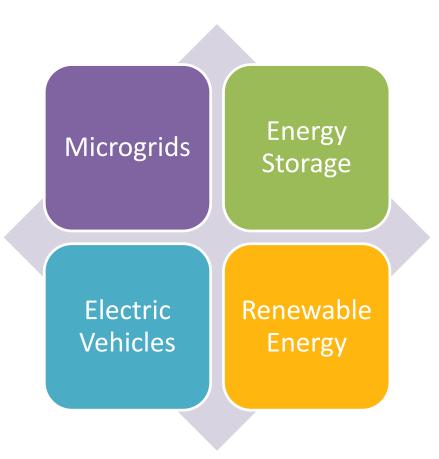


DISTRIBUTION SYSTEM REAL TIME SIMULATION

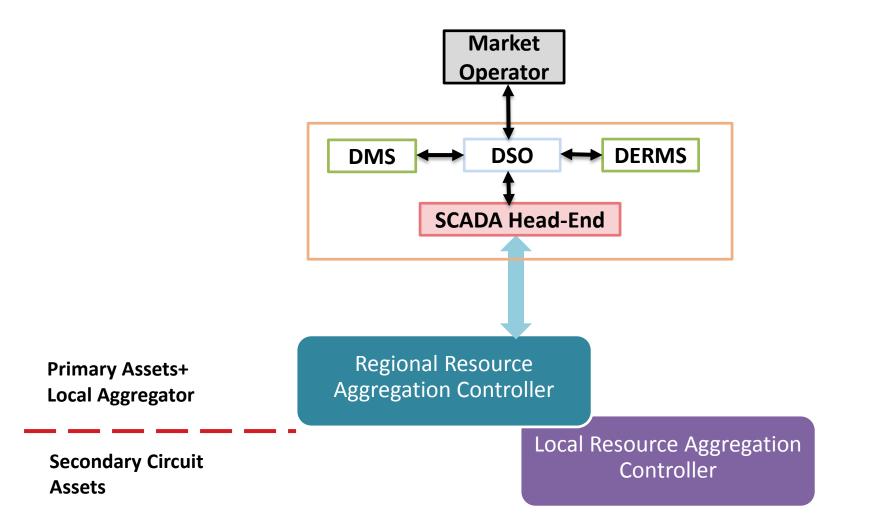
FIFTH ANNUAL INTERNATIONAL WORKSHOP ON GRID SIMULATOR TESTING

Nov. 2018

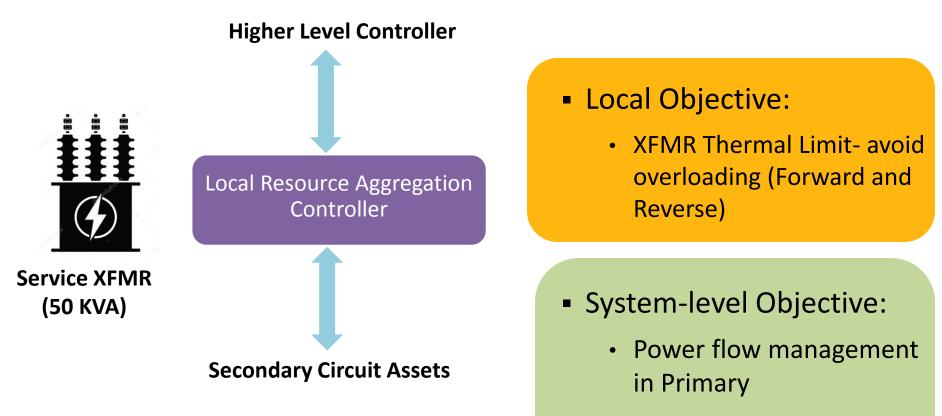
Smart Solutions, Practical Results


Outline

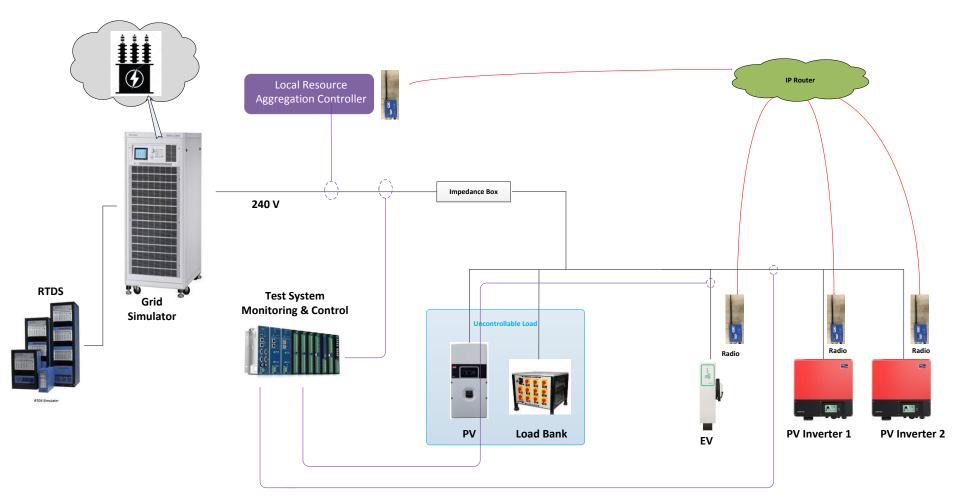
- Advancement in Distribution System Control operation
- Local Resource Aggregator concept
- Testing Local Resource Aggregator control
- Test Results
- Summary


Power Distribution System Transformation

- Integration of Primary Renewable DER assets:
 - Grid-scale Energy Storage (ES)
 - Grid-scale PV site
- Integration of Secondary-circuit DERs and Controllable Load Assets:
 - Behind-the-meter ES, PV
 - Electric Vehicle (EVs)
 - Direct load control (DLC)



Advanced Distribution System Control Operation


Local Resource Aggregator Concept of Operation

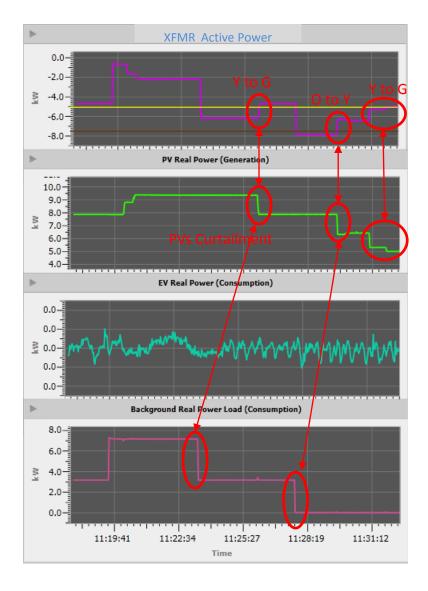
Market participation

Local Resource Aggregator Test Setup

• Scenario:

- PVs+ no EV+ Uncontrollable resistive Load
- Transformer reverse limit met

• Procedure:


- Sunny conditions for two PVs
- Uncontrollable Resistive Load variation (Load step-wise decrease)

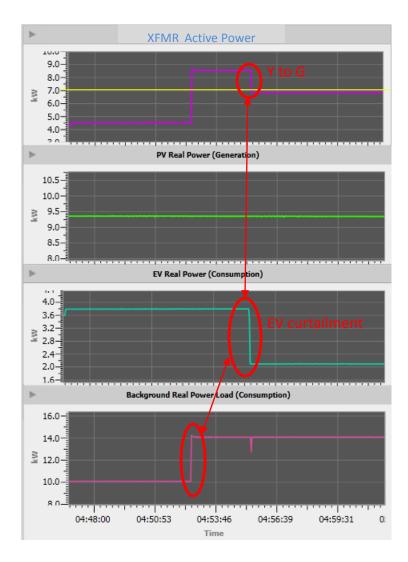
• Expectation:

• PVs are curtailed evenly to mitigate reverse power flow overload

Test Case- Reverse Power Flow (Plots)

Test Case- Reverse Power Flow (controller UI)

								Add DER		Remove DE	
DER Name	Index	туре	DER State	Comm state	Rating	Curtailment	P	P SP	٩	Q SP	
EV1	1	EV	Enable	UP (0) UpTime: 6376	7.200 KVA	no	0.024 kW	1.440 kW	0.000 KVAR	0.000 KVAR	
PV1	3	PV	Enable	UP (0) UpTime: 512	5.000 kVA	yes	3.984 kW	3.982 kW	0.000 KVAR	0.000 KVAR	
<u>PV2</u>	2	PV	Enable	UP (0) UpTime: 3020	5.000 kVA	yes	3.977 kW	3.980 kW	0.000 KVAR	0.000 KVAR	
				I	Equal	Curtailn	nent of	each l	PV		



Test Case- Forward Power Flow (Description)

- Scenario:
 - PVs+ EV+ Uncontrollable resistive Load
 - Transformer forward limit met
- Procedure:
 - EV is not close to full charge
 - Sunny conditions for two PVs
 - Uncontrollable Resistive Load variation (Load increase)
- Expectation:
 - EV is curtailed to mitigate forward power flow overload

Test Case- Forward Power Flow (Plots)

Test Case- Forward Power Flow (controller UI)

									Add DER Remove DE		
	DER Name	Index	Туре	DER State	Comm state	Rating	Curtaliment	P	PSP	Q	Q SP
-						-					
	EV1	1	EV	Enable	UP (0) UpTime: 118		yes	2.160 kW	2.160 kW	0.000 kVAR	
	PV1	3	PV	Enable	RETRY (1) Remain:		no	4.745 kW	5.000 kW	0.000 KVAR	
	<u>PV2</u>	2	PV	Enable	UP (0) UpTime: 131	5.000 kVA	no	4.753 kW	5.000 kW	0.000 KVAR	0.000 kVAR
							EV Curta				

Summary

- Hierarchy of resource aggregation and management in the advanced distribution system was discussed.
- Local Resource Aggregation control concept and objectives was described.
- Testing of Local Resource Aggregator through grid simulator and real-time digital simulation was discussed.
- Selected test results for Local Resource Aggregator functionality were presented.

Thank you!

Ahmad Momeni, Ph.D. Principal Consultant, Advanced Technology Integration amomeni@quanta-technology.com

f

- (919) 334-3000
 quanta-technology.com
 info@quanta-technology.com
- Facebook.com/quanta-technology-LLC
- @QuantaTech
- in Linkedin.com/company/quanta-technology

