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Rotating Detonation Engines 

• Gas turbine (GT) engines are the most popular devices today for transportation and power 
generation purposes. However, scientific community looks forward to new technologies that 
produce energy even more e ciently. In contrast to the Brayton cycle on which GT engines 
work, detonation cycle operates at constant volume and a static pressure gain. Hence, it 
produces more work output when compared to the Brayton cycle (Figure 1). 

Figure 1: Comparison of Brayton and Detonation cycle 

• Detonation cycle is used in devices such as Standing Detonation Engines (SDEs), Pulse 
Detonation Engines (PDEs) and Rotating Detonation Engines (RDEs). RDEs have gained 
more scientific interests recently because, 

– of their lower entropy generation and hence higher e ciency when compared to GT engines 
– detonation needs to be initiated only once 
– faster fuel consumption rate and hence higher power output 
– pressure increase from detonation reduces the load on compressors 

Figure 2: (a) A conceptual rotating detonation turbojet engine [1] (b) The combustion chamber of an Rotating Detonation Engine 
(RDE) [1] 

• The goal of this work is to perform numerical simulations to study detonation and combus-
tion occuring inside an RDE engine. 

PeleC CFD Solver 

• PeleC [2] is a CFD solver application funded by the US Exascale Computing Project for 
simulating compressible reactive flow in complex geometries and using adaptive mesh re-
finement (AMR). PeleC is based on the AMReX framework [3] which supports Cartesian, 
block-structured, AMR capabilities on both CPU and GPU architectures. 

Figure 3: (a) PeleC application architecture (b) Strong scaling of premixed flame test case computed using 4096 Summit nodes 

• Key features of the PeleC software suite include: 

– Compressible, reactive Navier-Stokes formulation 
– Piecewise Parabolic Method (PPM) and Method of Lines (MOL) space discretizations 
– Second-order accuracy in space and time (Runge-Kutta two-stage (RK2)) 
– Supports real gas equation of state 
– Mixture-averaged transport models and 
– Species transport framework including reduced and detailed mechanisms 
– Embedded Boundary (EB) representation for complex geometries 

Figure 4: Applications of PeleC solver. (a) Simulation of direct fuel injection in a supersonic cavity flame holder [4, 5] (b) Simulation 
of reactive flow inside a supercritical CO2 cycle based combustor 

Numerical Results 

Computational domain and boundary conditions 

Figure 5: Computational domain and boundary conditions used in this study 

• 3D annular combustion chamber is ‘unwrapped‘ to obtain a 
2D rectangular domain with discrete, premixed, fuel-air jets 
with specified upstream total pressure and temperature at 
the inlets. 

E↵ect of AMR 

Figure 6: Numerical Schlieren (top) and the corresponding refinement grid zones (bot-
tom) outlined in black color 

• AMR resolves detonation and shock zones at increased res-
olutions to capture fine-scale dynamics 

Flow field and wave structure 

Figure 7: Stable detonation and flow structure 

• Under stable operating conditions, single or multiple con-
tinuously rotating wave structures are obtained. Each wave 
structure consists of a detonation wave, an oblique shock 
wave and a slip line. 

Reaction zones 

Figure 8: Detonation and deflagration zones 

• Periodic motion of the detonation front consumes the 
freshly injected premixed gas. Downstream regions com-

prise intense mixing of high temperature burnt products and 
freshly injected fuel-air mixture creating deflagration zones. 
Negative heat release zones are observed downstream of 
oblique shocks due to radical species production 

E↵ect of CH4 doping 

Figure 9: E↵ect of CH4 doping on the number of detonation waves.(T=500K,P=10 
Atm) 

• Increasing CH4 doping reduces fuel-air mixture reactivity. 
Lower reactivity leads to delayed detonation transition and 
hence fewer number of detonation wave fronts. Increasing 
CH4 doping reduces fuel-air mixture reactivity. Lower reac-
tivity leads to delayed detonation transition and hence fewer 
number of detonation wave fronts. 
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