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1 Introduction 
To improve energy efficiency and electricity utilization of transportation, early-stage research 
and development must be pursued at the vehicle platform, traveler, and system levels. Significant 
changes in the mobility and electrification landscape are underway as a result of the advent of 
vehicle and infrastructure connectivity, autonomous driving, and rapid passenger- and freight-
vehicle electrification. Meanwhile, new business models, such as first-and last-mile delivery, 
electric charging, multimodal freight, and mobility as a service, could transform the mobility 
landscape. These changes necessitate data infrastructure investments (e.g., secure-streaming data 
platforms driven by ubiquitous sensing and video analytics) as well as investments in critical 
capabilities for large-scale automated analysis and organization using modern machine learning, 
statistics, and artificial intelligence. Other chief needs include agile, large-scale storage that can 
be quickly searched and queried for relevant data to support validation and model development, 
data-sharing agreements, and formatting standards for key data types. 

Data science, artificial intelligence, and advanced computing will play an increasingly important 
role in enabling energy-focused transportation science researchers to understand and identify the 
most important drivers and levers to improve the energy productivity of future integrated 
mobility systems. In this report, we outline and summarize energy-focused research needs and 
opportunities which depend on each of these three emerging and evolving computational 
technologies with a focus on accelerating and improving research via methods that rely on high-
fidelity representations of reality. 

Data Science includes the acquisition and management of large streaming and batch datasets and 
the development and application of advanced analysis and visualization workflows.  Large, 
detailed telemetry data sets and complex streaming real-time data from vehicles and 
infrastructure and proliferation of advanced sensors are driving opportunities in computer vision, 
visualization, data fusion, and the application of different forms of artificial intelligence. 

Artificial Intelligence includes advances in deep learning for supervised and unsupervised tasks 
as well as advances in reinforcement and other learning for rapid decision making. In 
conjunction with advanced computing, deep learning leverages data to learn things like traffic 
volume, speed and energy use across regions and the nation. Additional applications include 
understanding the performance of infrastructure like traffic signals. Deep reinforcement learning 
(DRL) combines the power of deep learning with reinforcement learning (RL) to create a 
computational framework that can solve previously unsolvable sequential-decision problems like 
optimal fleet routing and traffic signal timing.  

Advanced Computing includes the utilization of accelerated computing (e.g. GPUs) and hybrid 
use of high-performance computing, cloud and edge computing.  Emerging workflows include 
deep neural networks that are trained on high performance computers with data from the cloud 
and deployed on edge devices.  Digital twins and simulations of the real world allow the training 
of artificial intelligence and the exploration of optimal actions during extreme events and other 
scenarios where real-world consequences need to be avoided or deployments don’t yet exist. 
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2 Research Needs 
The strategic application of advanced computing, data sciences, and artificial intelligence can 
help accelerate progress toward a vision of an affordable, efficient, safe, and accessible 
transportation future coupled to electricity in which mobility is decoupled from emission 
generation and energy consumption. In this section, we describe nine categories of research that 
are driving a major increase in the use of advanced computing, data science and artificial 
intelligence that could potentially advance energy-focused transportation science. The research 
needs and opportunities are summarized in Table 1 at the end of the report (page 17) and include 
the following: 

1. Utilizing large, detailed telemetry data sets for activity-based demand modeling  
2. Streaming real-time, high-fidelity data for optimal route planning  
3. Computer vision for mobility data collection 
4. Data science techniques for modeling, fusion, and prediction 
5. Artificial intelligence techniques for automated, real-time decision making 
6. Simulation and modeling to provide unprecedented insight into potential futures 
7. Simulation techniques to take full advantage of artificial intelligence 
8. Scalable/distributed optimization and control  
9. Symbiotic autonomous systems 

2.1 Using Large, Detailed Telemetry Data Sets for Activity-Based 
Demand Modeling 

Understanding emerging mobility trends in passenger travel and freight mobility requires 
identifying and exploiting the interconnectivity of automation, electrification, and vehicle 
connectivity. Advancements made using agent-based models for activity-based demand 
modeling help answer questions about how a road-user charge might impact travel decisions of 
individuals from varying socioeconomic backgrounds or whether flexible work schedules would 
impact the activity-travel patterns of individuals. However, even the most advanced agent-based 
models rely on traditional travel survey data (e.g., travel diary data), which is expensive and 
burdensome to collect. Hence, traditional travel surveys are done infrequently and often solicit 
responses from a small sample of the population. 

Accessing location history and telemetry data from personal and corporate devices can address 
these shortcomings and provide a high-resolution, low-cost source of travel information. Despite 
some challenges concerning fusion of traditional, nontraditional, and multidomain data sets, 
high-resolution, high-quality data have the potential to enhance the capabilities of state-of-the-art 
activity-based models. Recent studies have used location-history data coupled with advanced 
machine-learning models to develop several components of travel demand, such as activity start 
time and duration, destination location for the activity, preferred travel mode choice, and activity 
sequencing (Vij and Shankari, 2015; Sadeghvaziri et al., 2016; Ruktanonchai et al., 2018; Zong 
et al., 2019). Advanced mathematical/computing challenges for demand modeling include the 
development of unified frameworks that can be applied to a wider range of shared and 
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multimodal scenarios and addressing a modeling boundary, including the spatial and temporal 
extent. In addition, improved computational infrastructure and expertise could potentially enable 
the agile processing of very large data sets, including the application of different computational 
and mathematical frameworks associated with data science activities. 

2.2 Streaming Real-Time, High-Fidelity Data for Optimal 
Route Planning 

The proliferation of vehicles with onboard sensors and data storage/transmission capabilities is 
contributing to massive surge in data pertaining to people, and vehicle movements. Companies 
are using streaming data to reduce fuel costs, improve customer service, and increase operational 
efficiency. Data collected through vehicle-to-vehicle and vehicle-to-infrastructure 
communication can save time and energy via coordinated signal timing and real-time traffic 
optimization.  

Optimal route planning is essential for providing reliable service with strict timing constraints as 
well as for minimizing operating costs, energy consumption, and battery storage requirements. 
When road conditions and passenger load change in real time, route planning has to be done in a 
real-time fashion to adapt the route to changing conditions. Optimally managing fleets of 
autonomous and electric vehicles is particularly challenging and requires a cross-disciplinary 
effort that spans the broad areas of transportation system modeling, power systems modeling, 
optimization, and data analytics.  

 
Figure 1. Display of live-feed TomTom relative speed profiles of Chattanooga, Tennessee, region 

with traffic congestion (left) and dispersion of congestion (right) 

Critical research needs include the development of computationally efficient and distributed 
algorithms that can dispatch routes, charging commands, and service commands in real time, 
which is challenging given the large-scale nature of the models as well as the nonconvexity of 
the associated optimization problems. In addition, innovative online learning methods are 
required to process high volumes of data in real time, deal with missing measurements, and 
reliably predict both traffic conditions and power-system states. Figure 1 shows an example 
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traffic speed from TomTom (based on floating car or probe vehicle data) that is updated in real-
time. While this data has intrinsic value in itself, process such real time data streams to predict 
impending traffic volume can greatly amplify the utility of such data streams.  

2.3 Computer Vision for Mobility Data Collection 
Cameras can be widely deployed for data collections as they are fairly low in cost. By leveraging 
state-of-the-art deep-learning, and computer-vision technologies, massive amounts of mobility 
data can be extracted from videos and images. For example, computer vision can help cities and 
transportation agencies collect infrastructure inventory data (e.g., parking space), monitor 
curbside activities (e.g., transportation network company pickup/drop-off, truck 
loading/unloading), perform traffic counts at intersections (e.g., vehicle, pedestrian, and bike 
counts), and determine vehicle composition (e.g., electric vehicle share, powertrain composition) 
and vehicle occupancy (e.g., in-vehicle passenger detection). These data support not only daily 
operation and long-term planning activities but also real-time decision-making. Most of 
computer-vision algorithms are computationally intensive. The U.S. Department of Energy’s 
high-performance computers and graphics processing unit, or GPU, clusters enable computer-
vision application at large scale and with less time latency. 

Several state-of-art computer-vision models, including single-shot detection (SSD), region-based 
convolutional neural networks (R-CNN), faster R-CNN, and you-only-look-once (YOLO), have 
been successfully used in areas such as autonomous driving, image recognition, and satellite 
image analysis. Research is needed to customize existing computer-vision techniques for 
mobility applications. For each new application, computer-vision models need to be retrained, 
which often requires an extensive set of labeled images. Hyperparameter tuning, which is the 
most critical step in model training, demands significant computational resources. 

Computer vision holds the promise for achieving the ultimate vision of “cars that don’t crash.” 
Achieving this vision requires redundancy and perfect accuracy for safety-critical applications 
(e.g., an instrumented intersection that can detect a potential crash scenario and turn all the lights 
to red). Advances are also needed in the fusion of multimodal data (e.g., cameras, lidar, and 
radar), 3D dynamic predictions (e.g., velocity), increased computational speed, and acceleration 
of methods development using data generated through simulation. 

2.4 Data Science Techniques for Modeling, Fusion, and Prediction 
Developing and calibrating new agent-based models for cities or other geographical regions is 
currently challenging and time-consuming. Fusing traditional data sources with emerging data 
streams would both automate and significantly accelerate the development of high-fidelity 
models. Also, computational treatment of agents would need to be enhanced to account for 
behaviors associated with socioeconomic, and demographic attributes such as income, disability, 
education, and gender. In addition, our focus must evolve to include a more explicit accounting 
of passengers and freight/packages as well as security and resilience to identify ways to 
adaptively deal with technological convergence, surprises, and disruptions and to identify 
emergent properties. Future travel models need to be agile in capturing operations of existing 
modes and incorporating new modes as needed. The emergence of automation operational design 
domains (Czarnecki, 2018) will result in travel pattern shifts. And the earliest shifts will likely 
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involve the interstate highway system as vehicle travel increasingly challenges short-hop airlines, 
shifting more passenger miles to intercity interstate routes.  

2.5 Artificial Intelligence Techniques for Automated, Real-Time 
Decision-Making 

Internet of Things Data in Mobility 
Within mobility, the Internet of Things is being realized, with vehicles serving as sensors. 
Crowd-sourced traffic data have already transformed traffic reporting. Over the last decade, 
“eyes in the sky” traffic reporting has been displaced by probe traffic data intelligence in which a 
small fraction of vehicles with either telematics or connected smartphone apps provide enough 
data to infer traffic flow at most locations. These low-penetration sampled data are being 
replaced by original equipment manufacturer-supported direct Internet of Things data feeds from 
vehicle fleets. Such data are already available from approximately 10% of vehicles, reporting 
position, speed, and other parameters at 3-second intervals. And the data are expected to get 
denser and faster, and to approach real-time reporting of all vehicles on all roadways. These 
expected trends represent a real-time large-data problem that will need to be addressed to 
monitor roadway conditions, optimize signal timing (adaptively), and reap the benefits of 
reduced delay and increased efficiency and safety. 

The same spatial-sensing technologies that will eventually enable self-driving vehicles (e.g., 
lidar, video processing, and radar technologies) are driving a transformation in spatial 
intelligence. When applied to roadway infrastructure, sensors can provide dependable and 
redundant systems to deconflict intersections (preventing collisions and enabling safe, automated 
transit concepts), monitor pickup and drop-off zones to enable enforcement of curbside policy, 
and monitor areas (pedestrian crossings) for safe operations. For this to happen, data from 
sensors need to be filtered, fused, and operated upon and then processed, optimized, and reduced 
to edge-computing devices so that large-bandwidth sensor data do not have to be transmitted. 
High-performance computing is needed for the algorithms, AI, and machine learning to enable 
these processes.  

Mobility Sensor Health and Data Anomaly Detection 
Traffic sensors—including radar, infrared, Bluetooth, and cameras on the roadway systems—
benefit traffic operation, planning, and decision-making. However, these traffic sensors need to 
be well maintained to serve accurately collection data. Lack of proper maintenance and severe 
weather conditions lead to unreliable traffic data that can potentially mislead decision makers. 
The large amount of data received daily by servers makes it impossible to manually identify false 
data. The current state of practice on sensor monitoring and data quality management for the 
departments of transportation is to send technicians to the field to check on sensors periodically 
and apply some heuristics to identify anomalies once data is collected. This strategy is costly, 
inefficient, and not accurate. To obtain good-quality traffic data from sensors, machine learning-
based anomaly detection and health prognostic algorithms can serve as a cost-effective 
alternative for traffic sensor prognostic and data anomaly detection.  

Current machine learning based anomaly detection algorithms including both supervised and 
unsupervised learning have been successfully applied to machinery (e.g. oil drilling equipment, 
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construction trucks, and airplane engines) health management. Few researchers explored 
machine learning to detect traffic sensor and data anomalies in transportation field. Significant 
research efforts are needed to customize existing machine learning algorithms to traffic data as 
anomalies in traffic can means two things: 1) extreme high traffic or low traffic due to special 
events, incidents, or road closure, 2) extreme high traffic or low traffic due to senor malfunction. 
The goal is to develop algorithms that differentiates the latter anomalies from the former.  

In the next generation of transportation where connected and automated vehicles (CAVs) will be 
introduced to the road, sensor health and data quality will be of paramount importance since 
sensor malfunction in such scenario can cause severe consequences. Petabytes of data will be 
generated by CAVs in every single hour. Research is also needed to develop computational 
efficient anomaly detection algorithms with minimum time latency by leveraging high 
performance computers and GPU clusters.  

2.6 Simulation and Modeling to Provide Unprecedented Insight into 
Potential Futures 

High-Fidelity Modeling for Dynamic Movement and Behavior 
High-fidelity modeling of integrated transportation networks has strengthened our understanding 
of dynamic movement and behavior patterns, allowing us to project future energy use under 
alternative scenarios as new travel modes enter the mobility scene. Dynamic models with such 
capabilities are just now being developed with fine-grained geospatial (i.e., lat/longs of each trip) 
and temporal (i.e., trip start/end times modeled to the hour/minute) resolution. Such disaggregate 
resolution will help accurately quantify the congestion and energy related outcomes for various 
mobility futures.  Combining these new modeling capabilities with basic urban science could 
enable researchers to explore the mobility/energy impacts of new modes and identify subtle 
interactions between mobility systems, ultimately facilitating the design of optimized mobility 
systems that are more sustainable and economically productive. 

Tools for Cities 
The current U.S. Department of Energy’s Energy Efficiency and Mobility Systems (EEMS) 
program efforts focus on developing tools and computational capabilities primarily for 
researchers, but providing accessible tools to U.S. cities could deliver greater societal impact. 
Such tools could enable rapid impact assessments of emerging transportation options through 
visualization of scenarios, such as by identifying the impacts of new mobility options (e.g., 
connectivity, automation, and electrification) and business models (e.g., ride sharing) to improve 
efficiency, maximize mobility energy productivity, reduce congestion, decrease consumer costs, 
lower environmental impacts, and provide more inclusive and equitable transportation solutions.  

Optimal Resource Allocation and Infrastructure Investments 
The outcomes of real-world mobility experiments (for example, Innisfil town in Canada replaced 
public transit with Uber [Cecco 2019]) could be analyzed and modeled, and lessons learned from 
successes and failures could be applied to future analyses. Informing optimal resource allocation 
and infrastructure investment requires decision-making tools that model the mobility of 
passengers and freight in real time, for representative rural and metropolitan areas in the United 
States, over current and potential future road, and infrastructure networks. 



7 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

2.7 Simulation Techniques to Take Full Advantage of Artificial 
Intelligence 

Simulation-Trained Deep Reinforcement Learning 
Deep reinforcement learning (DRL) combines the power of deep learning with reinforcement 
learning (RL) to create a computational framework that can solve previously unsolvable 
sequential-decision problems. Google’s AlphaGo Zero is one example of DRL. In this paradigm, 
the policies trained to solve the problem are learned without human-generated data sets or expert 
players. Instead, a simulation of the game or reality is constructed and the DRL algorithm is 
trained by repeatedly experiencing the simulated environment and learning, for a given state of 
the system, which actions lead to the highest expected rewards.  

Research needs include extension to real-world, stochastic environments. Recent success stories 
for DRL have been in the domains of game playing (e.g., chess, Go, and StarCraft) and 
controlled robotics applications (e.g., autonomous vehicles). A basic RL research need for 
energy applications is to extend and apply these algorithms to real-world environments that are 
stochastic and have multiple decision-making agents, complex dynamics, and limited 
observability. 

Additionally, many problems that arise in control and planning optimization are combinatorial in 
nature and thus computationally difficult to solve, which limits the extent to which they can be 
solved in real time or at large scales. As evidenced by a growing body of recent research (Silver 
et al. 2016, 2017), there is a fundamental need to explore the use of RL, in conjunction with 
other ML methods, to solve such problems. 

The application of RL to real-world problems involving vehicle perception and control is at a 
very early stage, and it is unclear which parts of the connected/autonomous vehicle (CAV) 
application space are amenable to RL, from simple path following to communicating and 
cooperatively planning with other vehicles and infrastructure. Research is needed to identify 
relevant observation and action spaces, and reward functions. Efforts are also needed to select 
the distribution of scenarios for training vehicles (e.g., path following, car following, passing, 
merging, and all the ways to more complex multi-vehicle scenarios, eventually encompassing 
traffic-level simulations and more). The correct distribution (including sequence) of scenarios is 
critical to avoid “catastrophic forgetting.” 

Real-Time Control and Digital Twins 
Implementing real-time control at large scale is very challenging. The U.S. Department of 
Energy’s EEMS program is funding the development of “digital twins”—well-characterized, 
data-informed operational models that capture real-time traffic conditions in a given region via 
in-road sensors—for Los Angeles, California, and Chattanooga, Tennessee. These dynamic 
traffic simulations can be used to investigate the causes of traffic congestion and identify 
effective management strategies that city officials can apply. One of the promises of digital twins 
is the ability to learn optimal policies in simulation for operating a system based on real-time 
data. For example, Figure 2 depicts the energy density per meter on the Chattanooga road 
network during different time periods of the day. It can be observed that the energy density 
during off-peaks is much lower than that of the peak periods. Through digital twins it is not only 
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possible to generate such information using historic data but is also possible to generate energy 
density of alternate routing strategies (in real-time) in the event of unplanned network 
disruptions. AI and HPC capabilities would serve as the pillars on which digital twins can be 
mounted for efficient, real-time traffic operations. 

 
Figure 2. Display of energy density (gasoline gallon equivalent) per meter between morning off-

peak (left) and morning peak (right) of Chattanooga, Tennessee, region 

Digital Twins, Airports, and Multimodal Transportation 
Complementary efforts are underway at two of the world’s largest multimodal transportation 
hubs, Dallas-Fort Worth and O’Hare airports, where digital twins of airport passenger and freight 
traffic are under development to support long-term planning efforts. These models simulate the 
impacts of future capacity expansion scenarios and identify options that maximize the value of 
passenger and freight mobility per unit of energy and cost. Figure 3 shows the impact of a simple 
traffic management policy on traffic congestion at DFW using high-fidelity microscopic 
simulation. The simulation is based on an Open Street Map of DFW shown in Figure 3.a. The 
simulation represents a high-volume day in June 2018 at DFW, where an additional 72,000 
additional vehicles travel to/from the airport. Figure 3.b shows the traffic congestion observed at 
DFW without any traffic management intervention. The implemented simple intervention policy 
assumes that vehicles going to DFW are informed of anticipated congestion at their destination 
terminal using a ML-based demand prediction model (Lunacek et al. 2021). These vehicles are 
then advised to go to another terminal or parking lot to drop off their passenger to avoid delays. 
As depicted in Figure 3.c, this simple traffic management policy reduces the overall congestion 
levels observed at DFW. The simulations results demonstrated a 34% reduction in fuel 
consumption and 38% reduction in delay due to this simple intervention policy. The underlying 
analysis frameworks can be readily applied at other regionally integrated transportation hubs 
such as train stations, rapid transit stations, seaports, and truck terminals.  
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Figure 3. Impact of traffic management policy at DFW 

The microsimulation model is based on the Open Street Map of DFW shown in 2a. The high demand period we 
simulated creates a network that experiences congestion during peak traffic periods as shown by red coloring in 2b. 

Applying a simple policy that diverts some of the traffic to other terminals eliminates the heavy congestion as seen in 2c.  

Regional Mobility Optimization 
Modeling an entire mobility system is analogous to vehicle modeling. At the top integrated level, 
each part or subsystem within the vehicle is its own agent, perhaps a mesoscopic model of how a 
subsystem works. Regional mobility models work this way. The time and spatial aggregations 
are chosen both for computational tractability as well as appropriate scientific abstraction for 
realistic results. Although vehicle interactions, such as at a traffic signal, can be modeled second 
to second, such a fine temporal resolution contributes less to the understanding of regional flows 
than a coarser-resolution model that might be based simply on a volume-to-capacity ratio. 

The second-to-second microsimulations might inform behavioral models of vehicles or drivers, 
or they might help optimize a subsystem of a vehicle algorithm; however, second-to-second 
simulations add no meaningful granularity to larger regional traffic flow models compared to 
simpler mesoscopic representations of an intersection. However, a large-scale mesoscopic 
regional model integrated into a high-resolution model (high spatial and/or temporal resolution) 
for a district, intersection, autonomous vehicle mode, or other subcomponent provides the 
opportunity for optimization of the subsystem within the larger context of the overall system. 
This multi-resolution aspect (i.e., embedded microsimulation within a regional-scale model) is 
needed with respect to optimization of modes, infrastructure, and electrification (i.e., charging), 
and to inform design.  
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2.8 Scalable/Distributed Optimization and Control 

Integration with the Electric Grid and Other Infrastructure Systems 
The transportation system of the future will not exist in isolation. Instead, it will be closely 
integrated with behavior and decision-making associated with advanced machines, the grid, 
communications networks, and buildings. A better understanding of the relationships among 
mobility, economic productivity, and quality of life is needed and calls for tight integration and 
quantification of social sciences so that quality of life can be modeled and optimized. Problems 
confronting the development of “Smart Cities,” the “Smart Grid,” and “Smart Transportation” 
are intrinsically coupled and must be solved together. Co-simulation of these interrelated, 
complex systems is required for systems optimization and to fully leverage renewables on the 
grid. Large-scale co-simulation offers opportunities to develop large, reusable, multi-systems 
models leveraging high-performance computing capabilities. Yet developing accurate city-scale 
models exceeds (or at minimum greatly challenges) our current computational capabilities. 
Additionally, algorithms and modeling frameworks are needed that can leverage the results of 
large-scale co-simulations of an ecosystem of interacting systems to enable optimal codesign and 
improvement of that ecosystem moving forward.  

Distributed and online optimization, adaptive control, and machine learning are becoming 
increasingly inadequate in high-dimensional regimes (multiple physical and temporal scales). 
There is a crucial need to advance the foundational science for real-time monitoring, 
optimization, and control of large-scale mobility systems governed by complex physical, 
behavioral, and computational interdependencies at multiple spatiotemporal scales. Cloud and 
edge computing support distributed optimization and control. Efforts in this area could be 
anchored on a rigorous mathematical underpinning that offers a common and powerful analytical 
framework for modeling, computation, communication, optimization, and control. And research 
is into the foundational mathematics of nonlinear controls, optimization theory, big-data 
analytics, and complex system theory could help advance several strategically important domains 
relevant to energy-focused transportation science; these domains share the opportunity to use 
real-time data to observe, control, and optimize high-dimensional energy systems. 

The basic research directions and fundamental scientific underpinnings needed to address such 
challenges include: 

• Data Analytics: develop methods to use real-time vehicle and infrastructure data 
(addressing access and privacy) to enable automated and distributed decision-making 
from machine-learning techniques.  

• Optimization Theory: develop computationally affordable and stable algorithms that 
can be implemented in real time and distributed fashions. 

• Nonlinear Control Theory: develop scalable, decentralized, and distributed controls that 
account for inherently asynchronous operations resulting from communications delays, 
losses, and distributed (asynchronous) control actions.  

• Complex Systems: develop modeling and simulation methods that enable analysis of the 
interdependencies of many high-dimensional, nonlinear, interacting systems (e.g., energy, 
transport, buildings, and communications) at various temporal and spatial scales.  
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Realizing synergistic integration necessitates breakthroughs in the optimization and control of 
highly distributed transportation and vehicle systems. Specific near-term opportunities exist to 
drive the development of this fundamental work and validate the results in relevant real-world 
applications. 

Optimally Managing CAV Fleets 
Optimally managing CAV fleets requires a cross-disciplinary approach spanning transportation 
systems modeling, power systems modeling, building operations modeling, optimization, and 
data analytics.  

Critical research needs include the development of models for CAVs that account for the 
coupling of electric transportation systems and power networks, which comprehensively capture 
quality-of-service requirements for travelers, CAV operators, and utility companies. Given the 
large-scale nature of these models as well as the complexity associated with optimization 
problems, critical research needs also include the development of computationally efficient and 
distributed algorithms that can dispatch routes, charging commands, and service commands in 
real time. 

Research is needed to advance core optimization theory and machine learning-based data-
analytics tools and to develop adaptive optimization and routing algorithms for CAVs that 
account for network conditions, passenger loads, states-of-charge, and other aspects in real time. 
Moreover, to predict both traffic conditions and power-system states, efforts are needed to 
advance online learning theory by developing algorithms to process high volumes of data 
coming from different sources (e.g., vehicle sensor data, power system metering units, and traffic 
system sensors). 

The performance and evaluation of pertinent optimization and learning tools requires significant 
computational power. This is especially true when dealing with realistic scenarios with large 
vehicle fleets and stochastic models for road conditions, passenger loads, and power network 
conditions. Solving machine-learning and optimization problems in real time will require the 
computational power of the national laboratories’ supercomputers. Distributed methods can use 
the distributed computing power of supercomputers to efficiently implement these algorithms 
and enable real-time (and even faster) simulation and evaluation. 

The primary goal of fleet management is to ensure the optimal, resilient, and reliable distributed 
operation of passenger and freight vehicles in a computationally affordable manner. A variety of 
techniques for modeling complex systems could be evaluated to determine the best way to 
capture critical information at multiple spatial and temporal scales. Such modeling could strike a 
balance between accurately representing system physics and couplings and addressing the need 
for computationally affordable optimization tasks. Ultimately, a synergistic framework could be 
developed in which control, optimization, and data analytics were unified under the same 
distributed mathematical formalism. Achieving this will require a significant integration effort, 
where the operating principles of vehicles, buildings, and autonomous energy systems merge 
under a cohesive reference architecture. 
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Optimal Traffic Control 
Current traffic-control methods are derived from certain views or models of traffic systems. 
Traditional traffic-systems models have certain assumptions (e.g., homogeneous traffic 
composition and traffic arrivals following uniform distribution or Poisson processes). With better 
observability enabled by better traffic state sensing infrastructure such as edge computing and 
higher penetration rate of probe vehicles, traffic systems can be modeled with higher fidelity for 
control purposes. Also, the CAV technologies can enable (or augment) stationary control through 
infrastructure (e.g., signalized intersections, ramp metering, and variable speed limits) with 
nonstationary control through connected vehicles. Therefore, complex optimal control based on 
more-realistic traffic systems models with more forms of control could be rederived with better 
performance in the real world. 

Traffic systems can be viewed as combinations of several subsystems (e.g., an arterial includes 
several intersections, and a regional traffic network has several arterials and highways). Control of 
one subsystem will affect the dynamics of another subsystem. Traditionally, traffic controls have 
been studied for small areas because the data collection was expensive and time-consuming.1 
Also, solving a large system without breaking it down to smaller subsystems and losing the 
interactions among the subsystems requires too many computational resources. Conventional 
optimization methods may be unable to solve the large systems optimal control problems. 

Stochasticity is a nature of transportation systems. Uncertainty from people’s activities, weather, 
and human’s reactions to the environment all contribute to the uncertainty in the number of 
vehicles on the roads and the movements of these vehicles. Real-time sensing enables us to 
provide online feedback for optimal traffic control to address the uncertainty in the traffic 
systems. 

Solving complex optimal traffic control problems for larger traffic systems in real time will 
require advanced computing methods and resources. An ideal optimal control strategy will 
require heavier efforts on offline parameter seeking and lighter efforts on online optimal control. 
Distributed methods could be used to solve each subsystem’s optimal control problem with extra 
constraints to steer the results toward the optimal solution for the bigger system. 

2.9 Symbiotic Autonomous Systems 
Technologies and platforms are emerging today within a new field of science referred to as 
symbiotic autonomous systems (SAS), enabled by advances in sensors, ubiquitous 
communications, distributed computing, and deep-learning algorithms. These smart, context-
aware SAS tools are expected to increasingly augment human decision-making and physical 
capabilities, to the point where “these tools will become a seamless extension of our body and 
mind.”2 This transformation has already begun—for example, people routinely use smartphones 
to choose the fastest route home. As with any new technology, SAS brings potential benefits as 

 
1 See Section 7.3 (https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter7.htm#7.3) of the “Traffic 
Signal Timing Manual,” U.S. Department of Transportation Office of Operations, 
https://ops.fhwa.dot.gov/publications/fhwahop08024/index.htm. 
2 Roberto Saracco, Raj Madhavan, S. Mason Dambrot, Derrick de Kerchove, and Tom Coughlin, 
Symbiotic Autonomous Systems: An FDC Initiative, IEEE White Paper, (IEEE, November 2017). 
https://digitalreality.ieee.org/images/files/pdf/sas-white-paper-final-nov12-2017.pdf.  

https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter7.htm#7.3
https://ops.fhwa.dot.gov/publications/fhwahop08024/index.htm
https://digitalreality.ieee.org/images/files/pdf/sas-white-paper-final-nov12-2017.pdf
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well as potential risks, and it gives rise to many questions about how such systems will impact 
mobility and energy use. To strategically advance this emerging scientific field, new tools and 
methods must be developed to: 

• Intimately integrate oft-siloed technical arenas such as artificial intelligence, robotics, 
power systems engineering, spatial sensing and intelligence, building science, and 
automated electric vehicles 

• Address controls and optimization across disparate time and length scales while 
accommodating stochastic inputs into decision-making and control. 

• Interweave deep expertise in the behavioral and social-ecological sciences to capture the 
human side of these coevolving systems.  
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3 Summary of Research Needs 
This report outlines several research opportunities and needs in the areas of advanced 
math/computing, data science, and artificial intelligence that must be met to accelerate progress 
towards a vision of energy-efficient and electricity-symbiotic transportation system. These needs 
include: 

1. Utilizing large, detailed telemetry data sets for activity-based demand modeling 
o Unified mathematical frameworks that can be applied to a wider range of “shared and 

multimodal” scenarios and addressing a modeling boundary, including spatial and 
temporal extent. 

o Computational infrastructure and expertise to enable the agile processing of very 
large data sets, including the application of different computational and mathematical 
frameworks. 

2. Streaming real-time, high-fidelity data for optimal route planning  
o Computationally efficient and distributed algorithms that can dispatch routes, 

charging commands, and service commands in real time. 
o Innovative online learning methods are required to process high volumes of data in 

real time, cope with missing as well as anomalous measurements, and reliably predict 
both traffic conditions and power-system states. 

3. Computer vision for mobility data collection 
o Customizing existing computer-vision techniques for mobility applications, especially 

for hyperparameter tuning, which is the most critical step in model training and 
demands huge computational resources. 

o Fusion of multimodal data, dynamic predictions, and accelerating methods 
development through the use of simulation-generated data. 

4. Data science techniques for modeling, fusion, and prediction 
o Approaches to fuse traditional data sources with emerging data streams that automate 

and dramatically accelerate the development of high-fidelity models. 
o Enhanced computational treatment of agents to account for behaviors associated with 

demographic and socioeconomic attributes such as gender, income, disability, and 
education. 

5. Artificial intelligence techniques for automated, real-time decision making 
o AI and machine-learning techniques to utilize real-time sensor data with edge-

computing devices. 
o Machine learning-based fault detection and prognostic algorithms to serve as an 

alternative for sensor anomaly detection to obtain quality traffic data from sensors. 
6. Simulation and modeling to provide unprecedented insight into potential futures 

o Transportation network models integrated with basic urban science able to model 
completely new modes and identify subtle interactions between mobility systems. 
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o Tools for cities to enable rapid impact assessments of the impacts of new mobility 
options and business models. 

o Tools that model the mobility of passengers and freight in real time, for representative 
rural and metropolitan areas in the United States, over current and potential future 
road and infrastructure networks. 

7. Simulation techniques to take full advantage of artificial intelligence 
o Integration of high-resolution subcomponents (district, intersection, etc.) into a large-

scale mesoscopic regional model that allows optimization of the subsystem within the 
larger context of the overall system. 

o Deep reinforcement-learning algorithms extended to real-world stochastic 
environments that have multiple decision-making agents, complex dynamics, and 
limited observability. 

o Reinforcement learning combined with other machine-learning methods to solve 
control and planning related optimization problems that are combinatorial in nature, 
beyond the use of traditional software and algorithms, to enable solutions in real time 
and/or at large scales. 

8. Scalable/distributed optimization and control  
o Algorithms and modeling frameworks that can leverage the results of large-scale co-

simulations of an ecosystem of interacting systems to enable optimal codesign. 
o Improved approaches for real-time monitoring, optimization, and control of large-

scale mobility systems, governed by complex physical, behavioral, and computational 
interdependencies at multiple spatiotemporal scales. 

o Improved understanding of the foundational mathematics of nonlinear controls, 
optimization theory, big-data analytics, and complex system theory. 

o Scalable, decentralized, and distributed controls that account for inherently 
asynchronous operations resulting from communications delays, losses, and 
distributed (asynchronous) control actions.  

o CAV models that account for the coupling of electric transportation systems and 
power networks, and comprehensively capture quality-of-service requirements for 
travelers, CAV operators, and utility companies. 

o Computationally efficient and distributed algorithms that can dispatch routes, 
charging commands, and service commands in real time. 

o Adaptive optimization and routing algorithms for CAVs that account for network 
conditions, passenger loads, states-of-charge, and other factors in real time. 

9. Symbiotic autonomous systems 
o New tools and methods that tightly couple artificial intelligence, robotics, power-

systems engineering, spatial sensing, and intelligence, building science, and 
automated electric vehicles. 

o Controls and optimization schemes across disparate time and length scales that 
accommodate stochastic inputs into decision making and control. 
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Table 1. Summary of Research Needs to Accelerate Progress Toward a Vision of an Energy-Efficient and 
Electricity-Symbiotic Transportation System. 

Research Need Examples of Research 

Use of large, detailed telemetry 
data sets for activity-based 
demand modeling 

• Unified mathematical frameworks that can be applied to a wider range 
of “shared and multimodal” scenarios and addressing a modeling 
boundary, including spatial and temporal extent 

• Computational infrastructure and expertise to enable the agile 
processing of very large data sets, including the application of different 
computational and mathematical frameworks 

Streaming of real-time, high-
fidelity data for optimal route 
planning 
 

• Computationally efficient and distributed algorithms that can dispatch 
routes, charging commands, and service commands in real time 

• Innovative online learning methods to process high volumes of data in 
real time, deal with missing measurements, and reliably predict both 
traffic conditions and power system states 

Computer vision for mobility data 
collection 

• Customized existing computer-vision techniques for mobility 
applications, especially for hyperparameter tuning, which is the most 
critical step in model training and demands huge computational 
resources. 

• Fusion of multimodal data, 3D dynamic predictions, and acceleration of 
methods development using simulation-generated data 

Data science techniques for 
modeling, fusion, and prediction 

• Approaches to fuse traditional data sources with emerging data 
streams that automate and dramatically accelerate the development of 
high-fidelity models 

• Enhanced computational treatment of agents to account for behaviors 
associated with demographics and socio-economic attributes such as 
gender, income, disability, and education 

Artificial intelligence techniques 
for automated, real-time decision 
making 

• AI and machine-learning techniques to utilize real-time sensor data with 
edge-computing devices  

• Machine learning-based fault detection and health prognostic 
algorithms to serve as an alternative for sensor anomaly detection to 
obtain quality traffic data from sensors 

Simulation and modeling to 
provide unprecedented insight 
into potential futures 

• Integration of transportation network models and basic urban science 
than can model completely new [transportation/mobility] modes and 
identify subtle interactions between mobility systems 

• Tools for cities to enable rapid impact assessments of the impacts of 
new mobility options and business models 

• Decision-making tools that model the mobility of passengers and freight 
in real time, for representative rural and metropolitan areas in the 
United States, over current and potential future road and infrastructure 
networks  
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Research Need Examples of Research 

Simulation techniques to take full 
advantage of artificial intelligence 

• Integration of high-resolution subcomponents (e.g., districts and 
intersections) into a large-scale mesoscopic regional model that allows 
optimization of the subsystem within the larger context of the overall 
system. 

• Deep reinforcement-learning algorithms extended to real-world 
stochastic environments that have multiple decision-making agents, 
complex dynamics, and limited observability 

• Reinforcement learning combined with other machine-learning methods 
to solve control and planning optimization problems that are 
combinatorial in nature, and are beyond the use of traditional software 
and algorithms, to enable solutions in real time and/or at large scales 

Scalable/distributed optimization 
and control  

• Algorithms and modeling frameworks that can leverage the results of 
large-scale co-simulations of an ecosystem of interacting systems to 
enable optimal codesign 

• Improved approaches for real-time monitoring, optimization, and control 
of large-scale mobility systems, governed by complex physical, 
behavioral, and computational interdependencies at multiple 
spatiotemporal scales 

• Improved understanding of the foundational mathematics of nonlinear 
controls, optimization theory, big-data analytics, and complex system 
theory 

• Scalable, decentralized, and distributed controls that account for 
inherently asynchronous operations resulting from communications 
delays, losses, and distributed (asynchronous) control actions  

• CAV models that account for the coupling of electric transportation 
systems and power networks, and comprehensively capture quality-of-
service requirements for travelers, CAV operators, and utility 
companies 

• Computationally efficient and distributed algorithms that can dispatch 
routes, charging commands, and service commands in real time 

• Adaptive optimization and routing algorithms for CAVs that account for 
network conditions, passenger loads, states-of-charge, and other 
factors in real time 

Symbiotic autonomous systems • New tools and methods that intimately integrate artificial intelligence, 
robotics, power-systems engineering, spatial sensing and intelligence, 
building science, and automated electric vehicles 

• Controls and optimization schemes across disparate time and length 
scales that accommodate stochastic inputs into decision making and 
control. 
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