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Executive Summary 
The Situational Awareness of Grid Anomalies (SAGA) project built upon foundational power 
system tools developed at the National Renewable Energy Laboratory (NREL) integrated with an 
ever-increasing set of Gridmetrics1 data extracted from the cable television (CATV) broadband 
network infrastructure while assimilating other time-series geospatial data and information, such 
as weather and cyber-physical phenomena, to demonstrate a disruptive technology for power 
system data analytics relying on existing infrastructure.  

The objective of the project was to put into practice a graphical user interface for utility system 
operators along with a versatile bidirectional application programming interface (API) to allow 
field-validated visual analytics, machine learning, and human-in-the loop decision support to 
integrate cyber-physical data from CATV broadband power supplies and utility information 
systems. The result was an enhanced distribution grid visibility and operational situational 
awareness system that can be used by utilities to assist in detecting patterns of operation 
indicative of cyber incidents and other issues that have the potential to affect power availability 
and quality, distribution system resiliency, and electric service restoration. 

The scope of the project was to create and demonstrate the viability of the envisioned SAGA 
prototype system with our technical review committee (TRC) member utilities from Holy Cross 
Energy, Fort Collins Light & Power, and Northern Lights, Inc. Specifically, the scope included 
streaming broadband sensor observations and metadata processed by CableLabs and NREL 
servers from an initial batch mode to analytics-based importing, analyzing, visualizing, and 
alerting, i.e., Situational Awareness of Grid Anomalies (SAGA) for Visual Analytics: Near-Real-
Time Cyber-Physical Resiliency Through Machine Learning. 

Research thrusts and results 
Three research thrusts supported the project: (1) visual analytics, (2) cyber-physical power 
system simulation, and (3) anomaly detection: 

1. Visual analytics: Geospatial data visualization and alerting to support analyst-based 
operational decision making and standardization of a new algorithm-agnostic interface 
for machine learning. 
Results: The evolution of the initial SAGA/Gridmetrics API provided a foundation on 
which to define custom cable sensor groups and performance indices that could be made 
available with associated time-series data. The integration of this API and its sensor data 
were the focus and motivation for the development of the project’s Core Data Services— 
three data services to access metadata, near-real-time data streams, and historical 
batches—enabling the data and visualization team to deliver a scalable and cohesive data 
pipeline that directly supports novel grid visualizations and future machine learning 
workflows. Additionally, these Core Data Services are containerized to provide 

 
 
1 Gridmetrics is a commercial subsidiary of Cable Television Laboratories, Inc. (CableLabs), the research and 
development association of the cable broadband industry. CableLabs provided SAGA data and research and 
development collaboration. 
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flexibility with deployment environments and scalable interfaces to Gridmetrics sensor 
data.  
To subsequently ingest, explore, and analyze these rich data, the team designed and 
integrated interactive visualization components with the Core Data Services. To this end, 
three advanced visual analytic components were prototyped to provide user support for 
comprehensive system overviews, geospatial exploration, and advanced time-series 
analysis capabilities. Further details are included in Section 2, Appendix A1, and 
Appendix A2. 

 
2. Cyber-physical power system simulation: Cyber-physical power system modeling and 

simulation for a better understanding of grid impacts caused by prototype cyber-physical 
events. 
Results: Both steady-state and dynamic cyber-physical power system simulation models 
were developed leveraging open-source software and real-world distribution feeder data. 
Cyber-physical events were designed and implemented considering a forward-looking 
system operating setting in which distributed energy resources (DERs) are aggregated to 
provide grid services. Further details are included in Section 3. 

 
3. Anomaly detection: Enabling Gridmetrics sensor data to provide improved cyber 

situational awareness through machine learning. 
Results: The Gridmetrics sensor data-enabled anomaly detection algorithm is developed 
and tested with simulation data collected from the cyber-physical power system 
simulations to demonstrate how the Gridmetrics sensor data can be used to automate 
cyber anomaly detection in real-time operation. Both deterministic and probabilistic 
prediction-based anomaly detection models are developed and compared. Further details 
are included in Section 4. 

Work was performed over 3 years plus a 4-month documentation and reporting period. During 
the project, we convened and met with our valued TRC member utility advisors on four 
occasions. The focus of Phase 1 (Year 1) was on SAGA alpha testing, in which we built our first 
geospatial visualization platform, developed models of electric distribution grids, and defined the 
cybersecurity issues of greatest importance to cyber-physical resiliency. The focus of Phase 2 
(Year 2) was on beta testing, in which we evolved the alpha version capabilities to explore 
cybersecurity anomaly detection built off a robust analytical backend. We also extended the 
geospatial visualization platform to observe and contextualize anomalies, creating a visual 
analytics framework to provide a new state of the art in situational awareness across 
geographically disparate areas at high spatial fidelity. The focus of Phase 3 (Year 3) was on 
demonstrations of cyber event simulations and exploring new indices for arbitrary collections of 
sensors and time spans.  

Learnings and improvements identified and completed in parallel with the SAGA project 
After starting the SAGA project, the team identified increased grid cybersecurity benefits that 
could be realized by improving sensing beyond the capabilities of the millions of broadband 
power quality sensors already in service worldwide. We learned that improved sensing would 
help promote the rapid widespread commercial availability of secondary distribution grid voltage 
and phase angle data by providing higher fidelity grid sensing. As a SAGA-enhancing activity, 
the team proposed and completed a technology commercialization project to advance the state of 
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the art in sensing of the grid. Funding was provided by the U.S. Department of Energy (DOE) 
Office of Technology Transitions, Technology Commercialization Fund (TCF) for TCF-20-
20213: Advanced Power Distribution Sensing and Communications Through the Cable TV 
Broadband Network. The TCF project was designed to fill the need for better standards-based 
grid sensors to support SAGA. In the TCF project, we defined a grid power quality sensor with 
0.2% (p.u.) precision and 10-kHz sampling, created the ANSI/SCTE 271 grid sensing American 
National Standard, built dozens of prototype sensors, and put them in the field—all within the 
timeline of the SAGA project. The TCF final report includes a copy of the new ANSI standard, 
the patent we filed that was required for our application for DOE TCF funding, and a letter of 
support for continued commercialization efforts from SAGA utility partner Holy Cross Energy; 
please see https://www.nrel.gov/docs/fy22osti/83624.pdf. 

Important next steps to take advantage of the value created 
In September 2022, the team responded to a request from the DOE Office of Cybersecurity, 
Energy Security, and Emergency Response (CESER) with a draft SAGA Ops proposal to build 
upon the SAGA work to provide operational benefits. The main objective of SAGA Ops is to 
provide CESER with the ability to take advantage of the increasing set out-of-band cable sensor 
data from Gridmetrics on a nationwide scale to directly support CESER’s responsibilities 
regarding grid security and resiliency. At a high level, SAGA Ops provides two categories of 
support: (1) real-time monitoring of sensor data and (2) reporting of sensor data over defined 
periods of time. The abridged SAGA Ops proposal is included in Appendix B.  

Conclusions 
The SAGA project created technology that leverages, couples, and fortifies two vastly different 
realms—power and broadband—to increase the resiliency of the power grid in the face of 
increasing cyberattacks and operational challenges related to integrating DERs. Our exploration 
of potential synergies of broadband-enabled grids resulted in identifying a mutually beneficial 
symbiosis that can increase the resiliency of both power and broadband services. Broadband 
networks perform better with reliable power and are good at providing real-time measurements 
that identify where the grid is under attack, is failing, or is weak. Likewise, sensor-starved 
distribution grids perform better and can be more reliable when their operation is buttressed with 
observations of broadband-detected anomalies.  

Further, although new communication technologies can be rate-payer financed and deployed 
over years and decades to assist in grid operations, existing in-service broadband networks are 
unique in that they already pass within 1,000 feet of 97% of homes in North America. Moreover, 
broadband’s gigabit speeds and millisecond latencies create new grid observability and control 
paradigms that cannot be accomplished with existing networks that provide lower speeds and 
higher latencies. Broadband-enabled, grid situational awareness and control create entirely new 
possibilities for actively managing the grid to prevent cascading outages.  

In terms of saving lives and preventing human suffering, broadband’s contribution to improving 
grid resiliency, reliability, and cost-effective operation should be further developed as quickly as 
possible. In addition to supporting the objectives of CESER, SAGA follow-on work can have a 
positive impact on many objectives across various DOE offices. 

https://www.nrel.gov/docs/fy22osti/83624.pdf


 

vi 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Table of Contents 
Executive Summary ................................................................................................................................... iii 
1 Task and Milestone Summary ............................................................................................................. 1 
2 Core Data Services and Visual Analytics ........................................................................................... 2 

2.1 Metadata Service ........................................................................................................................... 3 
2.2 Historical Service .......................................................................................................................... 5 
2.3 Streaming Service ......................................................................................................................... 7 
2.4 Visual Analytics ............................................................................................................................ 8 
2.5 Learnings, Conclusions, Recommendations ............................................................................... 17 

3 Cyber-Physical Power System Simulation ...................................................................................... 18 
3.1 Dynamic Simulation With DER-Enabled Frequency Regulation ............................................... 18 
3.2 Steady-State Simulation with DER-Enabled Voltage Regulation ............................................... 19 
3.3 Cyber Anomaly Scenarios ........................................................................................................... 22 
3.4 Simulation Results ....................................................................................................................... 23 

3.4.1 Synchronous Versus Asynchronous Communication Latency ...................................... 24 
3.4.2 Measurement Channel Versus Control Channel Events ................................................ 25 
3.4.3 False Data Injection Attack ............................................................................................ 26 

3.5 Learnings, Conclusions, Recommendations ............................................................................... 29 
4 Anomaly Detection ............................................................................................................................. 30 

4.1 Distributed Anomaly Detection Framework ............................................................................... 30 
4.2 Deterministic Versus Probabilistic Approaches .......................................................................... 31 
4.3 Model Fitting Procedure .............................................................................................................. 32 
4.4 Performance Evaluation .............................................................................................................. 33 

4.4.1 Performance of the Deterministic Approach .................................................................. 33 
4.4.2 Performance of the Probabilistic Approach ................................................................... 35 
4.4.3 Performance Comparison ............................................................................................... 36 

4.5 Learnings, Conclusions, Recommendations ............................................................................... 37 
References to SAGA-Related Papers ...................................................................................................... 38 
Appendix A1: Using the SAGA APIv3 ..................................................................................................... 39 
Appendix A2: SAGA APIv3....................................................................................................................... 40 
Appendix B: Abridged SAGA Ops Proposal .......................................................................................... 52 
Appendix C: Letters From Utilities Supporting Continued SAGA Development ............................... 68 
 
  



 

vii 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

List of Figures 
Figure 2.1. Overview of SAGA’s core data services architecture ................................................................ 2 
Figure 2.2. Sample Metadata Service API documentation available from the containerized service .......... 4 
Figure 2.3. Sample Historical Service API documentation available from the containerized service ......... 6 
Figure 2.4. Sample Historical Service API documentation available from the containerized service ......... 7 
Figure 2.5. Visual analytics geospatial component in the initial view .......................................................... 9 
Figure 2.6. Visual analytics geospatial component with the data layer management menu selected ......... 10 
Figure 2.7. Visual analytics geospatial component focused on the Houston, Texas, metropolitan area by 

selecting a “fly-to” option in the location menu located in the top left corner ...................... 11 
Figure 2.8. Visual analytics geospatial component focused on Glenwood Springs, Colorado, by selecting 

a “fly-to” option in the location menu located in the top left corner ...................................... 12 
Figure 2.9. Visual analytics geospatial component focused on Fort Collins, Colorado, by using the 

location menu in the top left corner ....................................................................................... 13 
Figure 2.10. Visual analytics geospatial component focused on Fort Collins, Colorado ........................... 14 
Figure 2.11. Visual analytics geospatial component focused on Fort Collins, Colorado. .......................... 15 
Figure 2.12. Sample of a visual analytics time-series component displaying a selected focus area’s sensor 

voltage distribution on the left and a selected sensor’s voltage time series on the right ........ 15 
Figure 2.13. Sample visual analytics time-series component for interactively exploring sensor voltage 

patterns across long periods ................................................................................................... 16 
Figure 3.1. Framework of the dynamic cyber-physical simulation tool ..................................................... 19 
Figure 3.2. Secondary frequency regulation control diagram ..................................................................... 19 
Figure 3.3. Framework of the steady-state cyber-physical simulation tool ................................................ 20 
Figure 3.4. Closed-loop control diagram of the frequency regulation ........................................................ 22 
Figure 3.5. Closed-loop control diagram of the voltage regulation ............................................................ 22 
Figure 3.6. Frequency trajectories under different levels of synchronous communication latencies ......... 24 
Figure 3.7. Frequency trajectories under different levels of asynchronous communication latencies ....... 25 
Figure 3.8. Frequency trajectories under different levels of packet dropouts occurring at the control 

channels .................................................................................................................................. 25 
Figure 3.9. Frequency trajectories under different levels of packet dropouts occurring at the measurement 

channels .................................................................................................................................. 26 
Figure 3.10. Gridmetrics voltage measurements under normal operation .................................................. 27 
Figure 3.11. Gridmetrics voltage measurements under a control channel data deception event ................ 27 
Figure 3.12. Gridmetrics voltage measurements under a measurement channel data deception event ...... 28 
Figure 3.13. Daily system load and PV profiles ......................................................................................... 28 
Figure 4.1. Illustration of the distributed anomaly detection framework .................................................... 30 
Figure 4.2. Structure of the prediction model ............................................................................................. 31 
Figure 4.3. Illustration of the pinball loss when 𝝉𝝉 > 0.5 ............................................................................. 32 
Figure 4.4. Distribution of R-square values across 148 deterministic prediction models ........................... 34 
Figure 4.5. Anomaly detection results of the deterministic approach when the threshold equals 0.15 ...... 34 
Figure 4.6. Anomaly detection performance of the deterministic approach varies against the threshold 

value ....................................................................................................................................... 35 
Figure 4.7. Output generated from a signal probabilistic prediction model ............................................... 35 
Figure 4.8. Result of the probabilistic anomaly detection .......................................................................... 36 
Figure 4.9. Histogram of the observing frequencies across 148 probabilistic prediction models .............. 36 
Figure 4.10. Anomaly detection performance of the deterministic approach under different numbers of 

attack targets .......................................................................................................................... 37 
Figure 4.11. Anomaly detection performance of the probabilistic approach under different numbers of 

attack targets .......................................................................................................................... 37 
 



 

viii 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

List of Tables 
Table 1.1. SAGA Planned and Actual Milestone Activities ......................................................................... 1 
Table 4.1. Difference Between the Deterministic and Probabilistic Anomaly Detection Approaches ....... 32 
 
 



 

1 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

1 Task and Milestone Summary 
Table 1.1 presents a summary of the Situational Awareness of Grid Anomalies (SAGA) project 
planned versus actual milestone accomplishments based on the U.S. Department of Energy 
(DOE) Office of Cybersecurity, Energy Security, and Emergency Response (CESER) 
Cybersecurity for Energy Delivery Systems (CEDS) Award M619000162 fieldwork proposal. 

Table 1.1. SAGA Planned and Actual Milestone Activities 

Milestone Planned Completion and Activity Actual Completion and Activity 

Milestone Q2-2020 
 

(Month 6) TRC feedback on data sources 
and SAGA features 

Due to COVID-19, delayed until 11/23/21 TRC 
project review of: 

• Years 1 and 2 accomplishments 
• Next-gen sensors TCF project 
• Year 3 plan. 

TRC feedback: “Good use of AI to figure what’s 
going on: tree, squirrel, recloser, sensor drift, 
etc.” 

Milestone Q3-2020 (Month 12) SAGA alpha version delivered 
and go/no-go decision 

11/4/20: Alpha wireframes 

Milestone Q2-2021 
 

(Month 18) TRC feedback on empirical 
demonstration and SAGA features 

Due to COVID-19, delayed until 2/17/22 TRC 
project review:  

• Year 3 plans and progress. 
TRC Feedback 1: Consider incident response; 
what do we do if utility is 
attacked/compromised? 
TRC Feedback 2: Support next phase:  

• Simul vs. actual  
• API for OMS  
• Restoration priority. 

Milestone Q4-2021 
 

(Month 24) SAGA beta version delivered 
and go/no-go decision 

2Q21: Beta working system. See 
https://app.box.com/s/2qh91fxihoy9d1pwnzit2ad
iyuqn1ou6.  

Milestone Q2-2022 
 

(Month 30) TRC feedback on emulation and 
SAGA features 

5/19/22: TRC project review: 
• Emulation 
• Simulation 
• Anomaly detection. 

Milestone Q4-2022 (Month 36) Deliver SAGA software for visual 
analytics: final software, technical report, 
and presentation 

1/31/23 

New unplanned 
milestone 

(Month 39) TRC feedback on:  
• Final reports for SAGA project and 

TCF project  
• SAGA Ops proposal. 

12/15/22 TRC multi-project review: 
• Next-gen sensor results and use cases 
• Recommendations for further research 

and commercialization. 

  

https://app.box.com/s/2qh91fxihoy9d1pwnzit2adiyuqn1ou6
https://app.box.com/s/2qh91fxihoy9d1pwnzit2adiyuqn1ou6
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2 Core Data Services and Visual Analytics 
With the initial development of the Gridmetrics application programming interface (API) for 
accessing sensor-level metadata and time-series data, a fundamental goal of the project was to 
design, develop, and prototype a scalable data systems architecture that enables continued data 
set expansion, high availability and performance, advanced interactive visualization, and real-
time machine learning workflows. To this end, the data and visualization team designed SAGA’s 
Core Data Services. This initial core consists of three composable data services—Metadata 
Service, Historical Service, and Streaming Service—with each service providing the appropriate 
functionality for exploring, monitoring, analyzing, and providing data made available by 
Gridmetrics sensors. The following sections provide an overview of the prototyped Core Data 
Services and each service’s current context. A visual representation is also shown in Figure 2.1. 

 
Figure 2.1. Overview of SAGA’s core data services architecture  

Three services were designed and prototyped to provide scalable interfaces to access, manage, 
and analyze Gridmetrics sensor data. The Metadata Service (green in Figure 2.1) handles the 
fetching, composing, and providing of static sensor properties, such as identification (ID), 
location, and group inclusion. This sits on top of a PostgreSQL database instance housed at the 
National Renewable Energy Laboratory (NREL). The Historical Service (yellow) handles the 
storage, access, and analysis of batches of Gridmetrics sensor data, e.g., intervals of raw data, 
outage counts, average voltages, and group statistics. This service is built using an Apache Druid 
instance housed at NREL. The Streaming Service (blue) handles the subscription and continuous 
ingestion of near-real-time Gridmetrics sensor data via the defined API specification and 
available routes provided in Appendix A2. The collected streaming data are directly piped into 
the Druid data store for access via the Historical Service. Future extensions of the services 
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include hooks for online machine learning training and inference. Each of the three prototyped 
services is available as a Docker container to provide flexible deployment options.  

2.1 Metadata Service 
The primary function of the Metadata Service is to provide access to subscribed sensor metadata, 
such as its geospatial location, group inclusions, and other static properties. The service’s 
capabilities and routes are documented via an interactive Swagger interface within its Docker 
container. A sample of the documentation is provided in Figure 2.2. 
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Figure 2.2. Sample Metadata Service API documentation available from the containerized service  
Displays all available routes for querying along with sample interfaces to check live API statuses, route parameters, 
and sample data response schemas. Currently, the main routes provide access to all subscribed sensors (via the 
/sensors route) as well as to all Gridmetrics sensor sites (i.e., locations of groups of sensors, via the /sites route). 

Service API documentation is available within in each service’s running container and is similar for both the Historical 
Service and the Streaming Service. 
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Additionally, the Metadata Service is intended to be used to populate the visual analytics 
geospatial component—providing users the ability to explore available sensor asset details and 
associated groups of interest. The Metadata Service and the Historical Service work in 
conjunction with one another as sensors are selected within the visual analytics geospatial 
component. The selected sensors provide the unique sensor IDs from the Metadata Service as a 
query parameter for requests made to the Historical Service for sensor data over a specified date-
time range. 

2.2 Historical Service 
The primary function of the Historical Service is to handle requests for Gridmetrics sensor data 
over specified date-time ranges. Similar to the Metadata Service, documentation of routes and 
functionality is provided via an interactive Swagger interface within its Docker container. 
Currently, there are three main routes that return various transforms of Gridmetrics sensor data: 
raw sensor readings, aggregate/statistical voltages, and sensor outage intervals. Each route 
accepts parameters with sensor IDs, a date-time range, and a response size limit. The 
aggregate/statistical voltage route accepts an additional parameter for the desired statistic (e.g., 
mean, standard deviation) and a subinterval, e.g., to provide the average of a sensor’s daily 
voltage over that last month. An overview of the Swagger documentation is shown in Figure 2.3, 
with sample fields from the sensor outage route provided in Figure 2.4.  
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Figure 2.3. Sample Historical Service API documentation available from the containerized service  

Displays include all available routes for querying along with sample interfaces to check live API statuses, route 
parameters, and sample data response schemas. The main data routes are the first three listed; they return raw, 

statistical, and outage data, respectively, over defined intervals. A sample of the query parameters is shown in Figure 
2.4 
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Figure 2.4. Sample Historical Service API documentation available from the containerized service  
This view shows the available query parameters for the route returning outage intervals over the defined date-time 

range. This interactive documentation enables users to test example queries and explore response schemas before 
integrating Core Data Services calls into applications.  

The responses from the Historical Service’s routes are used by the visual analytics components 
to generate various time-series representations for system behaviors, supporting the visualization 
of system distributions, raw sensor streams, rolling averages, outage periods, or system pattern 
exploration. The data currently ingested in the Historical Service comprise both batches of 
historical periods as well as current 5-minute intervals that are piped from the Streaming Service. 

2.3 Streaming Service 
The primary function of the Streaming Service is to continuously ingest available Gridmetrics 
sensor data and pass them into the Historical Service’s Apache Druid data store. This was 
accomplished using an NREL Kafka instance with associated producers and consumers, written 
in Python, that long-poll the developed Gridmetrics API every 5 minutes to place all responses 
into NREL’s Druid instance using Apache StreamSets. Although this prototype architecture 
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supports the current minute-level data rates, updates to Gridmetrics data interfaces using direct 
Kafka connections to NREL’s Core Data Services will support future efforts with next-
generation sensor streams that provide data at higher orders of magnitude (e.g., sensor streams at 
10 kHz). 

2.4 Visual Analytics 
The development of the Core Data Services directly supported the team’s visual analytics efforts 
by providing capabilities for users to interactively fetch associated sensor metadata and time 
series to analyze system behaviors. To this end, the team designed and prototyped an interactive 
web-based visual analytics platform that directly connects to the Core Data Services to 
fetch/populate sensor locations and query for time-series values. In its current form, the visual 
analytics platform enables users to interactively visualize geospatial distributions of Gridmetrics 
sensor locations and their proximity to various infrastructure assets, select sensors/regions of 
interest, and subsequently query for real-time or historical batches of sensor data (i.e., voltage, 
inverter status) at up to 1-minute granularity. Overviews of the visual analytics capabilities, 
various views, components, and areas for extension are shown in the following figures. 



 

9 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Figure 2.5. Visual analytics geospatial component in the initial view  

This component allows users to interactively explore geospatial distributions of Gridmetrics sensors and reference 
infrastructure. The different Gridmetrics sensor groups are shown and colored by their group membership. For 
example, red: hospital group, purple: airport group, yellow: Colorado group, orange: Houston group, and blue: 

California group, with some sensors belonging to multiple groups and subsequently styled by the regional group. A 
data layer management menu is accessible from the bottom center, a navigation/“fly-to” location and selection-tool 
menu is provided in the top left, a manage selection menu/table is provided in the top right, and an active data layer 

legend is viewable in the bottom left. 
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Figure 2.6. Visual analytics geospatial component with the data layer management menu selected  
This menu allows users to toggle different data groups, with the sensor counts within each group shown, in addition 
to layering available reference data from HIFLD2 (e.g., hospitals, airports, power plants), as well as different base 
map options. In the future, distribution and transmission electric systems can be added and subsequently viewed. 

 
 
2 HIFLD (Homeland Infrastructure Foundation-Level Data) Open Data provides national foundation-level geospatial 
data within the open public domain that can be useful to support community preparedness, resiliency, research, and 
more. Further details are available at https://hifld-geoplatform.opendata.arcgis.com/.  

https://hifld-geoplatform.opendata.arcgis.com/
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Figure 2.7. Visual analytics geospatial component focused on the Houston, Texas, metropolitan 

area by selecting a “fly-to” option in the location menu located in the top left corner  
This current view provides an overview of the distributions of more than 11,000 Gridmetrics sensors in the major 

metropolitan area, in addition to HIFLD data for hospitals (red cross icon), airports (purple runway lines), and power 
plants (green power icons), with red points corresponding to hospital groups, purple points corresponding to airport 

groups, and orange points corresponding to the greater Houston metropolitan group. 
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Figure 2.8. Visual analytics geospatial component focused on Glenwood Springs, Colorado, by 

selecting a “fly-to” option in the location menu located in the top left corner  
This current view provides an overview of the distributions of approximately 200 Gridmetrics sensors in the rural area, 
in addition to HIFLD data for hospitals (red cross icon), airports (purple runway lines), and power plants (green power 

icons), with red points corresponding to hospital groups, purple points corresponding to airport groups, and yellow 
points corresponding to the Colorado group. 
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Figure 2.9. Visual analytics geospatial component focused on Fort Collins, Colorado, by using the 

location menu in the top left corner  
The current view provides an overview of the distributions of approximately 300 Gridmetrics sensors in the suburban 
area, in addition to HIFLD data for hospitals (red cross icon), airports (purple runway lines), and power plants (green 
power icons), with red points corresponding to hospital groups, purple points corresponding to airport groups, and 

yellow points corresponding to the Colorado group. 
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Figure 2.10. Visual analytics geospatial component focused on Fort Collins, Colorado  

Sensor selections can be chosen from the polygon selection or rectangular selection in the top left menu. Here, a 
polygon-selection tool is being used to select sensors of interest. Selected sensors subsequently activate/populate 

the Manage Selections menu in the top right, shown in detail in Figure 2.12. 
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Figure 2.11. Visual analytics geospatial component focused on Fort Collins, Colorado.  

Polygon-selected sensors are highlighted in green and populate the Manage Selections menu in the top right, which 
provides a tabular view for further sensor detail inspection and sub-selection. Selected sensors within the table can 
be subsequently submitted, with date-time query parameters, to the Historical Data Service, with service responses 

able to populate various time-series visualization components (samples shown in Figure 2.13 and Figure 2.14). 

 
Figure 2.12. Sample of a visual analytics time-series component displaying a selected focus area’s 

sensor voltage distribution on the left and a selected sensor’s voltage time series on the right  
The selected sensor time series is plotted as a diverging bar chart, with the y-axis as a percentage over/under 
nominal. Bars above the x-axis are over nominal, and bars under the x-axis are below nominal, with the color 

corresponding to the voltage value (blue for under, red for over, and white for nominal voltage value). 
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Figure 2.13. Sample visual analytics time-series component for interactively exploring sensor 

voltage patterns across long periods  
Here, a sensor’s voltage time series from a 4-month period is rendered in a spiral pattern, with the innermost radii 

marking the beginning and the outermost radii marking the end of the chosen interval, looping outward 
counterclockwise. A user can interactively change the number of points/intervals packed per circumference/loop to 

alter the desired period in which to search for any patterns that would be present along any given ray outward. In this 
case, the current points per loop is set to 576 (where each point represents a 5-minute interval of data, of which there 

are 288 5-minute intervals per day); thus, a full loop counterclockwise, from the x-axis, at any radii represents 
successive 2-day cycles. The points are colored by their voltage value in a red-white-blue diverging pattern, where 

red represents an overvoltage, white represents a nominal voltage, and blue represents an undervoltage (with 
missing data in black). In this case, there is a period once per day when the observed voltage spikes (in the evening) 

and a large outage period within the band of blue (where the voltage was zero); hence, the two regions shown in 
darker red. This visualization technique can aid human perception to quickly uncover visual patterns in large amounts 
of data across a large set of possible periodicities (e.g., hour, day, week, month, quarter, season, year). Further, any 
identified patterns can be cross-referenced to determine their commonality. Future work will extend this technique for 

multiple sensors in which users could quickly and interactively compare patterns between sensors/groups and 
geographic areas.  

The Core Data Services and visual analytics prototypes offer a reference into the architecture, 
scalability, and overall holistic utility provided by focusing on the availability of Gridmetrics 
cable sensor data. Although current data availability is at 1-minute intervals for roughly 100,000 
sensors, the prototyped design and implementations are influenced by future plans to provide 
more than 600,000 sensors at sub-minute frequencies. Although there will need to be adaptations 
and architectural updates to support data storage size, throughput, querying, load balancing, and 
downstream ingestion (e.g., such as with a machine learning platform), the Core Data Services 
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and web-based visual analytics tools provide a foundation that future operational technologies 
can reference and build upon. 

2.5 Learnings, Conclusions, Recommendations  
We learned that we could be successful in designing, developing, and prototyping a broadband 
grid scalable data systems architecture that enables continued data set expansion, high-
availability and performance, advanced interactive visualization, and real-time machine learning 
workflows. We conclude that three services are essential—Metadata Service, Historical Service, 
and Streaming Service—with each service providing the appropriate functionality for exploring, 
monitoring, analyzing, and providing data made available by Gridmetrics sensors. We 
recommend funding further development of broadband-enabled, grid situational awareness and 
control to create entirely new possibilities for actively managing the grid to prevent cascading 
outages and to limit the loss of life and property. 
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3 Cyber-Physical Power System Simulation 
High-fidelity cyber-physical power system modeling and simulation tools are essential to support 
preventative risk analyses on cyber threats against system stability and reliability. Such tools 
provide an inexpensive and risk-free environment to test various cyber-relevant events and to 
collect labeled system responses, which are valuable for conducting research on early cyber 
anomaly detection, optimal protective resource allocation, and mitigation measures. In SAGA, 
both dynamic and steady-state cyber-physical power system simulation tools were developed to 
capture the system impacts under typical cyber-physical events given a forward-looking 
operating condition in which distributed energy resources (DERs) are aggregated to provide 
frequency and voltage regulation. 

3.1 Dynamic Simulation With DER-Enabled Frequency Regulation  
The dynamic cyber-physical transmission-and-distribution simulation tool was built using three 
open-source software systems: ANDES,3 OpenDSS,4 and HELICS.5 Figure 3.1 illustrates the 
overall simulation architecture. The colored blocks represent five types of simulation agents 
(modeled as HELICS federates), with processes managed and synchronized through a HELICS 
broker. The thick and thin arrows indicate the physical information and communication message 
exchanges among federates.  

Transmission and distribution agents work jointly to define the grid topology, model the system 
components, and simulate the power flow and system dynamics. Whereas ANDES has a built-in 
transmission agent that solves the system electromechanical transient dynamic in the time 
domain every 33.3 ms, OpenDSS has a built-in distribution agent that updates the quasi-static 
power flow in the phasor domain every second. These two processes are coupled via the 
exchanges of boundary physical variables, enabled by the HELICS publish/subscribe, at the 
distribution feeder heads. As illustrated in Figure 3.1, the transmission agent sends voltage 
magnitudes to each distribution agent, and each distribution agent sends the active and reactive 
power to the transmission agent every second. Unlike most existing work, in which DERs are 
often modeled as negative loads, we applied the Western Electricity Coordinating Council 
distributed photovoltaics (PV) model to capture the fast dynamics of DERs enabled by the smart 
inverters.  

Aggregator and control center agents work jointly to enable the control and automation function 
of the simulation tool. Agents implement the secondary frequency regulation (SFR) service 
procedure enabled by a centralized automatic generation control (AGC) model for restoring the 
system frequency to its nominal value in two steps, as illustrated in Figure 3.2:  

1. In Step 1, the area control error (ACE) is calculated based on the area frequency 
measurement, which is then translated into the transmission-level SFR power generation 

 
 
3 ANDES is an open-source Python library for power system modeling, computation, analysis, and control; see 
https://docs.andes.app/en/latest/.  
4 OpenDSS is an open-source electric power distribution system simulator; see 
https://smartgrid.epri.com/SimulationTool.aspx. 
5 HELICS is the Hierarchical Engine for Large-scale Infrastructure Co-Simulation; see https://helics.org.  

https://docs.andes.app/en/latest/
https://smartgrid.epri.com/SimulationTool.aspx
https://helics.org/
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reference through an AGC proportional-integral (PI) controller inside the transmission 
system control center. 

2. In Step 2, the substation-level SFR power generation references are calculated and sent to 
individual DER aggregators, which are then further disaggregated to the device level 
based on the participation factors of DERs. 

 
Figure 3.1. Framework of the dynamic cyber-physical simulation tool 

 
Figure 3.2. Secondary frequency regulation control diagram 

Communications among the agents are modeled by HELICS end points. Each end point 
represents one node in a communication network. The pairwise communications between end 
points are defined by registering the end points at different federates and specifying their 
message receivers. The thin arrows in Figure 3.1 depict such pairwise relations defined in this 
study. Messages sent from the end points can be delayed, intercepted, or picked up by any 
federate to simulate the communication latency, false data injection, and packet loss by the event 
generator agent, as shown by the dashed arrows in Figure 3.1. 

3.2 Steady-State Simulation with DER-Enabled Voltage Regulation 
Figure 3.3 illustrates the framework of the steady-state cyber-physical distribution-only 
simulation tool. Similar to the dynamic simulation tool, it follows a multi-agent structure with 
four functionalities: power flow simulation, control and automation, communication simulation, 
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and cyber event generation. The colored solid arrows represent the data flows occurring at the 
measurement and control communication channels supporting the voltage regulation. Note that 
𝑣𝑣𝑖𝑖𝑡𝑡, 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗𝑡𝑡 , |𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗

𝑡𝑡 , and 𝑞𝑞𝑃𝑃𝑃𝑃,𝑗𝑗
𝑡𝑡  denote the primary voltage phasor measurements collected by 

the micro-phasor measurement unit located at the 𝑖𝑖th primary node, along with PV curtailment, 
the secondary voltage magnitude reference, and the reactive output set points sent to the smart 
inverter located at the 𝑗𝑗th secondary node. 

  
Figure 3.3. Framework of the steady-state cyber-physical simulation tool 

The centralized voltage regulation control scheme is executed in a two-level fashion. At the 
upper level, an optimal power flow module runs inside the distribution system control center, 
taking primary measurements as inputs and generating PV control set points as outputs. 
Equations 3.1–3.7 outline the problem formulation of the optimal power flow module. Equation 
3.1 aims to minimize a weighted sum of total PV active power curtailment (first summation term 
in Equation 3.1), the total cross-time voltage variation (second summation term in Equation 3.1), 
and the total voltage violation (third summation term in Equation 3.1). Equation 3.2 states a 
three-phase linearized power flow model that governs the relationship between the voltage 
magnitude (p.u.) at each primary node with the active (p.u.) and reactive power injections (p.u.) 
at each primary node. Equation 3.3 defines the operating boundary of the PV inverters according 
to the aggregated PV capacity associated with each primary node, 𝑖𝑖. Equation 3.4 restricts the 
primary voltage magnitude to between 0.95 p.u. and 1.05 p.u. with a soft margin 𝛿𝛿𝑣𝑣,𝑖𝑖

𝑡𝑡 . Equation 
3.5 imposes the soft margin to be positive. Inequality constraints in equations 3.6 and 3.7 are 
introduced to linearize the absolute voltage fluctuation, |𝑣𝑣|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖

𝑡𝑡 , between two consecutive time 
intervals. 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡 ,|𝑣𝑣|𝑟𝑟𝑟𝑟𝑓𝑓

𝑡𝑡 ,𝑞𝑞𝑃𝑃𝑃𝑃
𝑡𝑡
𝜔𝜔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∑ 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖𝑡𝑡

𝑖𝑖∈𝒩𝒩𝑝𝑝 + 𝜔𝜔𝑣𝑣 ∑ |𝑣𝑣|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖
𝑡𝑡

𝑖𝑖∈𝒩𝒩𝑝𝑝 + 𝜔𝜔𝛿𝛿 ∑ 𝛿𝛿𝑣𝑣,𝑖𝑖
𝑡𝑡

𝑖𝑖∈𝒩𝒩𝑝𝑝   (3.1) 
Subject to:   

|𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 = 𝐶𝐶𝑝𝑝(−𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 + 𝑝𝑝𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 ) + 𝐶𝐶𝑞𝑞(−𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 + 𝑞𝑞𝑃𝑃𝑃𝑃𝑡𝑡 ) + 𝑐𝑐  (3.2) 
�𝑞𝑞𝑃𝑃𝑃𝑃,𝑖𝑖

𝑡𝑡 �2 + �𝑝𝑝𝑃𝑃𝑃𝑃,𝑖𝑖
𝑡𝑡 − 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖𝑡𝑡 �2 ≤ 𝑠𝑠𝑃𝑃𝑃𝑃,𝑖𝑖

2  
∀𝑖𝑖 ∈ 𝒩𝒩𝑝𝑝 

(3.3) 
0.95 − 𝛿𝛿𝑣𝑣,𝑖𝑖

𝑡𝑡 < |𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖
𝑡𝑡 < 1.05 + 𝛿𝛿𝑣𝑣,𝑖𝑖

𝑡𝑡  (3.4) 
𝛿𝛿𝑣𝑣𝑡𝑡 ≥ 0 (3.5) 
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|𝑣𝑣|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖
𝑡𝑡 ≥ |𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖

𝑡𝑡 − |𝑣𝑣|𝑠𝑠𝑠𝑠,𝑖𝑖
𝑡𝑡−1 (3.6) 

|𝑣𝑣|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖
𝑡𝑡 ≥ |𝑣𝑣|𝑠𝑠𝑠𝑠,𝑖𝑖

𝑡𝑡−1 − |𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖
𝑡𝑡  (3.7) 

 
Notations in bold represent matrices or vectors, and non-bold indicates scalars. 𝜔𝜔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝜔𝜔𝑣𝑣 , and 𝜔𝜔𝛿𝛿 
denote configurable weights that sum to unity and can be set based on system operator 
preferences. 𝒩𝒩𝑝𝑝 denotes the set of primary distribution nodes. 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 , 𝑝𝑝𝑃𝑃𝑃𝑃𝑡𝑡 , and 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡  assemble the 
forecasted active loads, the active PV generation, and the reactive loads for all primary nodes. 
𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 , 𝑞𝑞𝑃𝑃𝑃𝑃𝑡𝑡 , and |𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡  denote the decision variables controlling the aggregated PV 
curtailments, the PV reactive power generation, and the reference voltage magnitudes at different 
primary nodes. 𝐶𝐶𝑝𝑝, 𝐶𝐶𝑞𝑞, and 𝑐𝑐 are linear coefficient matrices and are vector derived based on the 
linear power flow model. 𝑆𝑆𝑃𝑃𝑃𝑃,𝑖𝑖 represents the sum of the apparent power capacity for distributed 
PV connected to the same primary node, 𝑖𝑖. Finally, |𝑣𝑣|𝑠𝑠𝑠𝑠,𝑖𝑖

𝑡𝑡−1 and |𝑣𝑣|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖
𝑡𝑡  represent the estimated 

voltage magnitude at the primary node, 𝑖𝑖, measured from the previous time interval, 𝑡𝑡 − 1, and 
its distance from the reference voltage magnitude, |𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖

𝑡𝑡 , at the current time step, 𝑡𝑡. Although 
this minimization problem would become computationally expensive as the system grows, the 
focus of SAGA is on detection, not control. 

Once the problem is solved, the solution yields the optimal aggregated set points associated with 
each primary node, 𝑖𝑖, including the PV curtailment, 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖𝑡𝑡 , and the reference voltage magnitude, 
|𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖

𝑡𝑡 . Given that all these control variables are calculated at the aggregated level, an additional 
disaggregation process is required to translate the set points associated with each node at the 
primary side to those for individual PV units at the secondary side. Equation 3.8 and Equation 
3.9 describe such disaggregation rules.  

𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗𝑡𝑡 =
𝑠𝑠𝑃𝑃𝑃𝑃,𝑗𝑗

∑ 𝑠𝑠𝑃𝑃𝑃𝑃,𝑗𝑗𝒩𝒩𝑠𝑠,𝑖𝑖
 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖𝑡𝑡  

𝑗𝑗 ∈ 𝒩𝒩𝑠𝑠,𝑖𝑖 
(3.8) 

|𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗
𝑡𝑡 =

|𝑣𝑣|𝑃𝑃𝑃𝑃,𝑗𝑗
𝑡𝑡−1

|𝑣𝑣|𝑠𝑠𝑠𝑠,𝑖𝑖
𝑡𝑡−1 |𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖

𝑡𝑡  
(3.9) 

 
Note that 𝑖𝑖 and 𝑗𝑗 indices of the primary and secondary nodes, respectively. 𝒩𝒩𝑠𝑠,𝑖𝑖 assembles 
secondary nodes located in the same secondary system connected to the primary node, 𝑖𝑖. 
According to Equation 3.8 and Equation 3.9, the aggregated PV curtailment set point, 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖𝑡𝑡 , 
is distributed among PV units located in the same secondary system based on its apparent power 
capacity, 𝑠𝑠𝑃𝑃𝑃𝑃,𝑗𝑗. The ratio between the smart inverter local voltage measurement, |𝑣𝑣|𝑃𝑃𝑃𝑃,𝑗𝑗

𝑡𝑡−1 , and the 
primary voltage magnitude measurement, |𝑣𝑣|𝑠𝑠𝑠𝑠,𝑖𝑖

𝑡𝑡−1, from the previous time step, 𝑡𝑡 − 1, is applied to 
rescale the reference voltage magnitude, |𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗

𝑡𝑡 , for individual PV units.  

At the lower level, each smart inverter performs the localized integral control to track with the 
reference voltage magnitude, |𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗

𝑡𝑡 , determined at the upper layer, via actively adjusting its 
reactive power generation, 𝑝𝑝𝑃𝑃𝑃𝑃,𝑖𝑖

𝑡𝑡 , following the rule given in Equation 3.10. Note that 𝐼𝐼𝑗𝑗 indicates 
the integral gain of the local controller located at the secondary node, 𝑗𝑗. Such a localized control 
is used for hedging uncertainties introduced by the load/PV forecast and the set point 
disaggregation. 

𝑝𝑝𝑃𝑃𝑃𝑃,𝑖𝑖
𝑡𝑡 = 𝑝𝑝𝑃𝑃𝑃𝑃,𝑖𝑖

𝑡𝑡−1 − 𝐼𝐼𝑗𝑗(|𝑣𝑣|𝑃𝑃𝑃𝑃,𝑗𝑗
𝑡𝑡−1 − |𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗

𝑡𝑡 )  (3.10) 
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Jointly, the upper and lower levels controllers coordinate distributed PV units located in the 
secondary systems to support the primary system voltage. Such a voltage regulation process 
relies on bidirectional communications, via the utility network, between physical devices located 
in the distribution circuit and the software program located remotely in the control center, as 
illustrated in Figure 3.3.  

3.3 Cyber Anomaly Scenarios 

 
Figure 3.4. Closed-loop control diagram of the frequency regulation 

 
Figure 3.5. Closed-loop control diagram of the voltage regulation 

The communication dependency of the frequency and voltage regulations, as discussed in the 
previous two subsections, result in two categories of cyber threats: measurement channel events 
and control channel events, based on the entry point of the cyber anomaly, as shown in Figure 
3.4 and Figure 3.5. Measurement channels are used for transmitting frequency or voltage 
measurements, collected by remote terminal units at multiple physical locations, to the central 
station of a supervisory control and data acquisition (SCADA) system. Control channels are used 
for transmitting DER set points, calculated at the central station of the SCADA system, to the 
aggregators and further to individual DER controllers at the grid edge. Under each category, 
three types of cyber events are of interest to be investigated in SAGA: 
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1. Data deception: can be triggered by malicious packets injected into communication 
channels through man-in-the-middle attack techniques, such a manipulation, which can 
be mathematically expressed as: 

𝐺𝐺𝑗𝑗(𝑡𝑡)  = 𝐺𝐺𝑗𝑗0(𝑡𝑡)  + 𝛾𝛾𝑗𝑗(𝑡𝑡)  (3.11) 
where 𝐺𝐺𝑗𝑗(𝑡𝑡) denotes the breached control signal received by DER 𝑗𝑗 at time t, which 
equals the authentic control signal, 𝐺𝐺𝑗𝑗0(𝑡𝑡), superposed by an attack vector, 𝛾𝛾𝑗𝑗(𝑡𝑡). 

2. Communication latency: refers to the length of time it takes for data fed into one end of a 
network to emerge at the other end. Significant communication latencies can be 
introduced by common denial-of-service attacks. 

3. Packet dropout: when one or more communication packets fails to reach its intended 
destination. Significant packet dropout can be another major consequence of a denial-of-
service attack. 

Event generator agents have been developed and integrated into both simulation tools to enable 
customized simulations of cyber events. Agents take scripts (formatted in JSON) defining 
metadata relevant to the cyber-physical events as inputs and launch the data injection to the main 
time-series simulation in an event-driven manner. The metadata required for defining a cyber-
physical event include: 

• TargetFeeder: Defines the distribution feeder targeted by the adversary 
• EventType: Defines the type of the event. Currently, four types of events are supported by 

the test bed: load perturbation events, DER availability events, AGC measurement 
channel events, and AGC control channel events. Details regarding each type can be 
found in Section III. Additional types of events can be added by interested developers. 

• TargetNum: Defines the number of system components that need to be simultaneously 
compromised by the adversary to successfully create the event 

• TargetName: Defines the names of all system components being compromised during the 
event 

• AttackMagnitude: Defines the magnitudes of the disruptions added to each system 
component 

• StartTime: Defines the time when the event occurs 
• EndTime: Defines the time when the event is cleared. 

During a time series simulation, multiple events with overlapping/nonoverlapping time windows 
can be injected by customizing the StartTime and EndTime of all events. 

3.4 Simulation Results 
Three sets of comparative case studies have been conducted to illustrate how the proposed cyber-
physical power system simulation tools can be leveraged for assessing the system impacts under 
various cyber-physical events. To demonstrate the scalability of the simulation tools, a 
transmission-and-distribution network has been modeled in the dynamic simulation tool with a 
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2,000-bus synthetic transmission network6 connected with 122 detailed distribution feeders,7 
covering the footprint of Texas; and a 1,600-node distribution network has been modeled in the 
steady-state simulation tool based on real-world system operating data. It was assumed that 148 
Gridmetrics sensors are installed in the secondary system. All the simulations were performed on 
the high-performance computer Eagle at NREL. 

3.4.1 Synchronous Versus Asynchronous Communication Latency 
In the first case study, we compared the system impacts caused by the synchronous versus 
asynchronous communication latency events aimed at compromising the frequency regulation 
performance in response to a typical transmission contingency (generator trip). Figure 3.6 
illustrates the frequency trajectories under synchronous communication latencies (i.e., the same 
communication delays are applied to all targeted communication channels) varying from 4 s to 
16 s at 4-s increments. Figure 3.7 illustrates frequency trajectories under asynchronous 
communication latencies (i.e., various communication delays are applied across targeted 
communication channels; note that in this study we assume that the communication delays 
follow a uniform distribution). The asynchronous communication latencies shown in Figure 3.7 
are with the same mean, 8 s, yet various variances, ranging from 3 s (6–12 s uniformly 
distributed) to 27 s (0–18 s uniformly distributed). Note that these cyber events coincided with a 
transmission contingency (generation trip) that occurred at 8 s. According to Figure 3.6, the 
greater the synchronous latency, the longer the frequency fluctuates before settling. Comparing 
the frequency trajectory under the 8-s synchronous communication latencies in Figure 3.6 with 
the frequency trajectories in Figure 3.7 clearly shows that synchronous communication latencies 
are riskier than asynchronous communication latencies. In addition, asynchronous 
communication latencies could even help suppress the frequency overshoots when the 
coefficients of the PI controllers are not well designed. 

 
Figure 3.6. Frequency trajectories under different levels of synchronous communication latencies 

 
 
6 Texas A&M University Electric Grid Datasets; see https://electricgrids.engr.tamu.edu.  
7 Krishnan, Venkat K., Bryan S. Palmintier, Bri-Mathias. Hodge, Elaine T. Hale, Tarek Elgindy, Bruce Bugbee, 
Michael N. Rossol, Anthony J. Lopez, Dheepak Krishnamurthy, Claudio Vergara et al. 2017. “SMART-DS: 
Synthetic Models for Advanced, Realistic Testing—Distribution Systems and Scenarios.” Golden, CO: National 
Renewable Energy Laboratory. https://www.nrel.gov/docs/fy17osti/68764.pdf.  

https://electricgrids.engr.tamu.edu/
https://www.nrel.gov/docs/fy17osti/68764.pdf
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Figure 3.7. Frequency trajectories under different levels of asynchronous communication 

latencies 

3.4.2 Measurement Channel Versus Control Channel Events 
To understand different influences of cyber events occurring on different communication links of 
a closed-loop frequency control in response to a transmission contingency (generator trip), we 
further performed a comparison between cyber events, i.e., communication latency and packet 
dropout, occurring at the measurement and control channels. The same frequency trajectories 
were obtained for the communication latency events whether the attack entered at the control 
channels or at the measurement channels. In other words, system impacts under communication 
latency events were not affected by the location of the attack; however, this is not the case for the 
packet dropout events, as shown in Figure 3.8 and Figure 3.9, which plots frequency trajectories 
under various packet dropout rates for events happening on the measurement channels versus the 
control channels. Results show that system impacts under the same dropout rate are more 
significant for events happening at the control channels than the measurement channels. This is 
because we implemented a PI controller to translate the ACE signals to the AGC signals, so the 
loss of an AGC packet results in a greater compensation deficiency than the loss of a frequency 
measurement/ACE packet. This demonstrated that system impacts under packet dropouts (losses) 
are significantly affected by the location of the attack. 

 
Figure 3.8. Frequency trajectories under different levels of packet dropouts occurring at the 

control channels 
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Figure 3.9. Frequency trajectories under different levels of packet dropouts occurring at the 

measurement channels 

3.4.3 False Data Injection Attack 
Figures 3.10–3.12 compare simulated Gridmetrics sensor measurements under different 
scenarios, e.g., normal operation, a control channel data deception event, and a measurement 
channel data deception event. To ensure fairness of the comparison, we ran the simulation for 1 
day at a 1-minute time resolution under the same load/PV time-series profiles and forecasts. It 
was assumed that only the measurement/control channels directly connected with 1 of 148 
secondary systems were targeted by the adversary under the control channel and the 
measurement channel data deception events. Further, these two attacks enter the system control 
loop at the same time. Each colored line in figures 3.10–3.12 denotes simulated observations for 
a given sensor. Figure 3.10 depicts the load variability in normal operation. The subtle 
differences among figures 3.10–3.11 are shown in the top green trace, which shows 
approximately 15 downward spikes in the presence of a control channel data deception event. 
The nearly imperceptible differences between Figure 3.10 and Figure 3.12 suggest that the 
measurement channel data deception events are more difficult to detect. The system-level active 
load, reactive load, and PV generation profiles applied in the daily simulation are illustrated in 
Figure 3.13. 
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Figure 3.10. Gridmetrics voltage measurements under normal operation 

 
Figure 3.11. Gridmetrics voltage measurements under a control channel data deception event 
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Figure 3.12. Gridmetrics voltage measurements under a measurement channel data deception 

event 

 
Figure 3.13. Daily system load and PV profiles 

According to figures 3.10–3.13, the following observations are made: 

1. The Gridmetrics measurements stay relatively flat within the day and increase slightly 
during midday due to higher PV generation.  

2. Despite the overall smooth voltage variation, small voltage fluctuations are observed 
across the day due to uncertainties associated with the load/PV forecasting and set point 
disaggregation. Fluctuations are greater during the middle of the day, possibly because 
greater PV forecasting errors occur.  

3. Differences between the Gridmetrics measurement profiles observed under normal 
operation versus under cyber events are subtle, provided that the simulated cyber events 
are at small scale (only a small number of communication channels are being affected). It 
is hard to tell via the naked human eye directly from the voltage profile when an event 
occurs, which justifies the necessity of a data analytics tool that automates anomaly 
detection. 



 

29 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

3.5 Learnings, Conclusions, Recommendations  
We learned that high-fidelity cyber-physical power system modeling and simulation tools are 
essential to support preventative risk analyses on cyber threats against system stability and 
reliability. We conclude that such tools provide an inexpensive and risk-free environment to test 
various cyber-relevant events and to collect labeled system responses, which are valuable for 
conducting research on cyber anomaly detection, optimal protective resource allocation, and 
mitigation measures. We recommend funding further exploration and quantification of the 
impacts on grid reliability due to data deception, communication latency, and packet dropouts. 
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4 Anomaly Detection 
DER integration is gaining momentum on a worldwide scale. The active involvement of DERs in 
system operation entails efficient and robust communication support. Given the large 
communication surface, cyber anomalies—whether caused by network-induced delays or 
malicious data injection—are exposed to the DER-grid integrated control network and are 
inevitable. Such anomalies could compromise grid control performance, damage physical 
devices, or even jeopardize the system stability. One key preventative strategy to secure the 
system from cyber vulnerabilities is through proactive anomaly detection. In this section, we 
investigated how Gridmetrics voltage measurements, as an additional system situational 
awareness resource located outside the utility communication network, can be leveraged to 
detect cyber anomalies occurring in the utility communication network. In particular, a data-
driven anomaly detection model was developed to detect cyber anomalies exposed to the utility 
communication network when providing DER-enabled voltage regulation. 

4.1 Distributed Anomaly Detection Framework 
To reduce the communication burden of the algorithm, a data-driven anomaly detection 
framework was designed following a distributed architecture, as illustrated in Fig 4.1. 
Specifically, each Gridmetrics sensor was equipped with an edge intelligence unit with a built-in 
prediction model. The prediction model estimated the expected value or range of the associated 
Gridmetrics voltage measurement based on historical operating data, assuming that the system 
will continue operate under normal conditions. As such, cyber anomalies could be captured 
according to deviations between the incoming voltage measurements and the expected voltage 
measurements at different locations. At each time step, each edge intelligence function provided 
an anomaly score, measuring the likelihood of a cyber anomaly based on the deviation. Anomaly 
scores provided by all edge intelligences were collected by an upstream centralized anomaly 
detector to determine a global score via the calculation of a weighting function, as shown in 
Figure 4.1. In our study, the global anomaly score was calculated as the average of all unit-level 
anomaly scores, and a threshold-based anomaly detection scheme was applied.  

 

 
Figure 4.1. Illustration of the distributed anomaly detection framework 

Figure 4.2 depicts what are inside each edge intelligence function. Each function contains a 
prediction model and a scoring function. The prediction model takes active/reactive load 
forecasts (𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡+1

𝑗𝑗 /𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡+1
𝑗𝑗 ), PV generation forecasts (𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡+1

𝑗𝑗 ), and local voltage 
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measurements (𝑉𝑉𝑡𝑡
𝑗𝑗) at the current time step, t, as inputs and generates the estimated voltage 

measurements (𝑉𝑉�𝑡𝑡+1
𝑗𝑗 ) for the next time step, t+1, as the output. To reduce the communication 

burden during the real-time implementation, a physics-based feature selection method is applied. 
Each node i only needs to collect the forecasted load and PV generation data from the acting 
nodes (𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖) that are directly connected to the observing node i. When time advances to t+1, 
the scoring function is executed to measure how the incoming actual voltage measurement 
deviates from its expected value.  

 
Figure 4.2. Structure of the prediction model 

Based on the problem formulation previously introduced in equations 3.1–3.7: 

• Under normal operation, the input parameters 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 , 𝑝𝑝𝑃𝑃𝑃𝑃𝑡𝑡 , 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 , and |𝑣𝑣|𝑠𝑠𝑠𝑠𝑡𝑡−1 uniquely 
determine the optimal solutions, 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 , |𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 , and  𝑞𝑞𝑃𝑃𝑃𝑃𝑡𝑡  for the optimal power flow 
problem, and by following which, the system runs at an optimal operating point. 

• Under the control channel data deception event, |𝑣𝑣|𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡  will be modified to |𝑣𝑣|�𝑟𝑟𝑟𝑟𝑟𝑟
𝑡𝑡 , which 

could directly misguide the system to a suboptimal operating point. 
• Under the communication channel data deception event, |𝑣𝑣|𝑠𝑠𝑠𝑠𝑡𝑡−1 will be modified to 

|𝑣𝑣|�𝑠𝑠𝑠𝑠
𝑡𝑡−1, which results in suboptimal solutions, 𝑝𝑝�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 , |𝑣𝑣|�𝑟𝑟𝑟𝑟𝑟𝑟

𝑡𝑡 , 𝑞𝑞�𝑃𝑃𝑃𝑃𝑡𝑡 , and consequently 
misleads the system to a suboptimal operating point.  

When the system operates under optimal versus suboptimal operating points, it is expected that 
the relationship between the forecasted load and the PV generation, 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 , 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 , and 𝑝𝑝𝑃𝑃𝑃𝑃𝑡𝑡 , 
Gridmetrics measurements from the previous and current time steps, |𝑣𝑣|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡−1  and 
|𝑣𝑣|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 , follow different patterns; therefore, by fitting a data-driven predictive model, 𝑓𝑓(∙), 
as shown in Equation 4.1, that can capture such an underlying relationship in the optimal 
operating space and predict the expected value of the Gridmetrics measurement, |𝑣𝑣|�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑡𝑡 , 
any deviation from the expected measurement could indicate an anomaly.  

|𝑣𝑣|�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝑘𝑘
𝑡𝑡 = 𝑓𝑓( 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 ,𝑝𝑝𝑃𝑃𝑃𝑃𝑡𝑡 , 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 , |𝑣𝑣|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝑘𝑘

𝑡𝑡−1  ) (4.1) 

4.2 Deterministic Versus Probabilistic Approaches  
Both a deterministic approach and a probabilistic approach have been applied for fitting the 
predictive model, 𝑓𝑓(∙), and defining the scoring function. Table 4.1 summarizes the difference 
between the approaches.  
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Table 4.1. Difference Between the Deterministic and Probabilistic Anomaly Detection Approaches 

Component Deterministic Approach Probabilistic Approach 

Forecasting model Linear regression models are 
trained to fit the expected value 
(𝑣̅𝑣𝑡𝑡+1

𝑗𝑗 ) of the voltage measurements.  

Linear quantile regression models are 
trained to fit the 2.5 (𝑣𝑣2.5,𝑡𝑡+1

𝑗𝑗 ), 50 (𝑣𝑣50,𝑡𝑡+1
𝑗𝑗 ), 

and 97.5 (𝑣𝑣97.5,𝑡𝑡+1
𝑗𝑗 ) percentiles of the 

voltage measurements. 

Scoring function 𝑠𝑠𝑑𝑑𝑖𝑖 = |𝑣𝑣𝑡𝑡𝑖𝑖 − 𝑣̅𝑣𝑡𝑡+1𝑖𝑖 | 
𝑠𝑠𝑝𝑝𝑖𝑖 =

�𝑣𝑣𝑡𝑡𝑖𝑖 − 𝑣̅𝑣50,𝑡𝑡+1
𝑖𝑖 �

|𝑣𝑣97.5,𝑡𝑡+1
𝑗𝑗 − 𝑣𝑣2.5,𝑡𝑡+1

𝑗𝑗 |
 

 
The linear regression model and the linear quantile regression model differ in the loss function. 
The loss function applied in the linear regression problem is the mean squared error. When we 
train a linear model to minimize the mean squared error, it will try to fit the expected mean value 
of the output distribution. To fit a linear quantile regression model that predicts quantiles of the 
output distribution, we applied the pinball loss function, as stated in Equation (4.2), instead. 

ℒ(𝜉𝜉𝑖𝑖|𝜏𝜏) = �
𝜏𝜏𝜉𝜉𝑖𝑖             𝑖𝑖𝑖𝑖 𝜉𝜉𝑖𝑖 ≥ 0
(𝜏𝜏 − 1)𝜉𝜉𝑖𝑖 𝑖𝑖𝑖𝑖 𝜉𝜉𝑖𝑖 < 0 (4.2) 

where 𝜏𝜏 is the required quantile (a value between 0 and 1), and: 

𝜉𝜉𝑖𝑖 = 𝑦𝑦 − 𝑦𝑦� (4.3) 
Figure 4.3 illustrates the pinball loss with respect to the 𝜉𝜉𝑖𝑖 when 𝜏𝜏 > 0.5. 

 
Figure 4.3. Illustration of the pinball loss when 𝝉𝝉 > 0.5 

Regarding the scoring function, whereas the deterministic score captures the relative deviation 
between the actual voltage measurement and its expectation, the probabilistic score measures the 
relative deviation between the actual voltage measurement and its medium with respect to the 
width of the 95% confidence interval. 

4.3 Model Fitting Procedure 
The following describes the steps taken for training and testing both the deterministic and the 
probabilistic prediction models. 

1. Training and testing data generation and splitting: We ran voltage regulation control on 
the test bed distribution model using OpenDSS for 1 month at a 1-minute time resolution 
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under two different operating scenarios: normal operation and a control channel data 
deception event. We then collected two sets of load/PV forecasts and Gridmetrics 
measurements. Time series collected under the normal operation were split by a 7:3 ratio 
as the training and testing data sets for evaluating the model prediction accuracy. Time 
series collected under the cyber events were applied for evaluating the anomaly detection 
accuracy. 

2. Model training: We applied the LinearRegression function built into the scikit-learn 
Python package for model fitting along with the StandardScaler function for data 
standardization.  

3. Modeling testing: Testing data sets were fed into trained predictive models for evaluating 
the prediction accuracy. R-square was used as the performance metric for the 
deterministic predictive model, and we evaluated the performance of the probabilistic 
predictive model by measuring the observing frequency with which the testing data 
points were within the 95% confidence intervals. 

4. Anomaly detection accuracy: Precision, Recall, and F-score were applied as the 
performance metrics for the anomaly detection, which was calculated based on the True 
positive rate (TP), false positive rate (FP), true negative rate (TN), and false negative rate 
(FN), as given in equations 4.4–4.6.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (4.4) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (4.5) 

𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 
(4.6) 

 
These were applied to provide a quantitative comparison between the deterministic and 
probabilistic anomaly approaches. Whereas precision quantifies the percentage of true events 
among all identified events, recall measures the percentage of events that are being identified out 
of all true events in the testing data set. The F-score reflects the harmonic mean between 
the precision and recall. 

4.4 Performance Evaluation 

4.4.1 Performance of the Deterministic Approach 
Figure 4.4 illustrates the distribution of the R-square values across 148 deterministic prediction 
models (using 148 Gridmetrics sensors in the test bed system). 
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Figure 4.4. Distribution of R-square values across 148 deterministic prediction models 

According to Figure 4.4, most deterministic prediction models have an R-square value above 0.9, 
which indicates an overall good performance of the deterministic models in capturing the 
expected Gridmetrics measurements at different locations under normal operation. Figure 4.5 
depicts the anomaly detection results when the threshold is set at 0.15. Purple dots indicate the 
time when an anomaly alarm is triggered. Green dots, on the other hand, indicate the ground 
truth attack time. 

 
Figure 4.5. Anomaly detection results of the deterministic approach when the threshold equals 

0.15 

Figure 4.6 depicts how the three anomaly detection metrics vary against different threshold 
values. We observed: (1) The lower the threshold value, the higher the recall, because the 
anomaly detection is more sensitive to the deviations with a lower threshold. (2) Precision shows 
a lower value with either a high threshold or a low threshold, and it reached its highest value 
when the threshold is set as 0.015; the highest F-score value was when the threshold equaled 
0.015. 

However, no matter how we varied the threshold, the F-score value stayed below 0.4. This 
means that the anomaly detector tended to raise false alarms frequently. Figure 3.10 shows that 
even without the influence from cyber events, the natural voltage variation changes over time; 
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therefore, a fixed threshold won’t work all the time because it cannot effectively consider the 
different uncertainty levels associated with the voltage variations. Missed cyberattacks could be 
very problematic. As such, future development should focus on better reliability of probability 
forecasts so as not to miss cyberattacks. 

 
Figure 4.6. Anomaly detection performance of the deterministic approach varies against the 

threshold value 

4.4.2 Performance of the Probabilistic Approach 
Figure 4.7 shows the output generated from a single probabilistic prediction model. The gray line 
plots the forecasted medium, and the green shaded area indicates the 95% confidence interval. 

 
Figure 4.7. Output generated from a signal probabilistic prediction model 

Figure 4.8 shows the final output obtained by the centralized anomaly detector. The red points in 
Figure 4.8 indicate the actual attack time. The gray line plots the global anomaly scores 
calculated based on an averaging weighting function. The estimated attack times (indicated by 
the green dots) are identified in this case based on a 0.5 threshold value. 
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Figure 4.8. Result of the probabilistic anomaly detection 

Figure 4.9 illustrates the histogram of observedfrequencies, e.g., the frequency at which the 
actual Gridmetrics measurements are between the 2.5 and 97.5 percentiles of forecast across the 
148 probabilistic prediction models. The majority fall into the [92.5%, 97.5%] interval, with the 
mode (93.9%) and mean (93.3%) values being slightly lower than 95%.  

 
Figure 4.9. Histogram of the observing frequencies across 148 probabilistic prediction models 

4.4.3 Performance Comparison 
To provide a comprehensive comparison between the deterministic and probabilistic approaches, 
we further conducted a sensitivity analysis by varying the number of attack targets from 1 to 6, 
and we obtained the performance results shown in figures 4.10 and 4.11 for both the 
deterministic and probabilistic approaches. It was clearly demonstrated that the probabilistic 
approach outperformed the deterministic approach by resulting in overall higher precision, recall 
and, F-score values. 



 

37 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Figure 4.10. Anomaly detection performance of the deterministic approach under different 

numbers of attack targets 

 
Figure 4.11. Anomaly detection performance of the probabilistic approach under different 

numbers of attack targets 

4.5 Learnings, Conclusions, Recommendations  
We learned that the active involvement of DERs in system operation requires efficient and robust 
communication support to detect and mitigate cyberattacks and gaps in operational situational 
awareness. We conclude that given the large communication surface, cyber anomalies, whether 
caused by network-induced delays or malicious data injections, will be exposed to DER-grid 
integrated control networks and are inevitable. Further, anomalies could compromise grid control 
performance, damage physical devices, or even jeopardize the system stability. We recommend 
funding the development of preventative strategies to secure the system from cyber 
vulnerabilities through proactive anomaly detection.  
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Appendix A1: Using the SAGA APIv3  
Gridmetrics calculates a number of useful voltage performance metrics for every sensor on a 
daily basis. In particular, Gridmetrics offers the Power Event Notification System (PENS) 
Outage Index (POI), the PENS Reliability Index (PRI), the PENS Stability Index (PSI), and the 
PENS Quality Index (PQI). Each index measures a different aspect of the voltage performance as 
measured by a sensor. Gridmetrics PENS indices can be selected for arbitrary collections of 
sensors and time spans. 

For the purposes of the Situational Awareness of Grid Anomalies (SAGA) project, specific 
portfolios of sensors might be of particular interest, e.g., sensors related to critical infrastructure, 
such as hospitals. The procedure for collecting and reporting these site-specific data is known as 
the Fetch Region Average and is described as follows: 

1. Start with a set of sensors, with each sensor belonging to a subset, e.g., the set of sensors 
within 1 km of an airfield or a hospital—in this case, each sensor subset consists of the 
sensors within 1 km of a particular hospital or an airfield. Particular geographies can also 
be selected as sites, such as counties or U.S. National Grid cells. 

2. Collect the index data from the set of sensors in (1) over a particular time range, which 
can span multiple days. 

3. Collect the index data from (2) and average it across the sensors within each subset. For 
example, if a particular hospital has five sensors within 1 km, then the particular index 
value (from POI, PRI, PSI, and/or PQI) is calculated as the average from those five 
sensors for the total number of days that are included in the time range. If the time range 
is 3 days, then there are 5 x 3 = 15 measurements to be averaged for each index for this 
case. 

In the current implementation, the indices are calculated daily, but in future work they could be 
calculated on much shorter time frames, such as by the hour. 

• Fetch Region Average accepts: limit, offset, and additionally: 
• Fetch Region Average requires: 

o Date—starting date to query from 
o Days—number of days to gather data for calculations 
o Region_type—one of: state, county, census_block_fips_code, zip_code, 

tract_code, usng_spatial_address (formatted as shown in metadata) 
o Region_code—a valid region code for corresponding region_type field. 

The final SAGA application programing interface is included in Appendix A2. 
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Appendix A2: SAGA APIv3  
Begins on the next page. 
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SAGA APIv3  
Overview 
As part of the Situational Awareness of Grid Anomalies (SAGA) project, the National 
Renewable Energy Laboratory (NREL) worked with Cable Television Laboratories, Inc. 
(CableLabs) and subcontractor teams to develop the ability to query sensor data in total or by 
predefined groups and sites. The following table shows an overview of the use of the application 
programming interface (API). 

 
 
APIv3—Monitoring APIs 
The v3 interface has calls for opening an authenticated session and then querying for sensor 
metadata and the most-recent sensor readings. There are 3 API calls: 

• authorize 
• fetch_readings 
• fetch_sensors  

 
 



 

42 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Name: authorize 
 

Purpose: To get a current token for access to all other 
API calls. 

REST call (POST):  
 
Endpoint (auth_url): https://admin-
e8b207ca-eval-
prod.apigee.net/oauth/client_credenti
al/accesstoken?grant_type=client_cred
entials  
 

INPUTS: 
 
{ 
"client_id": id, 
"client_secret": secret 
} 
 
which is placed in the 
request data field 
 

OUTPUTS: 
 
{ 
"access_token": token, 
"api_product_list_json": 
api_product_list, 
"status": status 
} 

 
The status should be 
“approved” for a successful 
call. 
 
The token is used in 
subsequent calls. 

Python lib call:  
 
new_session() 
 
Throws exception on authorization 
failure/error 

INPUTS: 
 
none: 

client_id and 
client_secret are hard-
coded in Python lib 

 

OUTPUTS: 
 
session, which is of the form: 
 
{"access_token": token, 
"client_name": client_name, 
 "api_product_list 
": api_product_list} 
 
(for use in subsequent query 
calls) 
 
 

 
  

https://admin-e8b207ca-eval-prod.apigee.net/oauth/client_credential/accesstoken?grant_type=client_credentials
https://admin-e8b207ca-eval-prod.apigee.net/oauth/client_credential/accesstoken?grant_type=client_credentials
https://admin-e8b207ca-eval-prod.apigee.net/oauth/client_credential/accesstoken?grant_type=client_credentials
https://admin-e8b207ca-eval-prod.apigee.net/oauth/client_credential/accesstoken?grant_type=client_credentials
https://admin-e8b207ca-eval-prod.apigee.net/oauth/client_credential/accesstoken?grant_type=client_credentials
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Name: 
fetch_readings 
 
 

Purpose: Fetch 5-min reading data for all SAGA-allocated sensors. 
 
NOTE: Sensor limits: 50,000 sensors 10/1/19 until 9/30/20, 75,000 sensors 
10/1/20 until 9/30/21, 100,000 sensors 10/1/21 until 9/30/22  

REST call (GET) 
 
endpoint 
(fetch_sensor_readings): 
https://admin-e8b207ca-
eval-
prod.apigee.net/saga-py-
fetch/fetch_sensor_readi
ngs  
 

INPUTS: 
 
Required: 
session['access_token'] 
 
which is placed in the 
Authorization/Bearer field of 
the request header 
 
Optional*: 
limit (int) 
offset (int) 
 
* One or more constraints 
are required to keep payload 
<10 MB. Full metadata is 22 
MB+. 
 

OUTPUTS: 
 
{ "data": data } 
 
The data array has the format: 
 
data: [{ 
 'batchTime': 1629221700000000, 
 'block_bbox': [-104.926155, 39.529121, -
104.923805, 39.532481], 
  'census_block_fips_code': '080350141371010', 
  'census_tract_fips_code': '08035014137', 
  'city': 'Lone Tree', 
  'county': 'Douglas', 
  'county_fips_code': '08035', 
  'inputVoltage': 117.6, 
  'inverterStatus': '1.0', 
  'latitude': '39.532444', 
  'longitude': '-104.92455', 
  'pollTime': 1629221541000000, 
  'sensor_id': 1410686, 
  'state': 'Colorado', 
  'state_code': 'CO', 
  'state_fips_code': '08', 
  'state_name': 'Colorado', 
  'usng_spatial_address': '13S ED 0648 7586', 
  'zip_code': '80124'  
}] 

Python lib call:  
 
TBD 

INPUTS:  
 
session 

OUTPUTS: 
 
data array (See the REST call above for 
format.) 
 
 

 
  

https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_readings
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_readings
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_readings
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_readings
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_readings
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Name:  
fetch_sensor_metada
ta 
 

Purpose: Fetch metadata info. for all SAGA-allocated 
sensors. 

REST call ( GET) 
 
endpoint 
(fetch_sensor_metadata): 
https://admin-e8b207ca-
eval-prod.apigee.net/saga-
py-
fetch/fetch_sensor_metad
ata  
 
 
 
 

INPUTS: 
 
Required: 
session['access_token'] 
 
which is placed in the 
Authorization field, 
concatenated with 
“Bearer” prefix in request 
header 
 
Optional*: 
site_ids 
comma-separated string 
of site IDs 
bitmask 
6-digit binary 
limit (int) 
offset (int) 
 
* One or more constraints 
are required to keep 
payload <10 MB. Full 
metadata is 22 MB+. 
 

OUTPUTS: 
 
{ "data": metadata } 
 
The metadata array has the format: 
 
metadata: [    { 
        "sensor_id": 1374226, 
        "site_id": "H1", 
        "latitude": 36.6760482788, 
        "longitude": -121.6606292725, 
        "county_code": 6053, 
        "state_code": 6, 
        "usng_spatial_address": "10S FF 19 59", 
    }, 
] 

Python lib call:  
 
TBD 

INPUTS: 
 
session 

OUTPUTS: 
 
metadata array (See the REST call above 
for format.) 

 
  

https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_metadata
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_metadata
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_metadata
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_metadata
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_metadata
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APIv3—Group APIs 
The v3 interface has calls for fetching sites (with filtering by group) along with fetching site 
events and data:  

• Five groups have been defined by SAGA (Gridmetrics-data-
collection.saga_sensors.saga_v3_groups): 

o California 
o Colorado  
o Houston metro  
o Hospitals 
o Airports.  

• The sensor metadata table now includes an additional column for sites (Booleans in the 
form of a single combined bitmask): 

o Canonical sensor ID 
o Site ID 
o Latitude 
o Longitude 
o County Federal Information Processing Standard (FIPS) code 
o State FIPS code 
o U.S. National Grid coordinate (1-km precision) 
o Colorado (Boolean indicator for presence in Colorado) 
o California (Boolean indicator for presence in California) 
o Houston (Boolean indicator for presence in Houston) 
o Hospital (Boolean indicator for presence in/near a hospital) 
o Airport (Boolean indicator for presence in/near an airport). 

• The enumerated states are defined as: 
o Nominal, high (6%–25%),  
o Low (6%–25%),  
o Extreme high (>25%),  
o Extreme low (<6%) 
o Outage. 

There are three API calls in APIv3: 

• fetch_sites 
• fetch_site_events 
• fetch_site_data 
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Name: 
fetch_sites 

Purpose: Fetch sensors for a site or list of sites (aka Groups).  
 

REST call ( GET) 
 
endpoint (fetch_sites): 
https://admin-
e8b207ca-eval-
prod.apigee.net/saga-
py-fetch/fetch_sites  
 
 

INPUTS: 
 
Required: 
session['access_token'] 
 
which is placed in the 
Authorization field of the 
request header 
e.g., “Bearer 12345” 
 
Optional*: 
site_ids 
e.g., site_ids=H1,HOU156 
 
bitmask 
6-bit bitmask format: 
Incl/Excl,CO,CA,Hou,Airport,
Hospital 
 
First bit: inclusive = 0, 
exclusive = 1. Inclusive 
ignores 0s and combines 1s; 
Exclusive selects 1s AND 
NOT 0s, excluding overlaps. 
 
Inclusive (0): 
e.g., bitmask = 01001  
Returns all of: CO AND H 
 
Exclusive (1): 
e.g., bitmask = 11001  
Returns: CO AND NOT H 
 
Logic: 
( CO || CA || HOU) && (H || A) 
 
limit (int) 
offset (int) 
 
* One or more constraints 
are required to keep 
payload <10 mb. 

OUTPUTS: 
 
{ 
"records": number_data_records,  
"query-time-me": query-time-ms,  
"data": data 
} 
 
The data array has the format: 
 
data:     
[{ 
        "v": 115.2, 
        "v_ref": 115.1999969482, 
        "sensor_id": 1374226, 
        "site_id": "H1", 
        "latitude": 36.6760482788, 
        "longitude": -121.6606292725, 
        "county_code": 6053, 
        "state_code": 6, 
        "usng_spatial_address": "10S FF 19 59", 
        "colorado": false, 
        "california": true, 
        "houston": false, 
        "hospital": true, 
        "airport": false, 
        "pollTime": 1648943875000 
    }...] 

https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sites
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sites
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sites
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sites
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Name: 
fetch_sites 

Purpose: Fetch sensors for a site or list of sites (aka Groups).  
 

Python lib call:  
 
TBD 
 

INPUTS: 
 
session 
 
site_ids 
bitmask 
(See the REST call above for 
details of this input.) 

OUTPUTS: 
 
data array (See the REST call above for 
format.) 
 
 

 
 
 

Name: 
fetch_site_events 

Purpose: Fetch event info. for sensor at the site.  
 

REST call ( GET) 
 
endpoint 
(fetch_site_events):  
https://admin-
e8b207ca-eval-
prod.apigee.net/saga-
py-
fetch/fetch_site_event
s  
 
 
 
 

INPUTS: 
 
Required: 
session['access_token'] 
 
which is placed in the 
Authorization/Bearer field of the 
request header 
 
lower (default .95) 
Baseline metric undervoltage 
threshold 
Return all entries with metric 
<threshold; threshold range is 
from 0–1. 
 
upper (default .95) 
Baseline metric overvoltage 
threshold 
 
Return all entries with metric 
<threshold; threshold range is 
from 0–1. 
 
period (default 1) 
Lookback period (in hours) 
Max is 4?? GORP 
 
Optional*: 
limit 
offset 
bitmask 

OUTPUTS: 
 
{ "data": data } 
 
The data array has the format: 
 
data: 
[{'baseline_metric_overvoltage': 
0.8726945683451612, 
  'baseline_metric_undervoltage': 
0.8726945683451612, 
  'sensor_id': 197011, 
  'v': [1.000000012975161, 
        1.000000012975161, 
        …]}, 
 …] 
 
“v” field is v/v_ref array over period at 5-
min intervals. 
 
 
 

https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_events
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_events
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_events
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_events
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_events
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_events
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Name: 
fetch_site_events 

Purpose: Fetch event info. for sensor at the site.  
 

site_ids 
 
* One or more constraints may 
be required to keep payload <10 
mb. 

Python lib call:  
 
TBD 

INPUTS: 
 
session 
 
lower 
Baseline metric undervoltage 
threshold 
Return all entries with metric 
<threshold; threshold range is 
from 0–1. 
 
upper 
Baseline metric overvoltage 
threshold 
 
Return all entries with metric 
>threshold; threshold range is 
from 0–1. 
 
period 
Lookback period (in hours) 
Max is 4?? GORP 
 

OUTPUTS: 
 
data array (See the REST call above for 
format.) 
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Name: 
fetch_site_data 

Purpose: Fetch data for sensors for sites. 
 
Returns data for SAGA-allocated sensors. 

REST call ( GET) 
 
endpoint 
(fetch_site_data): 
https://admin-
e8b207ca-eval-
prod.apigee.net/saga-
py-
fetch/fetch_site_data  
 
 
 
 

INPUTS: 
 
Required: 
session['access_token'] 
 
which is placed in the 
Authorization/Bearer field of 
the request header 
 
Optional*: 
limit 
offset 
bitmask 
site_ids 
 
* One or more constraints 
may be required to keep 
payload <10 mb. 
 
 
 

OUTPUTS: 
 
{ "data": data } 
 
The data array has the format: 
 
data: 
[{“sensor_id”:”sensor_id1”,  
“site_id”:”site_id1”, 
“V_ref”:120.1,  
“V”:121.3},   
{sensor_id”:”sensor_id2”,  
“site_id”:”site_id1”, 
“V_ref”:120.5,  
“V”:122.3} 
… ] 
 

Python lib call:  
 
TBD 

INPUTS: 
 
session 
 
Site_id_list 
bitmask 
(See the REST call above for 
details of this input.) 

OUTPUTS: 
 
data array (See the REST call above for 
format.) 
 
 

 
 
  

https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_data
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_data
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_data
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_data
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_data
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Gridmetrics internal architecture for APIv3: 
 

 
 
Note: 

• Gridmetrics will return V_ref and V; caller will compute states. 
• Suggested states: nominal, high (6%–25%), low (6%–25%), extreme high (>25%), 

extreme low (<6%%), outage (V = 0) 
• Returning V/V_ref instead of states allows the caller flexibility to change state definitions 

to suit their needs. 
 
Summary and References 
Authorization: 
All calls other than the authorization call to fetch a token require the authorization token to be 
passed in via the bearer field. See the first table above for more information on authorization. 
This call is POST; all others are GET. 
URL: https://admin-e8b207ca-eval-
prod.apigee.net/oauth/client_credential/accesstoken?grant_type=client_credentials 
 
All parameters to these calls are optional (with hopefully sane defaults), but in cases where the 
return payload would exceed 10 MB, some constraints must be supplied to narrow or paginate 
the results. 
 
Fetch sensor readings: 
Accepts two parameters: limit (e.g., 10), offset (e.g., 100)  

https://admin-e8b207ca-eval-prod.apigee.net/oauth/client_credential/accesstoken?grant_type=client_credentials
https://admin-e8b207ca-eval-prod.apigee.net/oauth/client_credential/accesstoken?grant_type=client_credentials


 

51 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Limit and offset can be combined to limit results output and/or implement pagination. 
URL: https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_readings 
 
Example with query string parameters: https://admin-e8b207ca-eval-prod.apigee.net/saga-py-
fetch/fetch_sensor_readings?limit=1&offset=100 
 
Fetch sensor metadata, fetch site data, and fetch sites: 
Accept limit, offset parameters defined above and additionally: 
 
Bitmask: Six binary digits representing incl./excl., CO, CA, HOU, H, A, respectively. 
First bit: inclusive = 0 or exclusive = 1. Inclusive ignores 0s and combines 1s; Exclusive selects 
1s AND NOT 0s, excluding overlaps. 
 
For example: inclusive (0): bitmask = 01001  
Returns all of: CO AND H 
 
Exclusive (1): bitmask = 11001  
Returns: CO AND NOT H 
 
site_urls: A comma-separated list of site IDs (e.g., H1, HOU156) 
 
URLs: 
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_data 
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sites 
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_metadata 
 
Examples with query string parameters:  
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-
fetch/fetch_site_data?bitmask=001001&limit=10 
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_metadata?site_ids=H1 
 
Fetch site events: 
Accepts limit, offset, bitmask, site_ids parameters defined above, and additionally: 

• lower: baseline metric undervoltage threshold 
• upper: baseline metric overvoltage threshold 
• period: period over which to observer v/v_ref readings in hours (1 default, 4 max). 

 
URL: https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_events 
 
Example with query string parameters:  
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-
fetch/fetch_site_events?bitmask=010000&limit=100&offset=200&lower=.90&upper=.90&perio
d=2 
  

https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_readings
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_readings?limit=1&offset=100
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_readings?limit=1&offset=100
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_data
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sites
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_metadata
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_data?bitmask=01001&limit=10
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_data?bitmask=01001&limit=10
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_sensor_metadata?site_ids=H1
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_events
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_events?bitmask=10000&limit=100&offset=200&lower=.90&upper=.90&period=2
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_events?bitmask=10000&limit=100&offset=200&lower=.90&upper=.90&period=2
https://admin-e8b207ca-eval-prod.apigee.net/saga-py-fetch/fetch_site_events?bitmask=10000&limit=100&offset=200&lower=.90&upper=.90&period=2
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Appendix B: Abridged SAGA Ops Proposal  
Begins on the next page. 
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1 Introduction: Situational Awareness of Grid 
Anomalies  

 

The ongoing Situational Awareness of Grid Anomalies (SAGA) project seeks to expand grid situational 
awareness by integrating data from sensors within the cable television broadband network 
infrastructure with capabilities for visualization and analysis. The sensor data is supplied by Gridmetrics 
Inc., a wholly owned subsidiary of Cable Television Laboratories (CableLabs), the research and 
development arm of the cable broadband industry. Gridmetrics has agreements with CableLabs’ 
members to supply data from sensors that are attached to the cable network, via cable modems 
embedded in networked uninterruptable power supplies (UPS). 

While there are existing systems in place to support grid situational awareness using SCADA data 
generated by the utility itself (this implies that SCADA at distribution system is ubiquitous it’s not. 
There’s a complimentary angle here as well), the use of sensor data provided by Gridmetrics offers 
unique advantages over utility-generated data. 

• Out-of-band. The Gridmetrics data is collected by sensors not operated by the utility, providing 
“ground truth” for SCADA and AMI telemetry.  

• Higher spatial fidelity. Data from Gridmetrics provides higher spatial resolution, as it is collected 
from sensors at the neighborhood level, when compared to traditional SCADA telemetry, which 
is gathered at the feeder level.  

• Higher temporal fidelity. Gridmetrics provides up to 1-minute sensor data, offering more 
frequent readings than SCADA systems, or even most AMI systems.  

• Cross-service territories. Data from Gridmetrics spans boundaries of utility service territories. 
This directly supports monitoring of the grid at city, county, state, regional, and national levels.  

• Independent from utility communications infrastructure. Disruptions to the utilities’ own 
networks will not impact Gridmetrics data transmission. 

• Independent from utility power. Sensors are battery-backed and continue providing 
measurements during power outages.  

SAGA has demonstrated the utility of capturing, exploring, and integrating the nation-wide out-of-band 
Cable Network sensor data, provided by Gridmetrics’, for situational awareness settings of power 
systems. At a proof-of-concept level, the project explored the needs of different potential user groups – 
including operators, utilities, and government agencies, along with novel approaches for sensor data 
visualization and analysis. As such, an extension of the prototype developments to operational 
capabilities provides a rich path to supporting enhanced distribution grid situational awareness – 
enabling operators and agencies to leverage scalable data services for accessing historical and near real-
time data and a platform to visually explore these datasets. Together, these capabilities can provide 
users the ability to view geospatial distributions of sensor states, identify sensor group behaviors, 
explore sensor timeseries, uncover temporal patterns, and generate summary reports. Ultimately, 
scalable data services and visualization capabilities of Gridmetrics’ neighborhood-level 1-minute cable 
sensor data will provide an extensible basis for enhanced real-time grid awareness – forming a solid 
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foundation for the continued developments of novel grid anomaly detection and state estimation 
algorithms, in distribution systems that currently have restricted observability.  
 
The proposed follow-on project, SAGA Operations (SAGA Ops) will extend and scale the proof-of-
concept capabilities developed by the current project and ready them for operational support of CESER’s 
mission.  

2 Project Objectives 
The main objective of SAGA Ops is to provide CESER with the ability to leverage the out-of-band cable 
sensor data from Gridmetrics at scale, and directly support CESER’s responsibilities regarding grid 
security and resilience. At a high-level, SAGA Ops will construct two categories of support: (1) Real-time 
monitoring of sensor data, and (2) Reporting of sensor data over defined periods of time.  

SAGA Ops will empower users to incorporate cable sensor data for: 

Real Time Monitoring 

• Leverage 1-minute data from cable sensors distributed across the continental U.S.  

• Geospatially explore sensor distributions, visualize grid performance, compare to historical 
trends, and inspect associated sensor timeseries. 

• Analyze sensor states during fluctuating voltages, over/under-voltages, and outage events with 
indications of the scale.  

• Define custom sensor groups to monitor behavioral baselines of facilities or regions of interest 
(e.g., hospitals, transportation hubs, proxies to critical infrastructure, counties, etc.).  

• Define custom event scenarios to receive notifications (e.g., sensors operating outside of a 
threshold, or length of outage time). Apply sensor data filters to include or exclude certain event 
types (e.g., power deviation, outages, etc.).  

• Review historical sensor behavior and create sensor, site, or group baselines. 

Creation of Event Reports 

• Leverage interactive visual analytics tools to isolate data sets of interest, compare behaviors to 
baselines or reference sets, and uncover deep insights to system operation under evolving 
conditions.  

• Analyze system behaviors, investigate custom event notifications, and generate incident reports 
for geographic areas and/or custom sensor groups over a specific period.  

• Export event reports, data references, visualizations, and supporting analyses. 

Additionally, these goals are supported in part by Gridmetrics’ efforts to improve the quality and scale of 
data it can provide: 
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• Increasing the number of sensors contributing data. When the SAGA project began in 2019, 
Gridmetrics could supply data from about 6,000 sensors. Today, Gridmetrics currently has 
access on the order of 300,000 sensors. The maximum possible number of U.S.-based sensors is 
650,000 which Gridmetrics plans to achieve by 2023.  

• Increasing the frequency of sensor readings. When the SAGA project began, the sensors where 
supplying readings nine times per day. With the helpful support of SAGA funding, currently, 90% 
of sensors are reporting data in one-minute intervals. SAGA Ops support will enable Gridmetrics 
to increase this to nearly 100%. (Note: Gridmetrics and the SAGA team pioneered a standard 
and developed hundreds of prototypes for a next generation of sensor technology that 
increases the voltage precision and sampling rate even more, but these next generation sensors 
have not yet been deployed in bulk and are outside the scope of this proposal). 

• Continued cleaning, storage, pre-processing, and distribution of expanded sensor data. A 
major benefit to the cable sensor data provided by Gridmetrics is its overall quality and ease of 
access. While other data sources require vast web-scraping operations with data cleaning 
pipelines, Gridmetrics will work to continue supplying accurate and clean raw sensor data, in 
addition to derived sensor data metrics, across subscription sets. 

To successfully enable these capabilities, we propose to extend the prototype software systems that 
were designed and developed for SAGA into operations-ready capabilities. This extension has four major 
areas of effort – (1) Design iterations with CESER stakeholders. (2) Refinement, scaling, and deployment 
of the Core Data Services and an Event Identification Platform. (3) Design, development, and integration 
of advanced visual analytics components. (4) Design, development, and deployment of a web-based, 
authenticated, Operations Platform. Additionally, we will include phases of testing of software 
components and their integration, initial NREL deployment monitoring, and comprehensive 
documentation of respective software systems. These phases support a rigorous inspection of an 
operational-ready software system and successfully position it for continued feature enhancement with 
program evolution. Furthermore, to support control of software access and data sources, we will create 
and implement both Software and Data Management Plans – engaging with stakeholders to define 
necessary requirements for data storage and access, as well as scoping software extensibility for follow-
on efforts.  

At the end of the project, SAGA Ops will be sufficiently robust to support CESER’s role in monitoring the 
state of the grid for cybersecurity and emergency response needs. In particular, the Core Data Services, 
visual analytics capabilities, and operational interface will enable users to leverage scalable data 
interfaces and interactively analyze areas for situations of interest. Additionally, component 
documentation will be created to include a clear path for managing data, software development and 
maintenance, and capability upgrading.  

3 Scope of Work 
To provide an operational capability that supports desired CESER missions, development will be driven 
through an iterative user-centered design approach. In this setting, we will regularly engage with CESER 
stakeholders during the projects’ first two quarters. This will enable us to capture and map all desired 
use-cases, focus areas, and associated workflows with the potential features and components that can 
be developed – as these areas will directly motivate the corresponding data service architectures, 
visualization components, design of the operations platform, and overall functionality.   
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From all captured potential use-cases, we will evaluate the desired priorities and determine an initial 
focus within the proposed budget and scope. The additional stakeholder use-cases, features, and 
focuses that are not an immediate priority, or out of the scope of the current budget, will be captured 
and planned to be addressed during software extension efforts.  For example, the project’s core data 
functions can ultimately support full-scaled analysis efforts across Distribution, Service Operator, 
Interconnect, and National grid scales. However, to provide an extensible and effective product that can 
be continually upgraded, an initial focus will need to be adequately defined. As a default, our focus will 
position the initial version of the operational platform’s functionality to support Distribution system 
operations.  
 
As the informed designs are developed and implemented, we will confirm the solution’s effectiveness 
and directions with facilitated feedback from stakeholders. This will enable us to provide the flexibility 
to capture expanding feature requests with program evolution while maintaining an extensible core 
capability.  
  
To this end, the software components developed in the initial SAGA project will be extended and scaled 
beyond prototypes and integrated into an operational architecture, with any new required component 
designs or extensions requested being created through stakeholder engagement. To this end, we will 
focus on four areas of initial software development – Core Data Services, Event Identification Platform, 
Visual Analytics components, and an authenticated Operational Platform – followed by stages of 
integration testing and final deployment monitoring. These areas of effort are outlined below.  As with 
the current SAGA project, NREL will continue its partnership with Gridmetrics on SAGA Ops. 
 
 
 
 

Gridmetrics’ Efforts:  

• Increase number of available sensors to the include entire partner base.  
• Negotiate with members who currently do not contribute data.  
• Increase all available sensor reporting intervals to 1-minute rates. 
• Develop sensor data metrics/indices for inclusion within distributed data packages. 
• Enhance sensor data access and interfaces with the NREL Core Data Services. 
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Figure 1. Example design of an operational interface from current SAGA project. Designs can include 
abilities for users to navigate geospatial overviews of real-time sensor distributions, investigate current 
and historical timeseries, interactively explore data sets with visual analytics capabilities, and create 
reports of periods of interest. 

 
NREL Efforts:  

Core Data Services  
We will refine and expand three of the existing containerized data services and add an 
additional events data service. The services will be composed into a well-defined core data 
system of containers that interacts with one another, for deployment and orchestration in a 
scalable environment. This effort is supported by active collaboration and integrated 
developments with Gridmetrics’ API development team. Each containerized service will be 
tested along with integration testing the composition.  

 
Metadata Service   
API to query, store, and expose subscribed Gridmetrics’ sensor metadata. We will expand 
the service to include an updated set of available Gridmetrics’ sensor, site, and group 
metadata. Metadata includes sensor IDs, location data, group inclusion, and group sites’ 
sensor lists.  
• We will update the service API’s filtering and table transformation capabilities.  
 
Streaming Data Service   
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Kafka stream processing platform that includes topics for subscription and publishing of 
Gridmetrics’ 1-minute sensor data.   
• We will update and stress-test this service to handle Gridmetrics’ full-set of available 

sensor data.  
• We will grow the service to provide dynamic creation of Kafka topics to enable users to 

subscribe to raw data feeds of selected sensors of interest.  
o For example, this service will interface with the event identification platform which 

will subscribe to custom topics/sensor groups and process timeseries with custom 
logic, which in turn can emit data to other Kafka topics.  

• We will expand the service’s interface to the Historical Data Service (described below), 
to provide desired pre-processing before storage in Druid.  

 
Historical Data Service   
API to the Druid data store containing Gridmetrics’ sensor timeseries, site and group indices, 
and derived metrics that are piped directly from the Streaming Data Service.  
• We will extend the API’s functionality to enable users to create custom advanced Druid-

SQL queries across sensor timeseries data.  
• We will test and design Druid’s data segmenting to be optimized for analytic querying 

over large batches of timeseries data.  
 

Events Data Service  
We will define and develop this new service API to handle storage and retrieval of events 
that were flagged by prototypical event identification models running on the event 
identification platform.  
• Using feedback from stakeholder engagement, we will design, develop, and deploy this 

service.  
o The API schema, routing, and filtering will be defined according to support cases.  

  
Event Identification Platform  
Based on iterations and engagement with stakeholders, we will design, develop, and deploy an 
Event Identification Platform that will host custom models that connect to topics within the 
Streaming Data Service, process sensor data, and produces conditional events that are 
subsequently stored in the Events Data Service.   
• Platform development will include the creation and deployment of an additional web 

service that will host production-ready event identification models (e.g., outages, out of 
range values, or future machine learning event predictions).  

• Initial event identification models will be designed, developed, and included to allow users 
to define sensor sets of interest, nominal operating ranges, and various outage conditions 
from which events can be created and logged.  

  
Visual Analytics  
We will refine and expand the prototype developed SAGA visualization components to further 
support analysis and pattern discovery interactions with the geospatial timeseries data, 
supporting the canonical visual analytics tasks of:  
• Overview: Provide an overview of the complete sensor collection and desired reference 

infrastructure.  
• Zoom: Zoom into spatial and temporal regions of interest.  
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• Filter: Filter out individual or groups of sensors/timeseries.  
• Details-on-demand: Select individual or groups sensors and time periods to investigate the 

timeseries traces.   
• Relate: View and compare timeseries behaviors between multiple groups of sensors.  
• History: Keep a history of actions to support replay and progressive refinement.  
• Extract: Allow extraction of sub-collections and the query of parameters.   

  
Operational Interface  
Based on iterative engagement with CESER stakeholders, we will design, develop, and deploy an 
authenticated front-end web client – to enable users to explore data sources, observe overviews 
of system states, analyze events, and create reports / records of findings. This work will be 
supported by the following tasks:  
• Design of user interface (UI) and user experience (UX) pairings, tailored to stakeholders use-

cases.  
• User access control and authentication capabilities.   

o Definition of user types and roles (e.g., Operator, Analyst, Admin etc.), associated views, 
interactions, and capabilities. 

• Design and integration of all visual analytics components and geospatial visualizations.   
• Integration with the Core Data Service APIs and creation of corresponding data views.  
• Creation of data views and user interactions with logs from identified events.  
• Development of capability for users to create reports of session details (e.g., sensor sets, 

timeseries overviews, included events, and associated visualizations).  
  

Unit and Integration Testing  
As the software systems that are being developed are ultimately intended for operational 
environments, we will rigorously validate software components via well-defined software 
testing steps. Our teams follow software engineering best-practices throughout the 
development life cycle. This includes a focused phase of thorough integration testing, to ensure 
all interdependent components (e.g., back-end services and front-end clients) behave 
accordingly in nominal settings, while providing robust error-handling.  
 
These efforts will directly support the project’s ability to successfully function under required 
operating conditions, establishing trustworthiness in component behavior and end-to-end 
functionality. Moreover, the findings during the respective testing phases will provide deep 
insights into any potential logic issues and performance bottlenecks that can be addressed early 
and support the system’s continued extensibility.  
  
To that end, the following testing strategies are outline below.  
• Unit Testing Strategy:  

o Proper definition of software units (e.g., functions)  
o Arrangement of independent tests   
o Tracking of pass/fail assessments and resolutions  

• Integration Testing Strategy:  
o Identification of interdependent software components  
o Creation of representative scenarios for nominal and erroneous situations   
o Documentation of scenario and component performances 
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Deployment and Operational Monitoring  
The outcome of this project are software systems that are ready for operational environments. 
For the scope of this project, the deployment of developed software systems will reside on NREL 
infrastructure. We will document the environment architecture, necessary constraints, and any 
required support systems – along with build and deployment processes – to support the 
availability of this capability for future porting to stakeholder ecosystems.  The following outline 
the task summaries for this period:  
• Deployment of Core Data Services and Event Identification Platform onto NREL systems 

o  Includes NREL’s existing data systems: Druid and Kafka Clusters 
• Deployment of Operational Interface and initializing user access 
• Monitoring of service and platform health and resilience 

o Creation of reports of system utilization and data accumulation rates. This will inform 
continued operations costs, environment considerations, and overall system extension. 

• Management of user access and tracking any identified issues 
 
NREL and Gridmetrics joint efforts include:  

• Refining the Gridmetrics’ API and planning its evolution with the Core Data Services. 
• Providing ability for users to explore available sensor data sets/groups and subscribe to chosen 

sensors, up to the agreed upon maximum. 
• Advance existing standards and create new standards, as needed. 

4 Tasks 
To successfully deliver an extensible and robust SAGA Ops software platform, the project’s components 
and phases will be managed in terms of following Tasks. Foundationally, the initial thrust of the project 
is focused on CESER stakeholder Design Iterations, as these crucially determine the project’s focus and 
scope around a particular perspective of the Gridmetrics’ data. The subsequent objectives, design 
details, and development tasks will be tracked and planned accordingly throughout the 18-month period 
of performance. 

Task 1. CESER design iterations 

This task is focused on capturing and mapping all desired stakeholder use-cases, focus areas, and 
associated workflows with the potential features and components that can be developed. At the end of 
the design iterations, we will have successfully captured focused use-cases that support CESER 
stakeholders. These will feed into the design of the data service architectures, visualization components, 
operations platform, and overall functionality. The focus will be refined iteratively, with NREL presenting 
updated options and designs based on CESER feedback through several review cycles. This process will 
continue until DOE and NREL reach a mutually satisfactory focus and initial design.  

Task 2. Identify sensor subscription sets for initial operational investigation 

Based on the set of available sensors from Gridmetrics’, this task will identify the sets of sensors that 
CESER stakeholders wish to subscribe to – up to the maximum agreed upon amount (i.e., 300,000 at the 
initialization of this proposal). This selection process will initially take place during the CESER design 
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iterations. These sensors can be chosen from geographical distributions with the option of identifying 
availability of sensor assets in proximity to identified areas of interest. Additionally, this task will identify 
a selection process that supports updating and/or modifying the subscription set to swap-out sensor 
subscription selections across the available catalog.  

Task 3. Refinement and expansion of SAGA Core Data Services  

Refinement of the three existing containerized data services (i.e., Metadata, Historical, and Streaming 
Data Services), and addition of the Events Data Service. This Task is supported by active collaboration 
with the Gridmetrics’ API development team. 

Task 4. Development of Event Identification Platform 

Based on iterations with CESER stakeholders, we will design and develop a platform that will host 
custom models that connect to the Streaming Data Service to process sensor data, produce conditional 
events from model logic, and subsequently store event data in the Events Data Service. 

Task 5. Design and development of visual analytics components 

Expansion of the prototypical visual analytic components develop in SAGA to further support desired 
interactions, analyses, and pattern discovery capabilities with sensor geospatial and timeseries data. 

Task 6. Design and development of web-based Operations Interface 

Based on the iterative engagements and feedback from CESER stakeholders, we will design and develop 
an authenticated front-end web client, that integrates with the Core Data Services, Event Identification 
Platform, and visual analytics components – to enable users to explore data sources, observe overviews 
of system states, analyze events, and create reports / records of findings. 

Task 7. Integration testing of software components (i.e., Core Data Services, Event Identification 
Platform, Visual Analytics components, and Operations Platform) 

Rigorous validation of software components, definitions of associated interfaces, and overall system 
integration testing via well-defined processes. These efforts will directly support the project’s ability to 
successfully function under required operating conditions, establishing trustworthiness in component 
behavior and end-to-end functionality.  

Task 8. Deployment and monitoring of SAGA Ops software components 

Deployment of developed software systems onto NREL infrastructure. Documentation of the necessary 
environment, and any required support systems – along with build and deployment processes – to 
support the availability of this capability for any stakeholder ecosystems. We will provide active 
monitoring of deployed systems to manage user access, document system utilization and data storage 
metrics, and address any potential system issues. 
 
Task 9. Implementation of Software and Data Management Plans 
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Descriptive documentation of the data being collected, analyzed, visualized, and stored – In conjunction 
with documentation of the software systems produced. Additionally, this will include detailed processes 
for maintenance, upgrades/feature requests, and future deployment considerations. 

Task 10. Advance applicable standards  

As part of a related project funded by the U.S. Department of Energy, Office of Electricity, Technology 
Commercialization Fund, the SAGA team recently created the new American National Standard, 
ANSI/SCTE 271 2021, Requirements for Power Sensing in Cable and Utility Networks. The standard 
specifies precision, sampling rate, and configuration requirements if vendors choose to measure and 
report voltage and/or current in hardware and software to enable advanced power sensing in cable and 
utility networks. The standard is generating much interest with utilities and broadband providers.   
Hundreds of SCTE 267 standard-compliant sensors have been built, dozens are in service, and 
deployment is accelerating in many areas across the U.S. 

The opportunity to advance applicable standards includes further defining best practices for deploying, 
testing, and operationally integrating of the new SCTE 267-compliant sensors used by CableLabs 
member companies, Gridmetrics, and utilities. The team will continue to iterate on this standard as 
needed to achieve the goal of SAGA Ops.  To that end, NREL renewed SCTE Standards membership and 
started discussion to extend SCTE 271 with “dot” standard(s), e.g., to provide an applications guide, 
testing/verification methodology, best practices, additional functionality, calibration, etc. 
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5 Deliverables 
Aligned with the efforts and tasks presented in the previous section, the following items will be 
delivered. 

D1. SAGA Ops design document.  

This will summarize the content and results of Task 1. This will include definitions of terminology and 
desired stakeholder areas of interest and features. Additionally, this will include the agreed upon initial 
focus area, user interface/user-experience mockups, and supporting workflows for defined use-cases. 
This document will inform corresponding development effort details for the Core Data Services, Event 
Identification Platform, Visual Analytics components, and Operations Platform functionalities.  

Delivery: End of Q3, FY2023 

D2. Gridmetrics’ Data Subscription Details 

This deliverable is based on the results of Task 2 and provides documentation describing current sensor 
subscription details (e.g., geospatial coverage, counts, and any predefined sensor group distributions), 
subscription update process, and corresponding data terms. 

Delivery: End of Q3, FY2023 

D3. Core Data Services Software 

Based on the results of Task 3 and Task 7, supporting code repositories and associated documentation 
describing the Core Data Services (e.g., Metadata Service, Streaming Service, Historical Service, Events 
Service) will be delivered. 

Delivery: End of Q2, FY2024 

D4. Event Identification Platform Software 

Based on the results of Task 4 and Task 7 supporting code repositories and associated documentation 
describing the Event Identification Platform, and the initial model(s) deployed with it, will be delivered. 

Delivery: End of Q2, FY2024 

D5. Operations Platform Software 

Based on the results of Task 6 and Task 7 supporting code repositories and associated documentation 
describing the web-based Operations Platform will be delivered. 

Delivery: End of Q3, FY2024 

D6. SAGA Ops review version (80% functionality).  

This will include a demonstration of the system at 80% functionality, as a result of completing Tasks 3, 
45, 5, 6, and initiating Task7. This demonstration will focus on the Operations Platform functionality, in 
conjunction with its interfaces to the Core Data Services and Event Platform. This version will be used to 
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solicit feedback from CESER for the final version, before fully completing Task 7 and beginning the final 
project deployment with Task 8. 

Delivery: End of Q2, FY2024 

D7. SAGA Ops final version (100% functionality).  

This will include a demonstration of the full system functionality, as a result of completing Task 7 and 
Task 8. Additionally, documentation of the deployment process and associated environment will be 
provided. All accompanying final software and associated documentation will be delivered with this 
version.  

Delivery: End of Q3, FY2024 

D8. Software Maintenance Plan.  

This will identify dependencies that will drive future software updates to maintain functionality, as well 
as listing available improvements, extensibility/inclusion into other systems, and additional features that 
can be added in the future.   

Delivery: End of Q3, FY2024 
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Appendix C: Letters from Utilities Supporting 
Continued SAGA Development  
Begins on the next page.  

  



 

 

 
 
DATE: June 28, 2022 
 
Principal Investigator Michael Ingram 
National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
 
SUBJECT: Continued commercialization of NREL Situational Awareness of Grid Anomalies  
 
Dear Mr. Ingram: 
 
Holy Cross Energy supports continued commercialization NREL’s DOE CEDS project “Situational 
Awareness of Grid Anomalies (SAGA) for Visual Analytics: Near Real-Time Cyber-Physical 
Resiliency through Machine Learning”. With the completion of the DOE TCF-funded ANSI/SCTE 
271 standard and the availability of the next-generation sensors, the project is proceeding well. 
We recognize the value in developing and field-validating visual analytics that integrate cyber-
physical data from Cable TV broadband power supplies with utility information systems to 
enhance electric distribution grid visibility and operational situational awareness, detecting 
patterns of operation indicative of cyber incidents. This work accelerates our efforts that align 
with the DOE goal to advance cyber resilient energy delivery systems that are designed, 
installed, operated and maintained to survive a cyber-incident while sustaining critical 
functions.  
 
Holy Cross Energy is a member-owned electric cooperative serving 59,000 meters in rural Colorado.  
 

As we transition SAGA and TCF project responsibilities within Holy Cross Energy, we continue 
supporting thess exciting efforts by: 

• Participating as a member of the Technical Review Committee (TRC) for the projects, 

• Providing industry experience-based guidance, directional support, and strategic direction to the 
projects. 

 

Holy Cross Energy understands the value of this work and related follow-on projects, and looks 
forward to continued collaboration with the project team. 

 
Sincerely, 

 
Bob Farmer 
Vice President, Information Technology 
Holy Cross Energy 
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Utilities 
electric · stormwater · wastewater · water 
700 Wood Street 
PO Box 580 
Fort Collins, CO 80522 
 

970.221.6700 
970.221.6619 – fax 
970.224.6003 – TDD 
utilities@fcgov.com 
fcgov.com/utilities 
 
 Date:   1/4/2023 

ATTN: PI Michael Ingram 
National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 

Re:   Letter of Support to continue NREL’s SAGA Research & Development 

 
 
Dear Mr. Ingram: 
 
The City of Fort Collins Utilities Light & Power recommends the U.S. Department of Energy (DOE) fund 
continued commercialization of NREL’s Situational Awareness of Grid Anomalies (SAGA) for Visual 
Analytics: Near Real-Time Cyber-Physical Resiliency through Machine Learning”. We are founding 
members of the SAGA Technical Review Committee and have guided SAGA research, development, and 
deployment efforts dating back to 2017.  
 
The City of Fort Collins Utilities Light & Power is a municipally owned electric utility that serves around 
80,000 electric meters within the city limits of Fort Collins, Colorado. Our Vision is to sustainably 
provide for the energy needs of our community now and in the future with safe, renewable, reliable, 
resilient, and affordable electricity through a culture of innovation and operational excellence. We 
accomplish this through our employees’ dedication to excellence, our environmental, economic, and 
social stewardship, building future flexible infrastructure, research, and innovation, as well as our data-
driven decision making. 
 
We believe SAGA and derivative efforts can deliver value by integrating cyber-physical data from Cable 
broadband networks with utility information systems to enhance electric distribution grid visibility and 
operational situational awareness, detecting patterns of operation indicative of cyber incidents. SAGA 
derivative efforts such as the Power Event Notification Systems (PENS), the GridCON Report, and the 
ANSI/SCTE 271 Standard, Requirements for Power Sensing in Cable and Utility Networks, all have the 
potential to accelerate the DOE goal to advance cyber resilient energy delivery systems that are designed, 
installed, operated, and maintained to survive a cyber-incident while sustaining critical functions.  
 
The City of Fort Collins Utilities Light & Power understands the value of SAGA and derivative projects 
and recommends the U.S. Department of Energy continue supporting SAGA research, development, and 
commercialization. 
 
Sincerely, 
 
Adam Bromley, P.E. 
Director of Operations & Technology  
City of Fort Collins Utilities Light & Power
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January 26, 2023  
 
Mr. Michael Ingram 
National Renewable Energy Laboratory  
15013 Denver West Parkway  
Golden, CO 80401  
 
RE: Letter of Support to continue NREL’s SAGA Research & Development 
 
Dear Mr. Ingram,  
 
Northern Lights, Inc., a member owned electric cooperative serving northern Idaho and 
western Montana, recommends the U.S. Department of Energy (DOE) fund continued 
commercialization of NREL’s “Situational Awareness of Grid Anomalies (SAGA) for Visual 
Analytics: Near Real-Time Cyber-Physical Resiliency through Machine Learning”. We are 
founding members of the SAGA Technical Review Committee and have guided SAGA 
research, development, and deployment efforts dating back to 2017. 
 
We believe SAGA can deliver value by integrating cyber-physical data from Cable broadband 
networks with utility information systems to enhance electric distribution grid visibility and 
operational situational awareness, detecting patterns of operation indicative of cyber incidents. 
SAGA derivative efforts such as the Power Event Notification Systems (PENS), the GridCON 
Report, and the ANSI/SCTE 271 Standard, Requirements for Power Sensing in Cable and 
Utility Networks, all have the potential to accelerate the DOE goal to advance cyber resilient 
energy delivery systems that are designed, installed, operated, and maintained to survive a 
cyber-incident while sustaining critical functions.  
 
Northern Lights understands the value of SAGA and derivative projects and recommends the 
U.S. Department of Energy continue supporting SAGA research, development, and 
commercialization. 
 
Sincerely

  
Dr. Steve Elgar  
President  
Northern Lights, Inc.  
 
PO Box 269 • 421 Chevy Street  •  Sagle, Idaho  83860-0269  •  800-326-9594 • www.nli.coop  


	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1 Task and Milestone Summary
	2 Core Data Services and Visual Analytics
	2.1 Metadata Service
	2.2 Historical Service
	2.3 Streaming Service
	2.4 Visual Analytics
	2.5 Learnings, Conclusions, Recommendations 

	3 Cyber-Physical Power System Simulation
	3.1 Dynamic Simulation With DER-Enabled Frequency Regulation 
	3.2 Steady-State Simulation with DER-Enabled Voltage Regulation
	3.3 Cyber Anomaly Scenarios
	3.4 Simulation Results
	3.5 Learnings, Conclusions, Recommendations 

	4 Anomaly Detection
	4.1 Distributed Anomaly Detection Framework
	4.2 Deterministic Versus Probabilistic Approaches 
	4.3 Model Fitting Procedure
	4.4 Performance Evaluation
	4.5 Learnings, Conclusions, Recommendations 

	References to SAGA-Related Papers
	Appendix A1: Using the SAGA APIv3 
	Appendix A2: SAGA APIv3 
	Appendix B: Abridged SAGA Ops Proposal 
	Appendix C: Letters from Utilities Supporting Continued SAGA Development 



