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ABSTRACT 

This paper provides a system architecture for an infrastructure-based cooperative perception 
fusion engine for next-generation traffic control. This engine will provide a complete state-space 
digital representation with measurable accuracy to support a wide-range of applications. The 
architecture includes inputs, functional flow, data standardization recommendations, outputs, and 
supported applications. The cooperative perception engine addresses critical needs with respect 
to accelerating the benefits of automation through intelligent roadway infrastructure, which 
complements and accelerates connected and automated vehicle (CAV) technology. The 
cooperative perception acquires and fuses information from sensors (radar, LiDAR, and 
cameras) and CAVs to perceive roadway traffic states of moving objects, creates a complete 3D 
digital representation of that state-space, and communicates it to downstream application such as 
intelligent signal control, safety and energy applications, and cooperate driving applications. The 
intelligent roadway infrastructure approach, as opposed to a vehicle-centric approach, is more 
scalable because it can be deployed to the roughly 300,000 signalized intersections more readily 
than the over 300 million vehicles in the United States, and accrues early-stage benefits equitable 
to all roadway users addressing safety, equity, fuel efficiency, and greenhouse gas reduction.  

INTRODUCTION 

Vehicle automation promises significant societal benefits, but the pace of adoption is hindered by 
a lack of robust vehicle-to-infrastructure connectivity. SAE International recognizes that a single 
vehicle cannot achieve full perception of its surroundings in complex roadway environments and 
stresses the importance of cooperative driving automation (CDA) to “enable mobility 
applications that are not achievable by individual automated driving system-operated vehicles 
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operating independently of each other.” Further, SAE explains that “sharing information can be 
used to increase safety, efficiency, and reliability of the transportation system, and that may 
serve to accelerate the deployment of driving automation in on-road motor vehicles” (SAE 
2020). This acceleration of vehicle automation is critical to decarbonization, as automated 
vehicles are widely thought to offer the greatest potential for electrifying the transportation 
system. Automated vehicles, and more generally automated mobility, also play a pivotal role in 
providing a more equitable transportation system, offering a high-quality alternative to the 
vehicle ownership model for lower-income workers and people who cannot drive, and by filling 
in the gaps in the nation’s transit system.  

Infrastructure-based cooperative perception significantly advances the state of CDA by 
developing and deploying a computational engine, and then employing that engine to enhance 
the performance of connected and automated vehicles (CAVs) and enabling the next generation 
of traffic control that equitably provides benefits to all modes and road users. Having a robust 
infrastructure participant is a critical and necessary component for successful CDA applications, 
and a critical gap in current research and development. The competitive commercial automated 
vehicle market has necessitated closely guarded corporate intellectual property, leaving little 
fundamental research of spatial perception in the public realm. Recognizing the need for robust 
infrastructure involvement, the U.S. Department of Transportation initiated Cooperative 
Automation Research Mobility Applications (CARMA) Streets as part of its CARMA research 
and development program; however, successfully implementing key CDA applications (such as 
eco-approach/departure, signalized optimization, and vulnerable road user protection) requires 
robust, low-latency sensor fusion with high-fidelity, quantified accuracy computations and 
communications from an infrastructure-based cooperative perception computational engine. The 
National Renewable Energy Laboratory’s cooperative perception project fills this gap.  

This initiative combines sensor fusion and high-performance computing to create an 
open-source, referential cooperative perception engine that can be utilized through the CARMA 
Streets framework. Even though the CARMA Streets framework anticipated an active 
collaborative infrastructure element (such as a traffic controller communicating signal phase and 
timing), a full infrastructure-based cooperative perception computational engine embeds the 
highest-quality common digital representation shared with all roadway participants, including 
pedestrians, micromobility, and transit users, extending the benefits of advanced technology to 
the most vulnerable road users. The ability to equitably address the needs of underrepresented 
modes and road users is a second critical gap addressed by infrastructure-based cooperative 
perception. In collaboration with CARMA and other industry and jurisdictional partners, the 
National Renewable Energy Laboratory has developed a concept of operations for the 
cooperative perception initiative as outlined in this publication—an architecture that can support 
multiple real-world applications. 

This paper lays out the architecture and elements of next-generation intelligent roadway 
infrastructure, the necessary physical elements, and the logical functional block diagrams, and it 
also begins to address critical data and communications issues. Our objective is not only to 
document this system-level architecture for ongoing research and development efforts, but also 
to share it broadly within the CDA and traffic engineering circles as a proposed systems model 
with standardized open interface protocols for next-generation traffic control that is extensible to 
many other applications. The paper is organized as follows: 

• Literature review as it relates to infrastructure intelligence and the need and methods for 
creating a full state-space perception model of all agents in a roadway domain 
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• Overarching system functional architecture of inputs, analysis, and outputs to enable 
applications 

• Data interface specifications to provide standards-based application development 
• Other considerations with respect to resilient, fail-safe, cybersecure, and equitable 

intelligent roadway infrastructure architecture. 
 

LITERATURE REVIEW 

The literature review covers two perspectives: (1) the motivation and evidence for the need for 
an infrastructure-based cooperative perception engine, both from the perspective of the CDA 
initiative and to enable a host of other infrastructure-centric applications; and (2) supporting 
methods and tools for enabling the cooperative perception engine. 

The Role of Infrastructure-Based Cooperative Perception 

From a safety perspective, intersections (and specifically signalized intersections) are 
disproportionally represented spatially in traffic statistics. Based on 2009 traffic safety data, of 
all crashes, 40% occur at intersections, and 21% are at signalized intersections. For fatal and 
injury crashes, intersections are even more disproportionally represented, with 46% occurring at 
intersections, and 24% specifically at signalized intersections (FHWA 2014). 

Transportation safety has been extensively studied with respect to societal economic 
impacts by transportation agencies and policy officials. The embodied energy impact of 
transportation safety is also studied by developing an energy equivalence of safety framework 
(Zhong 2020; Zhu 2019) to provide a holistic view of the long-term energy and fuel 
consequences of motor vehicle crashes, incorporating both induced congestion and impacts from 
lost human productivity resulting from injury and fatal accidents, and the energy content 
resulting from all consequences and activities from a crash. The method utilizes a ratio of gross 
domestic product to national energy consumed in a framework that bridges the gap between 
safety and energy, leveraging extensive studies of the economic impact of motor vehicle crashes. 
The energy costs per fatal, injury, and property-damage-only crashes in 2017 were found to be 
approximately 200,000, 4,400, and 440 gasoline gallons equivalent, respectively, which are 
significantly greater than impacts from induced congestion alone. (Zhong 2020) This indicates 
the energy improvement potential of safety-oriented, infrastructure-based cooperative perception 
technologies.  

A 2020 workshop on infrastructure spatial sensing at intersections hosted by the 
Transportation Research Board invited speakers to present their work covering various aspects of 
infrastructure-based sensing (e.g., safety, efficiency, automation). Infrastructure-based spatial 
sensing and perception technology encompasses the deployment of advanced spatial sensors that 
can detect and track all objects in a field of view—for example, mounting light detection and 
ranging (LiDAR) sensors, radar, and video imaging at an intersection and fusing the data to 
produce a 3D dynamic operational awareness. The workshop touched on the wide range of 
possible benefits from infrastructure-based spatial sensing (Zhu 2020). Topics included 
intersection collision avoidance resulting from dilemma zone monitoring, traffic and pedestrian 
applications from LiDAR deployment at intersections, estimating the energy benefits of crash 
avoidance, deconflicting roadway intersections for automated vehicle “interlocking,” 
advancements in video detection for traffic applications at intersections, and leveraging sensor-
based detection for signal operations in Colorado Springs, Colorado.  
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Although vehicle automation promises significant potential for societal benefits, vehicle 
perception is limited largely due to small fields of view, occlusion, and low measurement 
density. However, Arnold et al. (2020) proposes that multimodal sensing in place of sensing 
isolated to a single point of view can cost-effectively address these issues. One such manner of 
creating this multimodal perception is through placing sensors on existing infrastructure. In 
2019, Seebacher et al. demonstrated the preliminary benefits of using infrastructure perception to 
augment autonomous vehicle perception in Austrian motorways. They found the best results for 
high velocity and low traffic volume on the highways, indicating the need for further 
development of sensor fusion techniques for high traffic density areas like intersections. 

Methods and Tools 

With increases in the sophistication of sensors and the trend for sensor vendors to preprocess the 
raw sensor data and return object detection information, the cooperative perception engine will 
focus on two primary steps: associating objects detected by the sensors with new or previously 
tracked objects and fusing the sensor outputs for a maximal accuracy state estimation. 

The object association step is an example of a data association problem. Data association 
can be tackled in many ways. Algorithms like k-means cluster data points into groups of similar 
points that are associated with a tracked object, whereas other algorithms like the nearest 
neighbor method compute distances in state-space and use this distance to determine which 
tracked object the data point is closest to, or if the data point is far enough away to be a new 
object. More sophisticated data association algorithms like the nearest neighbor standard filter 
use a Bayesian formalism to compare the proximity of the probability density functions (PDF) of 
the predicted object location from the state-space motion model and the PDF of the observed 
location from sensors. More sophisticated methods like the probabilistic data association filter 
(Bar-Shalom 1975) and joint probabilistic data association filter enable detailed handling of the 
underlying uncertainties in the state-space framework. All these techniques are already being 
successfully applied to the traffic context (Yuan 2015; Yuan 2017). 

Once sensor observations are attributed to existing or new objects, state estimation via 
Bayesian filtering processes allows for probabilistic merging of the predicted state PDF and the 
noisy sensor observations. These processes require a state-space model structure, which consists 
of two stochastic models: the motion model and the measurement model. The measurement 
model relates the measurement from a sensor and to the object state-space, whereas the motion 
model is used to model the physical movement of an object in the intersection from one time step 
to a future time step. Importantly, both models are stochastic and depend on random variables 
corresponding to the sensor measurement error and dynamics model error, respectively. 
Depending on the nature of the two models, various Bayesian filters are applicable: 

• Kalman filter: Requires linear motion and observation models with additive Gaussian 
errors (Peng et al. 2009) 

• Extended Kalman filter: Can handle minor nonlinearities in either or both models by 
linearizing the models about the current estimate; assumes additive Gaussian errors 
(Wang 2007) 

• Sampling-based filters (unscented Kalman filter, particle filter): Uses sparse sampling or 
Monte Carlo sampling methods to represent the state-space PDF; allows these filters to 
handle strong nonlinearities with non-Gaussian errors and sparse data, but they are much 
more computationally expensive (Li 2003). 
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Two simulation environments, the Car Learning to Act (CARLA) vehicle simulator 
(Dosovitskiy 2017) and the Simulation of Urban MObility (SUMO) (Lopez 2018), are leveraged 
to test out different motion models and their corresponding filtering algorithms to determine the 
highest-accuracy digital representations of an intersection. 

Architectures to provide fusion of sensor data from infrastructure and vehicle sensors 
have been described (Gabb 2019) using similar methods, but are primarily inspired by 
augmenting vehicle-based sensors for automated vehicle (AV) and connected vehicle (CV) 
applications somewhat exclusively, as opposed to the creation of an independent infrastructure 
agent as an authoritative publisher of the state-space within its geo-spatial domain, and targeted 
toward serving infrastructure-based applications, and augmenting AV and CV as secondary.  

FUNCTIONAL SYSTEM ARCHITECTURE 

The cooperative perception engine will leverage available data from both infrastructure-based 
sensors (such as LiDAR, radar, and video processing) and cooperatively shared information such 
as from CAVs and connected vehicle data sources. Although advanced signal control, eco-
approach and departure, and enhanced safety are natural applications of the highly accurate state-
space model, the vision is for the cooperative perception engine to support a wide variety and 
growing number of applications in the roadway infrastructure and smart city space. Imagined 
applications include safety-affirmative signaling, a needed function for safe passage of 
automated vehicle fleets for public mobility. Also, the complete digital state-space representation 
would provide needed input for both curb management and the volume and state of charge of 
electric vehicles to use as inputs in grid and building energy integration (not shown in Figure 1). 

 
Figure 1. Conceptual function of the cooperative perception engine. 

The central image in Figure 1 represents the fusion engine taking in data from available 
sources and creating the highest-accuracy digital representation of the physical space and all 
moving objects. The functional building blocks of the fusion engine are further illustrated in 
Figure 2. Data from each of the information sources or sensors arrive at the fusion engine for 
preprocessing, in which each data source is assigned a sensor model based on type. For example, 
radar has good depth (radial) accuracy, but typically less accurate angular precision. LiDAR 
provides points clouds with good spatial precision, but poor object identification capability. 
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Video image processing provides stronger object identification (e.g., vehicle, pedestrian, bicycle, 
heavy truck) but less precise spatial attributes. Similarly, a connected vehicle and its data have 
unique characteristics that are captured in a sensor model that allows the fusion engine to 
properly weight the data from each source. Preprocessing also typically transforms all sensor 
data into a common coordinate system and handles any time synchronization that may need to be 
accounted for. 

With data in a common format and their fundamental accuracy characteristics 
understood, they are fed forward into the first stage of data fusion—data association (i.e., 
associating data from different sensors that represent common moving objects). This is informed 
by the previous state-space solution, in that the algorithm will anticipate data from sensors for 
any moving objects already in the domain of interest (sometimes referred to as the field of view 
for single-sensor applications). New objects at the periphery of the domain may be detected for 
the first time (and corresponding sensor data grouped), and existing objects moving out of the 
domain may not have any new associated sensor data assigned. 

With sensor data grouped by object, this information is fed forward into the dynamic 
model processing for each object. In this step, the new data for each object are combined with 
the previous state-space solution from a previous time step, to optimally estimate both the 
location (latitude and longitude) and velocity of each object. In addition to this state-space vector 
solution, each object is assigned confidence (or correspondingly the estimated error) in each 
dimension of the state-space solution. This also includes identification of the object (e.g., 
vehicle, pedestrian, public transit bus). Note the information concerning the confidence of each 
parameter in the state-space solution is as critical for advanced applications as is the estimate of 
the state-space parameter itself. Without the corresponding confidence measures (inversely the 
estimation of error in the parameter), the quality of the state-space solution would be unknown. 

 
Figure 2. Functional flow of the data fusion engine of the infrastructure-based cooperative 

perception engine. 
The digital state-space model is transmitted as output from the cooperative perception  

engine to downstream applications or other CDA agents. Achieving a verified accurate state-
space model is key to enabling new applications. Without verified accuracy, applications would 
be limited to “convenience” or “opportunistic” functions—i.e., functions that would not have 
adverse impacts on the system (particularly safety) if the input information were incorrect. 
Current traffic control practice is of this nature. If a presence detector (such as a loop detector) 
fails, traffic control may be inefficient, but it does not result in a potential safety hazard. An 
example of a safety-critical application requiring verifiable state-space accuracy is early 
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termination of pedestrian crossing phase. Currently, pedestrian crossing clearance times—and 
thus minimum duration of the pedestrian crossing signal for traffic lights—are based on walking 
speeds of the slowest pedestrians, perhaps elderly or handicapped. If a signal controller senses 
that the pedestrian crossed much faster, the control decision to end the pedestrian signal early is 
safety-critical. If the information related to pedestrian clearance was in error, and the controller 
shortened the pedestrian crossing signal, it would create a hazard to the pedestrian, and potential 
liability to the traffic control authority should the hazard result in a crash. The following 
applications describe the criticality and specifications of the digital state-space model for a 
variety of applications, the advanced control that could be enabled, and the associated benefits. 

Signal Optimization 

Currently, other than within some central business districts, most traffic signals operate with the 
use of some form of detection that is used to actuate the traffic signal by registering the presence 
of demand for specific movements and determining when to terminate the green for movements 
currently being served. The information used to drive actuation consists of binary (“on/off”) 
occupancy states of detection zones. Typical zones are 40 to 60 ft in length, residing near the 
stop line, or shorter length detectors placed upstream. This offers a very limited picture of the 
overall traffic situation, as illustrated in Figure 3. In this example, three different vehicles pass 
through a section of roadway, but a long detection zone only reports a single period of vehicle 
presence in the zone, so the signal system has no way of knowing how many vehicles were 
actually present or what they were doing. Signal control methods have had to operate within 
these constraints for nearly 100 years. Although innovations have made the most of the data, 
entirely new modes of operation could potentially be enabled by the introduction of positions and 
speeds of vehicles and other roadway users. 

 
Figure 3. Information from existing detectors compared with vehicle trajectories. 

For example, the actuation process for terminating green tries to determine when the flow 
rate drops below a certain level as a trigger for ending green. This indicates that standing queues 
have most likely cleared. However, the occupancy state of a 40- to 60-ft zone does not permit the 
measurement of flow rates, so the gap between vehicles is measured instead; whenever one 
vehicle leaves the detector, a “passage time” must expire. If no other vehicle arrives before the 
passage time elapses, then the green will be terminated. If the actual positions between vehicles 
could be recorded, the green could be terminated immediately after the last vehicle before the 
gap passes the point where it is unlikely to stop if the signal turns yellow, saving several seconds 
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per cycle. Small inefficiencies like this can have enormous cumulative improvement potentials in 
a device that operates continuously. 

Eco-Approach and Departure 

In addition to adjusting signal operation to better respond to traffic, the same stream of 
information can be used to adjust traffic to better respond to the signal control. Essentially, if a 
vehicle application knows when a downstream red signal is likely to turn green, the application 
can advise the driver to proceed at a certain speed that would allow it to arrive at the signal when 
it is green, rather than stopping on red, which would save energy and reduce emissions by 
avoiding unnecessary deceleration and acceleration. This is one use of signal phase and timing 
messages broadcast by roadside units in a connected vehicle ecosystem. However, these data do 
not convey the presence of queues at the intersection, and unless there are connected vehicles in 
the queue, the signal is unlikely to know the length of a queue (existing detection cannot 
generally identify the queue length in real time). Improved intersection perception would bridge 
this information gap by allowing the direct measurement of queue lengths. 

Safety-Affirmative Traffic Signaling 

Early demonstrations of automated mobility solutions revealed excessive hazard exposure at 
intersections. Some early AV technology pilots expressly deployed proprietary sensing 
equipment at key intersections, while most either avoided complex intersections, particularly 
those with left hand turns that present a significant safety hazard, or required manual control 
through the intersection. These concerns led to safety-affirmative signaling control concepts 
required of next generation advanced traffic signaling along with the organizational framework 
of an appropriate authority having jurisdiction to assess and mitigate hazards. Such an approach 
will efficiently allow for multiple fleets of AVs to provide public mobility services, operating 
within an “automated mobility district” (Lott 2021a). The next generation of advanced traffic 
control will take on the role of safety management arbiter of AV moments through a complex 
roadway intersection, as has been done in communication-based train control providing 
guideway junction “interlocking” for the last 50 years in automated guideway transit systems 
(Lott 2021b), with each vehicle given permission to proceed through the intersection only when 
a safe travel path is ensured. 

Without safety-affirmative signaling, AVs approaching complex roadway intersections 
may reduce speed, creating a safety hazard for other human-operated vehicles desiring to travel 
at higher speeds. Speed volatility resulting from human-operated vehicles as they maneuver 
around the slow-moving AVs will increase the risk of crashes and degrade safety for other more 
vulnerable roadway users. As such, a fundamental objective of safety affirmative signalizing will 
be to increase the operating speeds of AVs to match the general traffic flow conditions. 
Furthermore, the cooperative perception combined with CDA intent sharing messages will 
enhance the accuracy of the cooperative perception model’s forecast of future traffic state. 
Prescriptive CDA messages may then be used to expressly guide an AV’s trajectory through 
complex roadway intersections, with each individual AV receiving instructions on adjustments to 
its operating speed (higher or lower) as well as lane changes to more safely de-conflict its path 
from other objects. 
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DATA INTERFACE STANDARDIZATION FOR INFRASTRUCTURE APPLICATIONS 

Operationally, the cooperative perception stack for infrastructure differs structurally from data 
fusion architectures for vehicles in that the solution to the state space, the “digital twin” is shared 
outwardly to enable applications beyond its domain. As such, any uncertainties, and confidence 
in the state-space solution must be clearly communicated such that downstream applications 
rightfully apply the information, knowing the error bounds and confidence in the digital twin.  

Input data from sensors also require standardized data interfaces to create a 
nonproprietary processing chain from input to output. This is illustrated in Figure 1 above, 
emphasizing the need for standards-based interface design. 

Standard input application programming interfaces (API) between any physical sensor 
and the cooperative perception engine will allow not only for competitive multivendor 
procurement, but also enable a stable referential open-source track data fusion engine, rather than 
having to develop custom input/output for every vendor and model of sensor. This architecture 
assumes that each sensor will perform initial processing of raw data to object lists, and then 
convey object list and associated attributes to the cooperative perception engine. In addition to 
the identification of objects, probabilistic measures that track certainty and precision are also 
highly desirable to seed the cooperative perception track fusion engine with appropriate 
parameter weighting, though such information is not absolutely mandatory as such information 
can be derived over time with calibration. Certainty and precision information from existing 
vendor sensor APIs is typically absent.  

At the output of the cooperative perception is a 3D representation of the intersection 
domain containing the location and trajectory of every object in the field of view. The 
fundamental output can be envisioned as a fused object list conveyed in a 3D coordinate 
reference system. It is essential that this representation convey probability measures of accuracy 
and certainty, as well as health and calibration information of all input sensors. However, few 
downstream applications will require this full digital twin output in its most granular, and data-
intensive state. For example, traffic controllers will require knowledge of vehicle queues, 
positions, and trajectories, at time sequences much less frequent than the native digital twin 
output. In lieu of communicating object lists expressed in a referential 3D coordinate system, the 
state of the roadway and its vehicles need to be associated with approaches and lanes. A traffic 
controller will also need assurance of the accuracy of the overall digital twin, but not at the level 
of individual vehicle error characteristics. Similarly, other applications may require only a subset 
of the full digital twin, and at frequencies and spatial granularities significantly less than the 
native digital twin output. As such, multiple standard digital interfaces that provide required data 
to various application genres are needed both to prompt independent application development (so 
developers of each application need not recreate that entire cooperative perception software stack 
and associated APIs), and to manage communication channels and bandwidth appropriately. 

The intent of the standardization is not to limit innovation or competition, but rather the 
opposite. The diagram in Figure 1 calls out an open-source referential track fusion algorithm. 
However, a commercial algorithm that provides track fusion from standardized input to 
standardized output—perhaps with added fidelity, performance, or functionality—may be used. 
Similarly, sensor performance in terms of greater accuracy, range, or granularity are 
accommodated, with the improved specifications communicated as part of the API standard, and 
subsequent improvements in the resulting digital twin.  
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DISCUSSION AND CONCLUSION 

The system architecture for next-generation traffic control utilizing infrastructure-based 
cooperative perception presented in this paper presents a feasible evolution to incorporate 
trajectory-aware sensing into intelligent roadway infrastructure, and in so doing, the 
infrastructure becomes an active and vital agent in CDA. This is critical from a number of 
vantage points. The sensor limitations from any one platform, or any one physical location (be it 
a vehicle or mounting position on roadside furniture), is incapable of providing all the spatial 
data necessary for safety management and roadway navigation in a robust way. By fusing 
together individual sensor, and incorporating CAV data as available, from multiple vantage 
points, the resulting digital state-space model not only becomes more accurate but also provides 
the capability to discern and measure the accuracy of the composite picture, enabling safety-
critical applications and providing protection against single points of failure, cybersecurity risks, 
and bad actors in the system. Furthermore, this approach allows for nearer term benefits in an 
equitable fashion at the 300,000+ signalized roadway intersections in contrast to the nearly 300 
million U.S. vehicle fleet. Signalized intersections are disproportionally represented with respect 
to crashes and excessive energy use in the United States. Also, the benefits that accrue from 
infrastructure-based perception, and subsequent control applications are more extensible to all 
roadway users than a vehicle centric CAV-only deployment.  

In summary, this intelligent roadway infrastructure, with emphasis on an authoritative 
infrastructure-based cooperative perception computational engine (as opposed to vehicle-based), 
complements other efforts by providing a digital state-space representation of all objects in the 
roadway domain to a measurable degree of accuracy. This intelligent roadway infrastructure 
framework is also an active cooperative driving automation (CDA) agent, and is targeted as a 
referential open-source platform within the CARMA Streets model hosted by the Federal 
Highway Administration. The intelligent roadway infrastructure cooperative perception fusion 
engine utilizes both advanced infrastructure-based sensing and available CAV information to 
provide a complete state-space digital representation to support a wide range of applications, 
including advanced traffic signal control and other cooperative applications that address safety, 
equity, fuel efficiency, and greenhouse gas emissions reduction. This framework allows multiple 
application developers to innovate without the need to redevelop a cooperative perception 
software stack, and to do so based on measurable confidence in the digital twin data 
representation of the intersection. The next generation of traffic signal control will not only need 
to coordinate right-of-way (red, yellow, green signaling), but also be the safety management 
arbiter of moments in a multimodal environment that includes vulnerable road users (pedestrians 
and micromobility) along with AVs and traditional vehicles. The intelligent roadway 
infrastructure cooperative perception approach more equitably distributes advanced technology 
benefits to all road users, and not just those with capacity to own an operative advanced 
technology vehicle.  
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