purpose and Background** Ken Jennings, Duke Energy
- Integration with Clean Energy Plan Tim Profeta, Nicholas Institute
- NREL Phase 1 Analysis Scott Haase and Bri-Mathias Hodge, NREL
- Next Steps, Wrap Up Ken Jennings, Duke Energy

Owned by the U.S. Department of Energy, Managed and Operated by the Alliance for Sustainable Energy, LLC 501 (c)(3)

aucures

RALL

ALLANDAR .

0

NREL at a Glance

2,200

Employees,

including postdoctoral researchers, interns, visiting professionals, and subcontractors

World-class

相的

facilities, renowned technology experts

Partnerships

with industry, academia, and government

over 800

Campus

campus operates as a living laboratory Approximate Operating Budget

\$400M+ annually

NREL Core Capabilities: Foundation for Innovation

Analysis and System Integration

Decision Science and Analysis

Systems Engineering and Integration

Policy and Markets

Innovation and Application

Biological and Bioprocess Engineering

Chemical Engineering

Mechanical Design and Engineering

Power Systems and Electrical Engineering

Large-Scale User Facilities

Foundational Knowledge

Applied Materials Science and Engineering

Biological Systems Science

Chemical and Molecular Science

Advanced Computer Science, Visualization, and Data

Technology Focus

Renewable Power

> Solar Wind Water Geothermal

Sustainable Transportation

Advanced Mobility Vehicle Technologies Hydrogen

Energy Efficiency

0

Buildings

Advanced Manufacturing

Government Energy Management

Energy Systems Integration

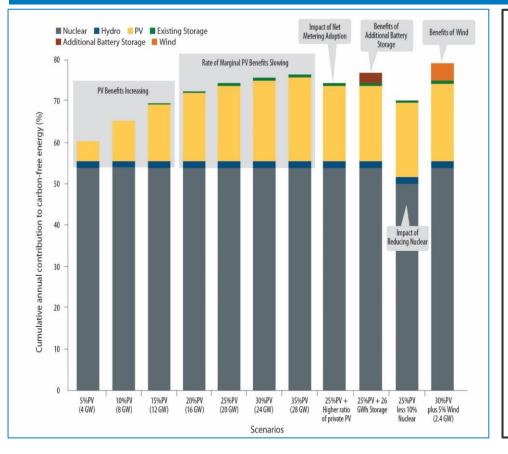
High-Performance Computing

> Data and Visualizations

Scope of Work

Net Load Analysis

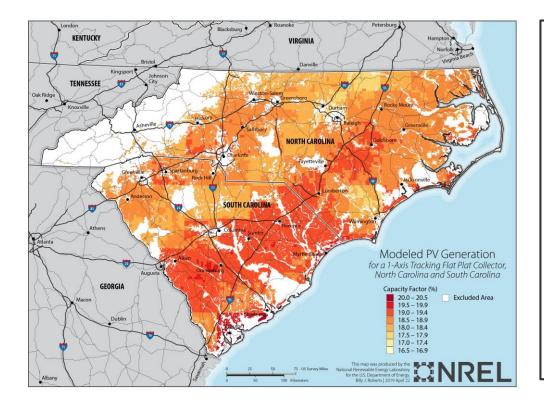
- Compared estimated hourly solar, wind, net load, and system minimum generation time series for different scenarios.
- Created initial estimates of possible curtailment, key periods of ramping, and load-following requirements.


Geospatial Analysis Maps with Interactive Web App

 Created wind power and solar power resource maps with technical exclusions and interactive web application to understand potential renewable energy locations.

Literature Review

 Referenced previous studies regarding challenges and opportunities from integrating wind and solar into various power systems drawing key conclusions that likely apply to the Duke service territory.


Summary of scenarios

Key Findings:

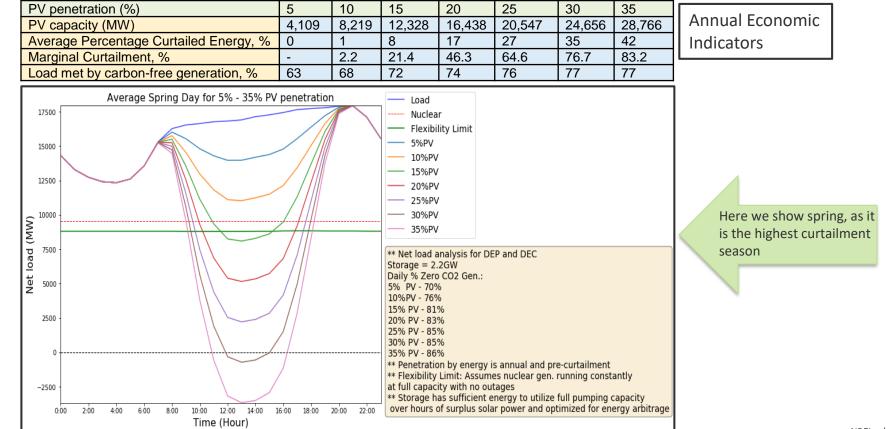
- Net load analysis highlights challenges and opportunities with integrating solar PV
- Average annual % of load met by carbon-free generation ranges from 60-79%
- Nuclear remains greatest contributor to carbon-free energy
- Above 15% solar PV, required curtailment grows
- The highest share of carbonfree generation is achieved by the scenario with the most resource diversity.
- Solar power curtailment is greater under separate balancing authorities

Solar Energy Resource in the Carolinas Region

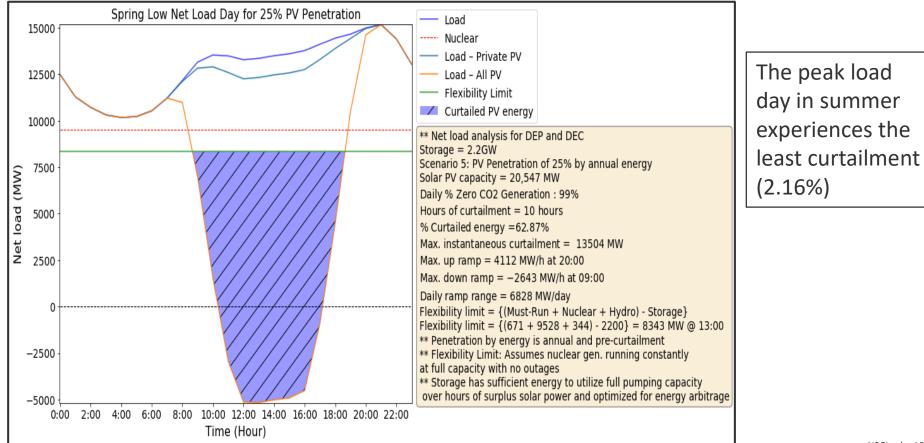
- Uses NREL's System Advisor Model (SAM)
- Input data from the National Solar Radiation Database (NSRDB)
- Capacity factors represent mean capacity factors across all available resource years (1997 – 2017 inclusive)
- Exclusions based on land categories and use-type

Scenarios

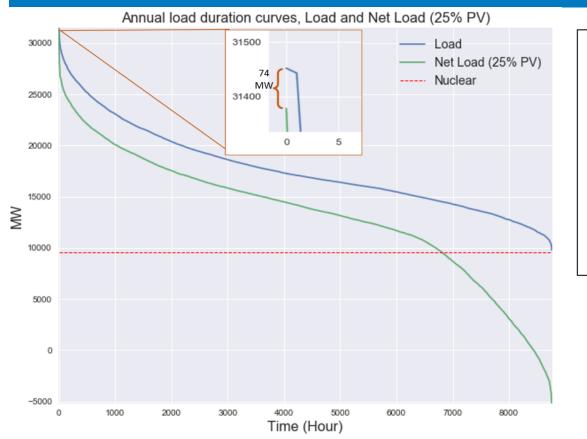
Definition
4,109 MW, 5.5% of total solar is rooftop
8,219 MW, 5.5% of total solar is rooftop
12,328 MW, 5.5% of total solar is rooftop
16,438 MW, 5.5% of total solar is rooftop
20,547 MW, 5.5% of total solar is rooftop
24,656 MW, 5.5% of total solar is rooftop
28,766 MW, 5.5% of total solar is rooftop
Based on the 25% solar energy penetration scenario, 18.91% of PV is uncurtailable rooftop.
Based on the 25% solar energy penetration scenario, addition of 1,000 MW of 4- hour storage, 1,000 MW of 6-hour storage, and 2,000 MW of 8-hour storage
Based on the 25% solar energy penetration scenario, assume a 10% nuclear reduction
Based on the 30% solar energy penetration scenario, an additional 5% wind
energy penetration is added.
Based on scenarios 1–3 inclusive, DEP and DEC are analyzed separately with an interconnection limit between, defined in the appendix


Assumptions

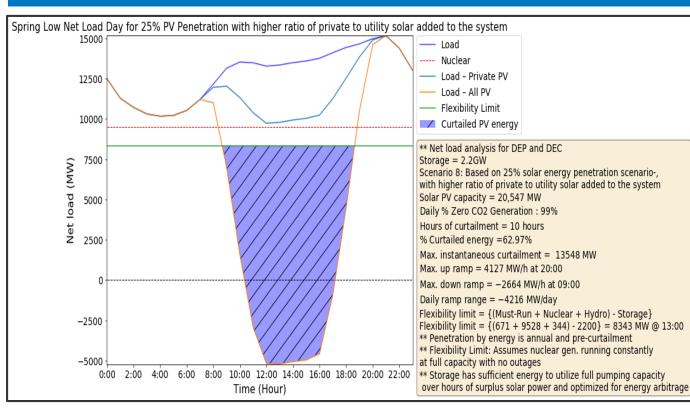
- 2019 hourly forecasted load data and solar PV time-series supplied by Duke Energy
- Thermal generation, excluding nuclear, has no flexibility constraints such as minimum stable level, ramp rates or outage rates
- PV is non-dispatchable
- Rooftop PV is not curtailable, utility PV is curtailable
- Existing storage is 2.2 GW of pumped storage hydropower and has sufficient energy capacity to use full pumping capacity during all hours of surplus solar power each day and is optimized for load shifting.
- Must-run units have a 1 week minimum up-time
- Nuclear units have a 0% outage rate
- No contingency reserve is considered
- No imports or exports are considered
- Individual scenarios methods explained later...


Definitions

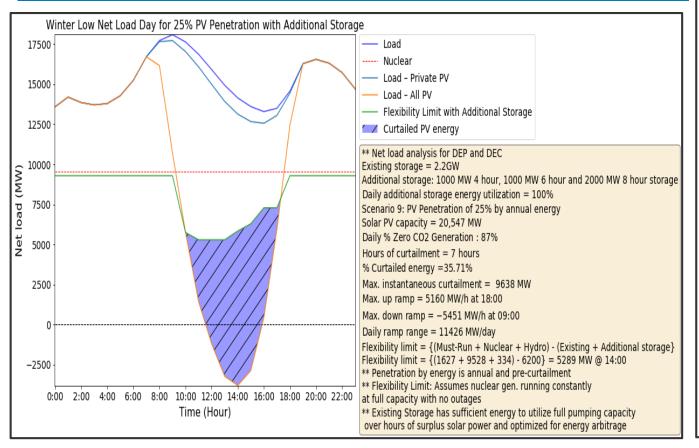
- Penetration is in terms of annual energy and pre-curtailment
- Inflexibility limit defined by:
 - Must-run units for local voltage constraints
 - Fixed hydro power schedules
 - Nuclear output at constant maximum capacity
 - Existing storage
- Percentage of curtailed energy is a percentage of total PV output energy
- Daily percentage of carbon-free generation includes solar power, wind power, hydropower and nuclear (using storage)
- Maximum up-ramp and down-ramp times presented are ending times of each ramp


Scenarios 1 – 7: 5% - 35% Solar Energy Penetration

Peak Load Day for 25% PV Penetration


Load Duration Curves for the Existing Load and Projected 25% PV Penetration Case

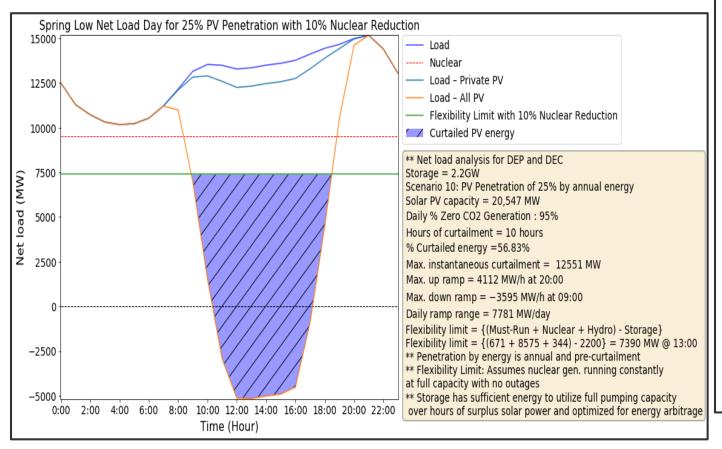
With the addition of 25% PV penetration:


- Peak load is reduced
- Annual minimum load drops below the nuclear output

Scenario 8: Increased Portion of Distributed Solar Energy

- Rooftop PV is not curtailable
- Based on 25% PV
 Penetration case
- 18.91% of PV is rooftop. This is the highest percentage from NRELdeveloped Standard Scenarios
- More utility PV must be curtailed
- Comparing to the base
 25% case, 33.2% of
 utility solar is curtailed
 as opposed to 28.5%
- Rooftop PV never requires curtailment, even at 25% total PV penetration

Scenario 9: Additional Storage Capabilities

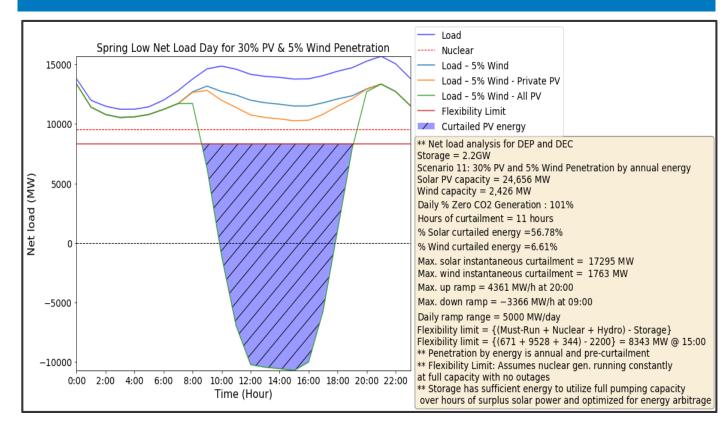


- Starts with the 25% PV penetration base case
- 1,000 MW of 4-hour, 1,000
 MW of 6-hour and 2,000
 MW of 8-hour (26,000
 MWh)
- Annual contribution of this addition storage amounts to 3.7% of annual load
- Renewable energy is stored and released the same day with 80% round-trip efficiency

Compared to the 25% PV penetration case:

- Solar curtailment reduces from 26.9% to 14.8%
- carbon-free contribution rises from 75.7% to 78.4% (more than 35% PV penetration case

Scenario 10 : Generation Retirement



 Based on 25% PV penetration case, 10% of nuclear power is retired and assumed replaced with flexible thermal generation

Compared to the 25% PV penetration case:

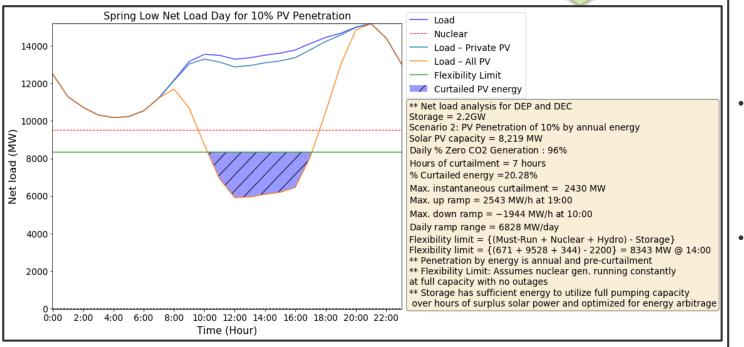
- Curtailment of solar
 PV decreases from
 26.9% to 22.2%
- Load met by carbonfree energy decreases from 75.7% to 71.2%

Scenario 11: Additional Wind Energy Penetration

Based on 30% PV penetration case, 5% penetration of wind power added

Compared to the 35% PV penetration case:

- Total renewable energy curtailment is reduced from 42% to 33.9% (37.6% solar is curtailed and 8.1% wind is curtailed)
- Total renewable energy marginal curtailment is reduced from 83.2% to 26.3%
- Load met by carbonfree increases from 77.5% to 80.7% (greatest of all scenarios)

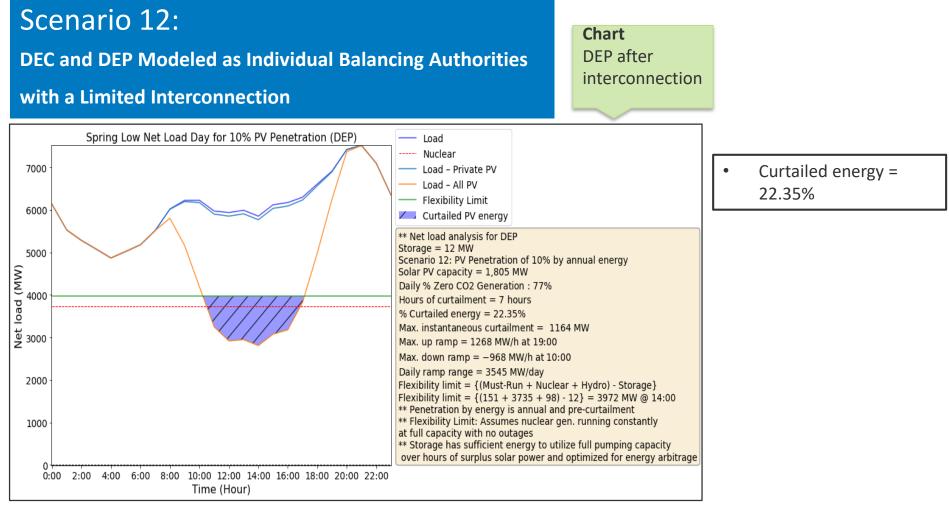

Scenario 12:

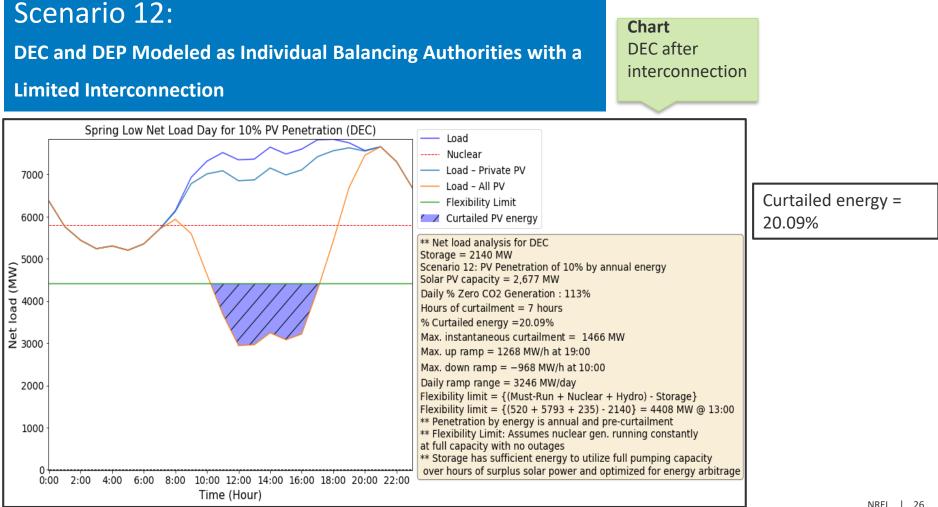
DEC and DEP Modeled as Individual Balancing

Authorities with a Limited Interconnection

Chart

DEP and DEC modeled as a single region with unlimited transmission capabilities



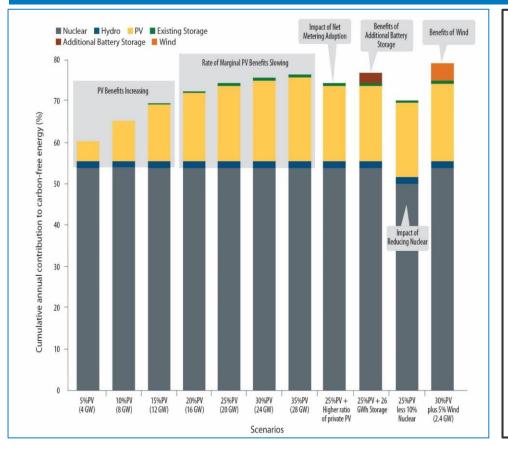

10% PV penetration is the lowest PV penetration scenario where curtailment occurs and the day pictured here has the highest curtailment at 20.28%.

Based on 5%, 10% and 15% solar PV penetration case

۰

- DEC and DEP are modeled separately with the inflexibility line, solar power profiles and load split between the two regions
- JDA interconnection is modeled with values that are directional and time dependent (night / day)
- Interconnection balances net load without an understanding of markets

Scenario 12:


DEC and DEP Modeled as Individual Balancing Authorities with a Limited Interconnection

Comparison of Curtailment of the System Modeled With and Without the Interconnection Modeled

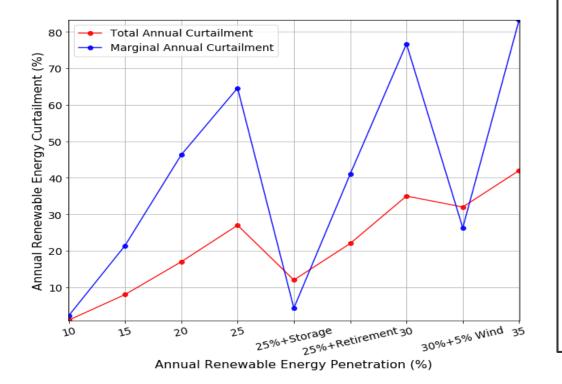
% PV Penetration	Copper plate Curtailment (MW)	Copper plate Percentage Curtailment	Curtailment with JDA modeled (MW)	Percentage Curtailment with JDA modeled
5%	1,570	0.0%	1,361	0.0%
10%	172,444	1.1%	191,306	1.2%
15%	1,824,853	7.9%	1,928,162	8.3%

- This table shows the potential reduction in curtailment possible by upgrading the interconnection between DEP and DEC
- Considering the location of new solar can help minimize transmission constraints, especially for large penetrations

Summary of scenarios

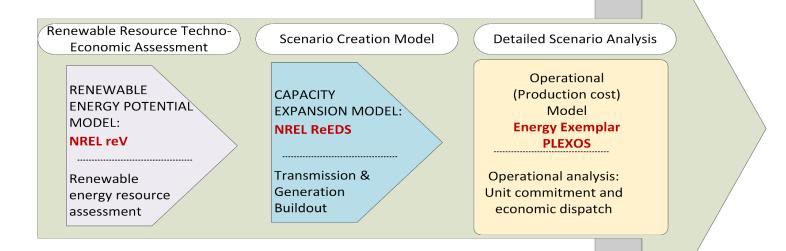
Key Findings:

- Net load analysis highlights challenges and opportunities with integrating solar PV
- Average annual % of load met by carbon-free generation ranges from 60-79%
- Nuclear remains greatest contributor to carbon-free energy
- Above 15% solar PV, required curtailment grows
- The highest share of carbonfree generation is achieved by the scenario with the most resource diversity.
- Solar power curtailment is greater under separate balancing authorities


Annual Summary of Flexibility Metrics

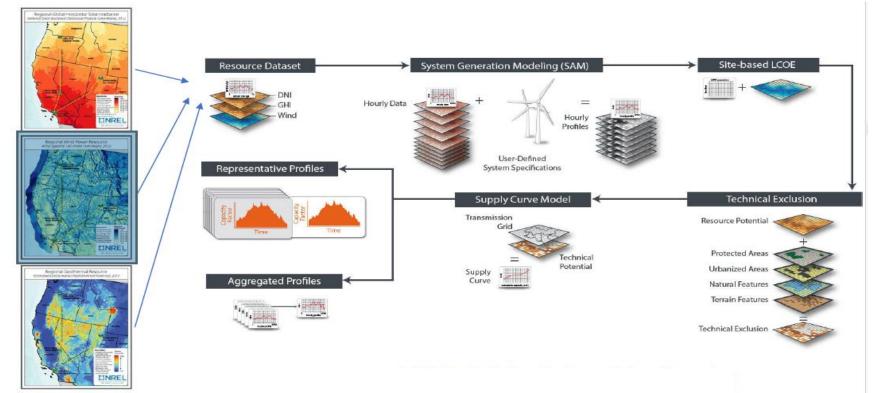
Annual Flexibility Indicators

Scenario	5%	10%	15%	20%	25%	30%	35%	High	Storag	Nuclear	Wind
								DPV	е	Retirement	
Load met by carbon-free generation, %	63	68	72	74	76	77	77	76	78	71	81
Maximum Instantaneous Curtailment,											
MW	530	3,323	6,618	10,003	13,504	17,207	20,909	13,548	11,073	12,551	17,486
Maximum up-ramp, MW/h	4,039	4,384	5,341	6,609	7,252	8,362	9,472	7,278	7,876	7,481	8,401
Maximum down-ramp, MW/h	5,873	5,873	5,873	6,699	7,894	9,090	10,286	7,906	7,894	7,894	9,555

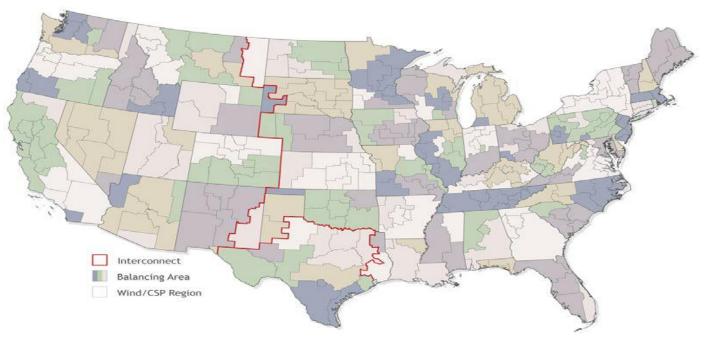

- Maximum instantaneous curtailment occurs in winter for penetrations up to and including 20% and then occurs in spring
- All maximum ramps happen in winter
- Transmission and nuclear retirement are both challenges with increasing PV penetration

Annual Summary of Opportunities and Conclusion

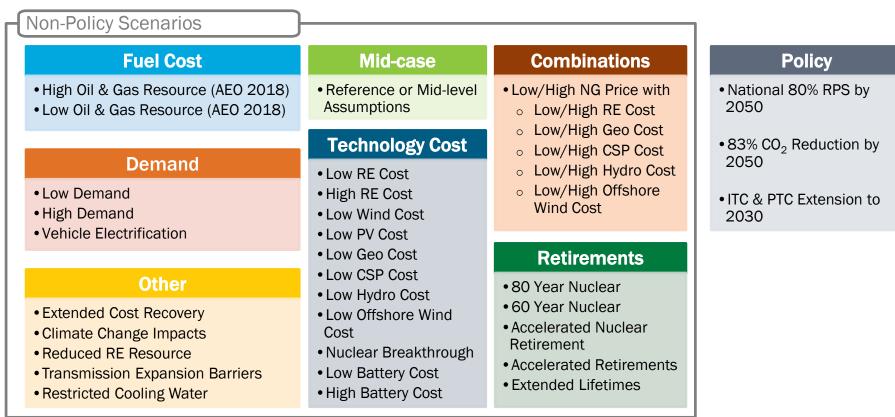
- Duke Energy endeavors to increase the portion of load met by carbon-free generation
- This net load analysis highlights challenges and opportunities with integrating solar PV and applying a selection of solutions
- Curtailment will likely begin at 10% PV penetration
- Greatest curtailment occurs during spring which is also when the greatest portion of load is met by carbon-free generation
- The benefits of adding wind power compared to solar power increase as solar PV penetration increases
- Further analysis with more advanced models would better evaluate options and impacts


Carbon-Free Resource Integration Study – Phase 2

*ReEDS: Regional Energy Deployment System

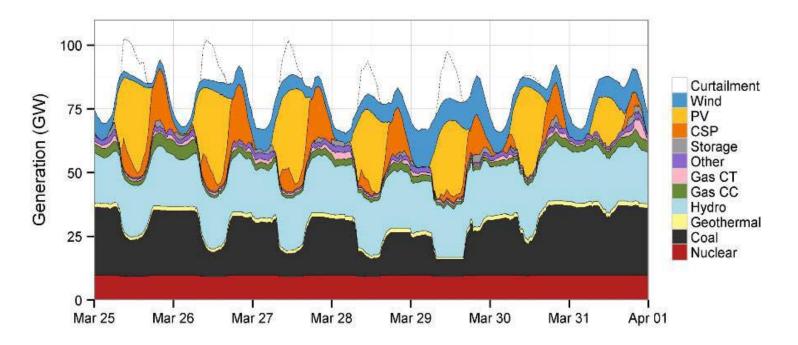

Renewable Energy Potential Model – NREL reV

Resource Assessment (Geospatial data science modeling)



Capacity Expansion Model – NREL ReEDS

- ReEDS includes 3 interconnections, 134 model BAs, and 356 Wind and CSP resource regions
- Transmission and generation buildout
- Scenario creation model
- Optimal investment pathways



Summary of the Standard Scenarios

Operational (Production cost) Model – Energy Exemplar PLEXOS

- Detailed scenario analysis from NREL ReEDS simulations
- Optimizes unit commitment and economic dispatch up to 5-minute resolution
- Minimizes the cost of power system operations

Thank you – any questions?

Agenda

- Webinar Welcome and Instructions Terri Edwards, Duke Energy
- **Study Purpose and Background** Ken Jennings, Duke Energy
- Integration with Clean Energy Plan Tim Profeta, Nicholas Institute
- NREL Phase 1 Analysis Scott Haase and Bri Mathias-Hodge, NREL
- Next Steps, Wrap Up Ken Jennings, Duke Energy

APPENDIX

Scenario	Definition	Annual Load Met by Carbon Free Generation (%)	Annual Curtailed Energy (%)	Annual Hours of Curtailment	Annual Maximum Instantaneous Curtailment (MW)
1. Solar energy penetration 5%—both balancing authorities as a single region	4,109 MW, 5.5% of total solar is rooftop	63%	0%	6	530
 Solar energy penetration 10%— both balancing authorities as a single region 	8,219 MW, 5.5% of total solar is rooftop	68%	1%	179	3,323
3. Solar energy penetration 15%—both balancing authorities as a single region	12,328 MW, 5.5% of total solar is rooftop	72%	8%	882	6,618
4. Solar energy penetration 20%—both balancing authorities as a single region	16,438 MW, 5.5% of total solar is rooftop	74%	17%	1,506	10,003
5. Solar energy penetration 25%—both balancing authorities as a single region	20,547 MW, 5.5% of total solar is rooftop	76%	27%	2,016	13,504
 Solar energy penetration 30%—both balancing authorities as a single region 	24,656 MW, 5.5% of total solar is rooftop	77%	35%	2,355	17,207
7. Solar energy penetration 35%—both balancing authorities as a single region	28,766 MW, 5.5% of total solar is rooftop	77%	42%	2,587	20,909
added to the system—both balancing	Based on the 25% solar energy penetration scenario, 18.91% of PV is uncurtailable rooftop.	76%	36%	2,017	13,548
 Additional storage—both balancing authorities as a single region 	Based on the 25% solar energy penetration scenario, addition of 1,000 MW of 4-hour storage, 1,000 MW of 6-hour storage, and 2,000 MW of 8-hour storage	78%	12%	1,239	11,073
	Based on the 25% solar energy penetration scenario, assume a 10% nuclear reduction	71%	22%	1,804	12,551
11. Additional wind energy penetration 5— both balancing authorities as a single region	Based on the 30% solar energy penetration scenario, an additional 5% wind energy penetration is added.	81%	32%	2,486	17,486
	Based on scenarios 1–3 inclusive, DEP and	73%	0%	5	246
12—DEC 10% 12—DEC 15%	DEC are analyzed separately with an interconnection limit between	78% 94%	1% 7%	213 912	1,886 3.418
12—DEC 15% 12—DEP 5%		94% 52%	0%	912 5	246
12—DEP 10%		56%	1%	205	1,600
12—DEP 15%		60%	10%	905	3,418

Average Seasonal Percentage of Load Met by Carbon-Free Generation for Each Scenario

Scenario	Spring	Summer	Fall	Winter	Annual
1. Solar energy penetration 5%-					
both balancing authorities as a single region	70%	56%	67%	59%	63%
2. Solar energy penetration 10%-					
both balancing authorities as a single region	76%	60%	72%	63%	68%
3. Solar energy penetration 15%-			12,0	0070	
both balancing authorities as a	81%	65%	75%	65%	72%
single region 4. Solar energy penetration 20%—	0176	0578	1378	03 %	7 2 78
both balancing authorities as a	000/	000/	700/	070/	740/
single region	83%	69%	78%	67%	74%
5. Solar energy penetration 25%— both balancing authorities as a					
single region	84%	71%	79%	68%	76%
6. Solar energy penetration 30%— both balancing authorities as a					
single region	85%	73%	80%	69%	77%
7. Solar energy penetration 35%—					
both balancing authorities as a single region	86%	74%	81%	69%	77%
8. Higher ratio of distributed to utility	0070	11/0	0170	0070	
solar added to the system—both					
balancing authorities as a single region	84%	71%	79%	68%	76%
9. Additional storage—both	01/0		10/0		/ -
balancing authorities as a single	88%	72%	82%	70%	78%
region 10. Nuclear retirement—both	00 %	12/0	82.76	1078	7878
balancing authorities as a single	222/	070/	740/	0.407	710/
region 11. Additional wind energy	80%	67%	74%	64%	71%
penetration 5—both balancing					
authorities as a single region	90%	76%	84%	73%	81%
12 – DEC 5%	82%	63%	78%	68%	73%
12 – DEC 10%	89%	68%	84%	72%	78%
12 – DEC 15%	106%	86%	100%	86%	94%
12 – DEP 5%	57%	47%	54%	48%	52%
12 – DEP 10%	63%	52%	59%	52%	56%
12 – DEP 15%	66%	56%	62%	54%	60%

Average Percentage Curtailed Energy

Scenario	Spring	Summer	Fall	Winter	Annual
1	0%	0%	0%	0%	0%
2	2%	0%	1%	2%	1%
3	12%	1%	10%	10%	8%
4	25%	4%	22%	22%	17%
5	36%	12%	32%	31%	27%
6	44%	21%	40%	39%	35%
7	50%	29%	46%	45%	42%
8	47%	16%	42%	41%	36%
9	19%	2%	15%	14%	12%
10	30%	8%	27%	26%	22%
11	40%	20%	36%	34%	32%
12 – DEC 5%	0%	0%	0%	0%	0%
12 – DEC 10%	2%	0%	1%	1%	1%
12 – DEC 15%	11%	1%	9%	10%	7%
12 – DEP 5%	0%	0%	0%	0%	0%
12 – DEP 10%	2%	0%	1%	1%	1%
12 – DEP 15%	15%	2%	30%	31%	10%

Hours of Curtailment per Season

Scenario	Spring	Summer	Fall	Winter	Annual
1	0	0	0	6	6
2	76	0	45	58	179
3	351	36	275	220	882
4	533	216	403	354	1,506
5	636	458	494	428	2,016
6	707	598	562	488	2,355
7	752	700	610	525	2,587
8	634	454	496	433	2,017
9	484	136	341	278	1,239
10	593	363	457	391	1,804
11	746	650	584	506	2,486
12 – DEC 5%	0	0	0	5	5
12 – DEC 10%	91	2	54	66	213
12 – DEC 15%	358	53	278	223	912
12 – DEP 5%	0	0	0	5	5
12 – DEP 10%	90	1	51	63	205
12 – DEP 15%	361	45	282	217	905

Maximum instantaneous curtailment of each season (MW)

Scenario	Spring	Summer	Fall	Winter
1	0	0	0	530
2	2430	0	2752	3233
3	6113	2913	5897	6618
4	9801	6106	9183	10003
5	13504	9299	12560	13389
6	17207	12542	16023	16774
7	20909	16143	19689	20271
8	13548	9248	12568	13452
9	11073	5769	9185	9842
10	12551	8346	11607	12436
11	17486	13326	16273	17084
12 – DEC 5%	0	0	0	246
12 – DEC 10%	1466	252	1390	1886
12 – DEC 15%	3116	1878	2958	3418
12 – DEP 5%	0	0	0	246
12 – DEP 10%	1234	117	1390	1600
12 – DEP 15%	3116	1630	2958	3418