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Executive Summary 

This report presents a state-of-the-art wind resource data set produced by the National Renewable Energy Laboratory 

(NREL) for the outer continental shelf (OCS) off the coast of California.1 This data set — referred throughout this 

report as CA20 — replaces NREL’s Wind Integration National Dataset (WIND) Toolkit for the OCS, which was 

produced and released publicly in 2013 and is currently the principal data set used by stakeholders for wind resource 

assessment in the continental United States. Both the WIND Toolkit and the CA20 data set are created using the 

Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model. 

This update to the OCS wind resource data set is part of a larger study funded by the Bureau of Ocean Energy Man- 

agement (BOEM) that will provide an updated cost model for floating offshore wind in the OCS. Currently in a 

precommercial phase, commercial floating offshore wind technology will be available for the California market by 

the mid-2020s. 

In order to provide accurate cost estimates for floating wind in the California OCS, a new wind resource data set 

was required. Since the release of the WIND Toolkit in 2013, extensive research and development (R&D) in NWP 

models and especially the WRF model has been performed. This R&D includes: 

• Dedicated large-scale field campaigns aimed specifically at improving WRF for wind energy applications in 

simple and complex terrain (Wilczak et al. 2015; Shaw et al. 2019) 

• The release of state-of-the-art global atmospheric products used as boundary forcings in WRF (León 2019) 

• Growing research demonstrating the sensitivity in NWP-modeled wind speeds to different model inputs and 

parameterizations (Hahmann et al. 2020) 

• Increased understanding that long-term wind resource data sets of at least 20 years are required for robust 

long-term analyses, such as estimating annual energy production and interannual variability (IAV). 

NREL has developed and disseminated an updated wind resource data set for the OCS that leverages these R&D 

advancements. The CA20 data set shares many of the same attributes as the WIND Toolkit, including 5-minute time 

resolution and 2-kilometer (km) horizontal spatial resolution. However, the CA20 data set improves upon the WIND 

Toolkit through: 

1. A 20-year modeling period from 2000 through 2019 (compared to the 7-year 2007–2013 modeling period in 

the WIND Toolkit) 

2. A sensitivity analysis of the hub-height wind resource, driven by an ensemble of 16 different WRF simulations 

run in the 2017 calendar year 

3. An updated WRF model, from Version 3.4 used in the WIND Toolkit to Version 4.1.2 used here, which incor- 

porates significant R&D advancements 

4. The use of the state-of-the-art reanalysis product ERA5 to provide atmospheric forcing at the WRF domain 

boundaries. The ERA5 product is produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) and replaces its older ERA-Interim product, which was used in the WIND Toolkit. 

The updated annual average wind resource map for the OCS is shown in Figure A. Similar to the WIND Toolkit, the 

north of the domain has the highest wind resource while the south has a more moderate resource. As shown in the 

figure, the lowest part of the U.S. Exclusive Economic Zone that extends into Mexico is not considered relevant and 

is therefore not included in this report. 

The mean annual 100-m wind speeds from the CA20 data set are compared with those from the WIND Toolkit in 

Figure B. The CA20 data set indicates significantly higher mean wind speeds than the WIND Toolkit. In some areas, 

the increase is nearly 2 meters per second (m·s− 1), or an increase of about 20%. As indicated in Table A, increases 

1For the purposes of this report, the OCS refers to the offshore area from 0 to 200 nautical miles off the California coast. 
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Figure A. Mean annual wind resource for the OCS based on the new 20-year data set 
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in the mean 100-meter (m) wind speed at the centroids of current wind energy Call Areas2 are 10.6%, 16.1%, and 

19.2% at Humboldt, Morro Bay, and Diablo Canyon, respectively.

 

Figure B. Comparing the mean annual 100-m wind speeds from the CA20 

data set, labeled CA20 (left), and the WIND Toolkit, labeled WTK (center). 

The difference between the two maps is calculated in the rightmost figure. 

This increase in the modeled wind resource is significant and will impact economic and energy modeling and plan- 

ning for offshore wind in the OCS. Therefore, this report is largely focused on explaining and justifying this increase 

in the modeled resource, primarily through validation against observations and examining the underlying differences 

between the new CA20 data set and the WIND Toolkit model setups. 

Table A. Comparison of Mean Annual 100-m Wind Speeds between the WIND 

Toolkit and the New 20-Year Data Set at the Offshore California Call Area Centroids

 

Call Area Mean Wind Speed (m·s− 1) Change 

WIND Toolkit Updated Data Set (m·s− 1) (%)

 

Humboldt 9.41 10.41 1.00 10.6 

Morro Bay 8.20 9.52 1.32 16.1 

Diablo Canyon 7.70 9.18 1.48 19.2

 

Based on this detailed analysis, much of the increase in the wind resource can be attributed to an updated planetary 

boundary layer (PBL) scheme. The PBL scheme is a critical parameterization in the WRF model. It controls how 

turbulence distributes momentum in the lower part of the atmosphere and strongly influences the wind shear pro- 

files. The WRF model currently has nine possible PBL schemes. The WIND Toolkit used the Yonsei University 

(YSU) scheme, whereas the CA20 data set uses the Mellor-Yamada-Nakanishi-Niino (MYNN) scheme. The MYNN 

scheme has been the subject of significant research and development over the past decade and has become the global 

standard for wind resource assessment. The use of the MYNN scheme produces significantly higher hub-height wind 

speeds than YSU, which can be attributed to the high frequency of stable atmospheric conditions in the OCS and the 

divergence of these PBL schemes under such conditions. 

However, the change in PBL scheme is not sufficient to fully account for the change in the wind resource. Even after 

considering the impact of an updated reanalysis product, longer time period, updated WRF version, and updated 

sea-surface temperature product, there remains an unaccounted 0.98- and 1.11-m·s− 1 increase at the Morro Bay 

and Diablo Canyon Call Areas, respectively; by contrast, only 0.17 m·s− 1 is left unaccounted at Humboldt. The 

unaccounted values are likely caused by other differences between CA20 and WTK not explored in this analysis, 

including different topographic and land use data and different domain sizes (WTK used a domain covering the 

entire continental United States). 

2Call Areas refer to areas identified by BOEM in 2018 as potentially suitable for offshore wind energy leasing and were under consideration 

for offshore wind energy as of the publication of this report. 
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The resource assessment using the CA20 wind resource data indicates an increase in technical potential for the OCS, 

summarized in Table B.3 This increase in technical potential is based on comparisons with NREL’s 2016 U.S. wind 

energy resource assessment (Musial et al. 2016). Overall, we find an increase of 34% in technical potential, most of 

which is attributable to additional exclusions included in the 2016 analysis but not applied here (see Section 3.2 for 

more details). Some of the increase is also attributed to an increased depth limit from 1,000 m to 1,300 m for floating 

wind installations, which reflects potential advancements in floating wind mooring technologies (Figure C). Finally, 

about 4.7% of the increase in technical potential is attributed to the increase in the modeled wind resource.

 

Figure C. Bathymetry of the OCS up to 1,300 m, based on data from the 

National Oceanic and Atmospheric Administration’s Coastal Relief Model 

The significant increase in the modeled wind resource compared to the WIND Toolkit highlights the sensitivity 

of NWP-modeled wind speeds to model inputs and setup (e.g., reanalysis product and PBL scheme). Since 2018, 

NREL has been developing methods to quantify this sensitivity and disseminate this information with its wind re- 

source products in order for stakeholders to better use and understand the uncertainty around modeled wind resource 

data sets. The wind resource data set here is a culmination of those efforts. To quantify the sensitivity of this mod- 

eled OCS wind resource data set, NREL considered an ensemble of WRF setups that vary in the inputs and model 

parameterizations within WRF. Specifically, 16 different setups to the WRF model are used to run simulations over 

3A detailed description of technical potential can be found in Musial et al. 2016, but briefly, technical potential is the amount of offshore 

wind capacity that could be developed while taking into account exclusion factors related to water depth, mean wind speed, industry uses, and 

environmental conflicts. By contrast, gross potential is the capacity without these exclusions. 
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Table B. Comparison of Gross and Technical Potential Estimates from 2016 Report and This Report

 

2016 Report This Report 

Metric WIND Toolkit New CA20 Data Set

 

Minimum average wind speed (m·s− 1) 7.0 7.0 7.0 

Maximum water depth (m) 1,000 1,300 1,300 

Array density (MW·km− 2) 3.0 3.0 3.0 

Gross potential (km2) 566,058 566,058 566,058 

Gross potential (gigawatts [GW]) 1,698 1,698 1,698 

Technical potential (km2) 49,916 64,048 67,067 

Technical potential (GW) 150 192 201

 

the 2017 calendar year, which was found to have the strongest coverage of observational data in the OCS and there- 

fore best suited for validation. These setups account for such commonly used reanalysis products as boundary forc- 

ing, different PBL schemes, different sea-surface temperature forcing products, and different land surface schemes. 

The spread of modeled 100-m wind speeds is quantified from these different model setups—both on annual and 

hourly scales—as the standard deviation of modeled winds divided by their mean (i.e., the coefficient of variation). 

This metric calculated for the calendar year 2017 is extended to the 20-year data set by training a machine-learning 

model to predict this sensitivity from key modeled atmospheric variables. This novel approach developed by NREL 

is then contrasted against a traditional analog ensemble approach in which sensitivity is deduced from a single model 

run without the use of actual ensembles. 

The sensitivity in the annual wind resource based on the coefficient of determination is shown in Figure D. Annual 

sensitivities range between 1% and 7% and are highest near the coastline and around the wind energy Call Areas. 

Most of the sensitivity shown is attributable to the choice of PBL scheme used to run the WRF model. These values 

can be interpreted as NREL’s confidence in the modeled wind resource at each grid point. 

The creation of a 20-year data set, as well as 16 ensemble setups run over a year, are made possible by investment in 

both computational resources and atmospheric science expertise at NREL. The methods and framework developed to 

produce this CA20 data set are currently being leveraged to begin the full replacement of the national-scale WIND 

Toolkit, which is expected to be complete in 2022. 

There is currently a rapid pace of R&D in NWP science, with an emphasis on improving offshore wind resource 

modeling. This research is critical given the current and likely continuing scarcity of U.S. offshore hub-height wind 

observations, and therefore the increased reliance on modeled data. As the United States and the world become 

more and more dependent on weather-driven renewable resources, an ever-greater understanding of the offshore 

wind resource and how it interacts with emerging offshore wind technology is required. Given this need, NREL is 

developing the capacity and framework to continually update its wind resource modeling capabilities and products, 

likely on 5- to 7-year update periods. These frequent updates will ensure that the most accurate and comprehensive 

wind resource data sets for U.S. and global markets are available to wind energy stakeholders. 
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Figure D. Sensitivity in the modeled 100-m wind resource, quantified as the coefficient 

of variation—or standard deviation divided by the mean—across the different mean wind 

speeds modeled from the 16 different ensembles. Wind energy Call Areas are shown in red. 
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1 Introduction 

This report presents a state-of-the-art wind resource data set produced by the National Renewable Energy Laboratory 

(NREL) for the outer continental shelf (OCS) off the coast of California.1 This update to the OCS wind resource data 

set is part of a larger study funded by the Bureau of Ocean Energy Management (BOEM) to provide an updated cost 

model for floating offshore wind in the OCS. Currently in a precommercial phase, commercial floating offshore wind 

technology will be available for the California market by the mid-2020s. 

This new wind resource data set (referred to as CA20 throughout this report) replaces NREL’s Wind Integration 

National Dataset (WIND) Toolkit for use in the OCS. The WIND Toolkit was produced in 2013 using the Weather 

Research and Forecasting (WRF) numerical weather prediction (NWP) model. The WIND Toolkit is a 7-year data 

set (2007–2013) run at 2-kilometer (km) horizontal spatial resolution and 5-minute time resolution that covers the 

entire continental United States. Modeled variables include wind speed, wind direction, and temperature at multiple 

heights up to 200 m, as well as relevant surface meteorological variables. Data are publicly disseminated at no cost 

through NREL’s Wind Prospector tool and is hosted on Amazon Web Services. 

Since 2013, the WIND Toolkit has served as the most comprehensive publicly available wind resource data set in 

the United States (Draxl et al. 2015; Draxl and Hodge 2015). It has been used by various stakeholders ranging from 

wind energy developers and consultants, utilities, government organizations, and academic and research institutions. 

Given this extensive use of the WIND Toolkit, NREL is committed to ensuring that its NWP modeling capabilities 

remain state of the art and that NREL continues to provide the most accurate wind resource information possible to 

its partners and stakeholders. 

With this in mind, NREL is currently in the process of replacing the WIND Toolkit with a next-generation, state-of- 

the-art NWP data set. Since the release of the WIND Toolkit in 2013, extensive research and development (R&D) in 

NWP models, and especially the WRF model, has been performed within the global atmospheric modeling commu- 

nity. Such development includes: 

• Dedicated large-scale field campaigns aimed specifically at improving WRF for wind energy applications in 

simple and complex terrain (Wilczak et al. 2015; Shaw et al. 2019) 

• The release of state-of-the-art global atmospheric products used as boundary forcings in WRF (León 2019) 

• Growing research demonstrating the sensitivity in NWP-modeled wind speeds to different model inputs and 

parameterizations (Hahmann et al. 2020) 

• Increased understanding that long-term wind resource data sets of at least 20 years are required for robust 

long-term analyses, such as estimating annual energy production. 

NREL has developed and disseminated an updated wind resource data set for the OCS that leverages these R&D 

advancements. This report describes the creation of this new CA20 data set, focusing mainly on: 

1. The use of a 20-year modeling period from 2000–2019 

2. Detailed validation of model results against buoys, coastal radars, and offshore floating lidars 

3. The use of 16 different WRF model setups or ensembles to (a) determine the best-performing model setup 

for use in the 20-year production run and (b) quantify the sensitivity in the modeled resource by running all 

ensembles over a single calendar year 

4. A detailed comparison between modeled winds in the CA20 data set and the WIND Toolkit, with any differ- 

ences clearly justified and explained 

5. Presenting novel machine-learning techniques to extrapolate model sensitivity quantified in a single calendar 

year to the full 20-year time period. 

1The OCS refers to the offshore area from 0 to 200 nautical miles off the California coast. 
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The creation of a 20-year data set as well as 16 ensemble setups run over a year require extensive high-performance 

computational resources as well as an in-depth understanding of boundary layer atmospheric science. The methods 

and framework developed to produce the CA20 data set are currently being leveraged to begin the full replacement of 

the national-scale WIND Toolkit, which is expected to be complete some time in 2022. 

There is currently a rapid pace of R&D in NWP science, with an emphasis on improving offshore wind resource 

modeling. This research is critical given the current and likely continuing scarcity of U.S. offshore hub-height wind 

observations, and therefore the increased reliance on modeled data. As the United States and the world become 

more and more dependent on weather-driven renewable resources, an ever-greater understanding of the offshore 

wind resource and how it interacts with emerging offshore wind technology is required. Given this need, NREL is 

developing the capacity and framework to continually update its wind resource modeling capabilities and products, 

likely on 5- to 7-year update periods. These frequent updates will ensure that the most accurate and comprehensive 

wind resource data sets for U.S. and global markets are available to wind energy stakeholders. 
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2 Motivation for CA20 Data Set 

In this section, we describe the development of the new CA20 wind resource data set. First, we describe the 16 dif- 

ferent WRF model setups, or ensemble members, that are considered for use in the full 20-year data set. Each setup 

is used to simulate the OCS wind resource in the 2017 calendar year, which was found to have the best coverage of 

observational data for model validation. Simulation results are compared against buoy and coastal radar observations 

in California. Because of the lack of floating lidar in the OCS, simulations are also compared against two floating li- 

dars in the New Jersey wind energy offshore area in the Atlantic Ocean. Based on the validation results, the selection 

of the final model setup for the 20-year production run is presented and discussed in detail. 

2.1 Constructing the Different Model Setups 

The WRF model is highly modular in that it allows users to consider a range of inputs (e.g., atmospheric forcing, 

sea-surface temperature [SST] forcing), parameterizations (e.g., radiation schemes, land surface schemes), grid 

specifications (e.g., vertical and horizontal resolution), and a large range of physics and dynamics settings (e.g., time 

steps) (Skamarock et al. 2019). This model flexibility allows users to design a model setup that best suits the desired 

application. However, this flexibility allows for a virtually unlimited set of reasonable model setups, all of which, to 

some extent, will produce different outputs. 

In this context, it is crucial to understand which components strongly impact modeled hub-height winds so that accu- 

rate and reliable wind resource data are produced. Over a decade of research into this topic has demonstrated sensi- 

tivity in NWP-modeled wind speeds to the planetary boundary layer (PBL) scheme (Ruiz, Saulo, and Nogués-Paegle 

2010; Carvalho et al. 2014b; Gómez-Navarro, Raible, and Dierer 2015; Hahmann et al. 2015; Olsen et al. 2017; 

Siuta, West, and Stull 2017), the large-scale atmospheric forcing (“WRF wind simulation and wind energy pro- 

duction estimates forced by different reanalyses: Comparison with observed data for Portugal” 2014; Carvalho 

et al. 2014a; Hahmann et al. 2015; Siuta, West, and Stull 2017), data assimilation techniques (Ulazia, Saenz, and 

Ibarra-Berastegui 2016), nesting techniques (Gómez-Navarro, Raible, and Dierer 2015), grid size (Siuta, West, and 

Stull 2017), vertical resolution (Hahmann et al. 2015), horizontal resolution (Olsen et al. 2017), spin-up time (Hah- 

mann et al. 2015), SST (Hahmann et al. 2015), convection schemes (Ruiz, Saulo, and Nogués-Paegle 2010), and 

soil models (Ruiz, Saulo, and Nogués-Paegle 2010). The most exhaustive sensitivity analysis to date was recently 

published as part of the development of the New European Wind Atlas (NEWA) (Hahmann et al. 2020). Similar 

in scope to the WIND Toolkit, the NEWA is a 30-year WRF-based data set covering all of Europe. NREL recently 

completed an offshore study of WRF model sensitivity in partnership with Rutgers Center for Ocean Observing 

Leadership (Optis et al. 2020). Results from this study support previous research findings and found that the PBL 

scheme, reanalysis forcing, and SST forcings were all key drivers of model sensitivity, especially on short timescales. 

Based on this literature review and NREL’s previous experience on WRF sensitivity in offshore wind resource 

modeling, a total of 16 model setups are constructed based on variations in four key model components. These 

components are summarized in Table 1 and described here: 

1. Reanalysis forcing product : WRF-modeled wind speeds can be very sensitive to the large-scale global atmo- 

spheric product used as boundary forcing to the model. In this study, we consider the use of the ERA5 reanal- 

ysis product developed by the European Centre for Medium-Range Weather Forecasts (ECMWF) (Hersbach 

et al. 2020) and the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) 

(Gelaro et al. 2017), developed by the National Aeronautics and Space Administration (NASA). These two 

data sets represent state-of-the-art reanalysis products and are widely used in the wind industry for wind re- 

source characterization. ERA5 is run at 0.25o × 0.25o horizontal resolution with 137 vertical levels and data 

output every hour. MERRA-2 is run at 0.50o × 0.625o horizontal resolution with 72 vertical levels and data 

output every hour. 

2. PBL scheme : The PBL scheme is a critical parameterization in the WRF model. It controls how turbulence 

distributes momentum in the lower part of the atmosphere and strongly influences the shape of wind profiles. 

The WRF model currently has nine possible PBL schemes to select. In this study, we consider both the Mellor- 
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Yamada-Nakanishi-Niino (MYNN) and Yonsei University (YSU) PBL schemes, which are widely considered 

the two most popular PBL schemes in WRF. The YSU scheme was used in the WIND Toolkit, while the 

MYNN scheme is widely used in modern wind resource products (Hahmann et al. 2020) and operational 

forecast products (Benjamin et al. 2016) and has been the focus of R&D efforts and improvements through 

U.S. Department of Energy (DOE)-funded large-scale field campaigns: the Wind Forecast Improvement 

Projects (Wilczak et al. 2015; Shaw et al. 2019). 

3. SST product : The WRF model does not compute SST or any water surface temperatures; rather, these data 

are provided as input to WRF and act as a lower boundary forcing. Both the ERA5 and MERRA-2 reanalysis 

products include SST data produced from the Operational Sea Surface Temperature and Sea Ice Analysis 

(OSTIA) data set produced by the UK Met Office (Donlon et al. 2012; Hirahara et al. 2016; Bosilovich 2015). 

The OSTIA data are provided at 1/20o horizontal spatial resolution. In addition to the OSTIA data set, we 

consider the use of the National Center for Environmental Prediction (NCEP) Real-Time Global (RTG) SST 

product (Grumbine 2020). This product has a spatial resolution of 1/12o. 

4. Land surface model (LSM) : Unlike water surfaces, land surface temperatures are modeled in WRF us- 

ing land surface models. These models simulate the exchange of energy and water fluxes between the sur- 

face and atmosphere and can have significant influence on offshore coastal winds given the role of the 

land temperature in the sea breeze. We consider two LSM schemes: the Noah LSM and the updated Noah- 

Multiparameterization (Noah-MP) LSM (Niu et al. 2011). 

Table 1. WRF Model Components Used To Construct the 16-Member Ensemble in This Validation Study

 

Category Values Considered for WRF Ensemble

 

Atmospheric forcing MERRA-2 

ERA5 

Planetary boundary layer scheme MYNN 

YSU 

Sea-surface temperature forcing OSTIA 

NCEP RTG 

Land surface model Noah 

Noah-MP

 

2.2 Running the Simulations 

Each of the WRF model setups described in Section 2.1 share other common attributes, which are summarized 

in Table 2. These attributes include high vertical resolution with nine levels below 200 m, allowing for accurate 

resolution of wind profiles. To downscale the large-scale forcing to 2 km, we use a nested WRF domain comprising 

a large 6-km domain in which the higher-resolution 2-km domain is placed. The boundary forcing provided by the 

reanalysis product is applied only to the 6-km domain, whose output becomes the boundary forcing to the 2-km 

domain. The 2-km domain covers the OCS out to the 200-nautical-mile U.S. Exclusive Economic Zone, as shown in 

Figure 1. 

We ran each of the 16 model setups over the 2017 calendar year. We select this year because of strong data coverage 

from the observational network (described in Section 2.2.1). To leverage parallel computing and shorten the over- 

all simulation time, we perform WRF simulations separately for each month and then concatenate the data into a 

single time series at each grid location during postprocessing. A spin-up period of 2 days is used prior to the simu- 

lations (e.g., February simulations started on January 30) to allow the model to develop sufficiently from the initial 

conditions and stabilize. 
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For long simulation periods, such as a month, it is common for an inner WRF domain to “drift away” from the large- 

scale atmospheric forcing applied only at the outer domain boundary. To correct for this, it is common to apply 

atmospheric nudging in the model—a form of data assimilation that occasionally adjusts dynamical variables in 

WRF toward the large-scale flow. Atmospheric nudging is applied in this analysis to the 6-km domain only using 

spectral-based nudging applied every 6 hours. 

For all simulations, we use WRF Version 4.1.2, released in July 2019. A detailed WRF “namelist” that provides the 

full specifications of the WRF model used here will be published online through zenodo.org1 upon final publication 

of this report. 

Table 2. Common Attributes in the WRF Ensembles Considered in this Analysis

 

Feature Specification

 

WRF version 4.1.2 

Nesting 6 km, 2 km 

Vertical levels 61 

Near-surface-level heights (meters) 12, 34, 52, 69, 86, 107, 134, 165, 200 

Atmospheric nudging Spectral nudging on 6-km domain, applied every 

6 hours 

Microphysics Ferrier 

Longwave radiation Rapid Radiative Transfer Model 

Shortwave radiation Rapid Radiative Transfer Model 

Topographic database Global Multi-Resolution Terrain Elevation Data 

from the United States Geological Service and 

National Geospatial-Intelligence Agency 

Land-use data Moderate Resolution Imaging Spectroradiometer 

30s 

Cumulus parameterization Kain-Fritsch

 

2.2.1 Observations 

A network of observations is used to validate the different WRF model setups in the OCS. These observations— 

summarized in Table 3 and shown on the domain map in Figure 1—include: 

1. Buoy-based measurements of wind speed provided by the National Data Buoy Center (NDBC), operated by 

the National Oceanic and Atmospheric Administration (NOAA).2 Buoy measurements are either at 3.8 or 4.1 

meters above water level. 

2. Coastal radar measurements from the NOAA profiler network.3 Several sites along the California coast are 

used, which provide hourly average wind speed measurements starting at heights in the 150–200-m range and 

extending several kilometers up into the atmosphere. 

These observation stations are not ideal for validating modeled offshore wind speeds at hub height. Buoys only 

measure wind speeds a few meters above water level; given the different wind regimes at the surface and aloft, it is 

uncertain if relative model performance at 5 m or below would hold at hub height. By contrast, the radars measure 

at more relevant heights for wind energy. However, they are located at the interface between the ocean and land. 

As such, they are subject to large wind-speed gradients that hinder NWP validation efforts. Under these conditions, 

modeled wind speeds from one model grid box to the next can change significantly, and the interpolation of modeled 

1Zenodo is an open-access repository that allows researchers to store data sets, software, reports, and other relevant digital information. 

2https://www.ndbc.noaa.gov/ 

3https://psl.noaa.gov/data/obs/datadisplay/ 
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Figure 1. The spatial domain of the 2-km WRF simulations for the OCS (dotted line), the buoy (red) and 

radar (green) observation stations used for validation, and the current wind energy Call Areas (orange) 
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Table 3. List of Buoy and Coastal Radar Stations Used for Validating WRF Simulations in the OCS

 

Name Type Height (m)

 

46025 Buoy 4.1 

46027 Buoy 3.8 

46026 Buoy 3.8 

46022 Buoy 3.8 

46047 Buoy 3.8 

46053 Buoy 4.1 

46069 Buoy 4.1 

46054 Buoy 3.8 

46042 Buoy 4.1 

46011 Buoy 4.1 

46012 Buoy 3.8 

46013 Buoy 4.1 

46014 Buoy 3.8 

46028 Buoy 4.1 

Bodega Bay Radar 195 

Santa Barbara Radar 193 

Point Sur Radar 195 

McKinleyville Radar 195

 

wind speeds to the observation station for purposes of validation becomes uncertain. A more detailed discussion and 

analysis of this coastal gradient issue at the radar locations is provided in the Appendix. 

Floating lidar measurements from buoys in the OCS would provide the ideal validation measurements because 

of their relevant locations (i.e., close or within wind energy Call Areas) and relevant hub-height measurements. 

However, no such measurements in the OCS were available to NREL for this study. By contrast, there are several 

private and public deployments of floating lidar within and adjacent to offshore wind Lease Areas and Call Areas 

in the Atlantic. Specifically, two floating lidars were deployed off the coast of New Jersey by the New York State 

Energy Research and Development Authority (NYSERDA) in August and September 2019 (see Figure 2). Data 

are released publicly and in near real time 

4 as 10-minute averages and from 20 to 200 m above water level in 20-m 

increments. 

As will be made clear in Section 2.3, these Atlantic lidar data become critical in validating the Outer Continental 

Shelf WRF runs. 

2.3 Validation Approach 

Validation of the different WRF model setups is performed on diurnal, hourly, and annual scales. We consider three 

main metrics to assess model performance: 

1. Unbiased root-mean-square error (RMSE) : Useful for separating out the bias contribution to the overall 

error and focusing only on the error as a result of model variability 

2. Bias : Useful for analyzing the offset between model and observations and the extent to which the wind re- 

source is underpredicted or overpredicted 

3. Earth mover’s distance (EMD) : Recently popularized for wind energy in the making of NEWA (Hahmann 

et al. 2020), the EMD (also called the Wasserstein distance) is a measure of the difference between two dis- 

tributions. Specifically, the metric is equal to the area between two cumulative distribution functions and can 

4https://oswbuoysny.resourcepanorama.dnvgl.com/ 
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Figure 2. Locations of the NYSERDA-deployed floating li- 

dars in current Atlantic wind energy Lease and Call Areas 

be interpreted as the amount of “dirt” needed to move from one probability distribution (or pile) to another to 

make them equal. The key advantage of the EMD metric is that it accounts for cases where two distributions 

may have the same bias but have different shapes, as shown in Figure 3.

 

Figure 3. A comparison of two sample wind speed distributions, taken from Hahmann et al. 2020. The 

two distributions have the same mean but different shapes, which the EMD metric is able to quantify. 

As shown in Table 3, validation was performed at the measurement heights of each observation station rather than 

at a fixed height relevant to wind energy (e.g., 100 m). For the buoys in particular, which have measurement heights 

near 4 m, NREL determined that the extrapolation of these wind speed measurements to a typical hub height, regard- 
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less of extrapolation method, would be associated with a prohibitively large uncertainty and would hinder a confident 

validation of different mesoscale model setups. 

Instead, the modeled 10-m winds (which output from WRF as diagnostic variables) are interpolated to the buoy 

heights using the logarithmic wind speed profile: 

Uz2 

= Uz1 

ln 

( 

z2

 

z0 

) 

− ψ 

( z2

 

L 

, 

z0

 

L 

)

 

ln 

( 

z1

 

z0 

) 

− ψ 

( z1

 

L 

, 

z0

 

L 

) 

(2.1) 

where U is wind speed, z2 

and z1 

are heights above the surface, z0 

is the roughness length, ψ is the stability function, 

and L is the Obukhov length. The stability functions from Jiménez et al. 2012 are used, which are the same used by 

WRF to diagnose the 10-m wind speed from model-level wind speeds. 

To interpolate model results to the radar and lidar measurement heights, a basic linear interpolation of wind speeds in 

the neighboring model levels is performed. We can justify basic linear interpolation based on the high vertical reso- 

lution of the WRF model near the surface (see Table 2), where the wind profile between model levels can reasonably 

be approximated as linear over a short distance. 

2.4 Validation Results 

In this section, we present the results of the WRF model setup validation. Throughout this section, the different 

ensemble members are labeled using the following nomenclature: ‘<Reanalysis product>_<SST Product>_<PBL 

scheme>_<LSM>.’ 

2.4.1 Hourly Data 

First, we present performance metrics for the hourly data in Figures 4–6 averaged across all sites. Performance 

metrics on a site-by-site basis are provided in the Appendix. Figure 4 shows that model setups using ERA5 as a 

large-scale forcing have about 0.2 m·s− 1 or 10% lower RMSE than those that use MERRA-2, while model setups 

using the YSU PBL scheme have a 0.1 m·s− 1 or 5% lower error than those that use the MYNN PBL scheme. The 

SST product and LSM choice have a relatively negligible impact. 

Figure 5 shows the least bias for model setups using ERA5 as a forcing product, MYNN as the PBL scheme, and 

Noah as the LSM model. In fact, bias is nearly half compared to models using MERRA-2, the YSU PBL scheme, 

and the Noah-MP LSM. The SST product has a relatively negligible impact. 

Figure 6 shows the least EMD for model setups using ERA5 as a forcing product, MYNN as the PBL scheme, and 

Noah as the LSM model. Again, the SST product has a relatively negligible impact. 

2.4.2 Diurnal Analysis 

In this section, we assess the performance of each model in its representation of the diurnal cycle. Model perfor- 

mance is assessed as an average across all sites. Wind speeds are normalized by their respective mean wind speed 

over the diurnal period to remove model biases and focus only on the variability of diurnal trends. 

Figure 7 shows the mean diurnal cycle across all measurement sites. The observed diurnal trend reaches a peak of 

about 11% above its mean value around 18:00 PST and a minimum about 10% below its mean value at around 10:00 

PST. Most models represent the variability of the diurnal cycle well. However, model setups using the MERRA-2 

reanalysis and its default OSTIA sea-surface temperature product tend to overestimate the magnitude of the diurnal 

cycle. This performance is likely related to the role of SST in the coastal diurnal cycle and the coarse resolution of 

the MERRA-2 model (0.5 x 0.65 degrees). It is likely that this coarse resolution is unable to capture the horizontal 

distribution of SST in active upwelling areas, thus affecting the accurate modeling of the diurnal cycle. 
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Figure 4. Mean unbiased RMSE in modeled wind speeds at validation measure- 

ment heights, averaged across all sites. Note that the origin does not start at zero.

 

Figure 5. Mean bias in modeled wind speeds at validation measurement heights, averaged across all sites 
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Figure 6. Mean EMD in modeled wind speeds at validation measurement 

heights, averaged across all sites. Note that the origin does not start at zero. 

The mean RMSE across the 24-hour cycle in Figure 7 is summarized in Figure 8. Again, models using ERA5 as 

large-scale forcing tend to have the lowest RMSE across the diurnal cycle. Models using the YSU planetary bound- 

ary layer scheme combined with the Noah-MP LSM tend to have the lowest RMSE. 

2.4.3 Wind Profiles 

In this section, we examine modeled wind profiles at the buoys closest to the wind energy Call Areas. No observed 

data up to hub height are available to validate the modeled wind profiles; rather, the focus is on exploring wind 

profile sensitivity to the different model setups. 

Figure 9 shows the annual average wind profiles up to 200 m at Buoys 46022 and 46028, which are adjacent to the 

Humboldt and Morro Bay Call Areas, respectively. We focus here on distinguishing only the PBL schemes as dif- 

ferent colors, given the clear separation of wind profiles based on which PBL scheme is used. Near Humboldt, wind 

profiles based on the YSU scheme tend to model wind speeds 100 m and above about 1 m·s− 1 lower than those mod- 

eled using MYNN. A similar mean difference is found at Morro Bay but with more spread in the submembers. This 

difference in 100-m wind speeds is driven by the tendency for the MYNN scheme to model much higher wind shear 

below 50 m relative to the YSU scheme. Above 50 m, wind shear is comparable between the two PBL schemes. 

2.5 Stability Analysis and PBL Schemes 

As illustrated in Figure 9, the implications of choosing MYNN or YSU for the new 20-year data set will have sig- 

nificant implications for OCS resource and energy modeling. Therefore, further validation is performed between 

these two PBL schemes. Focusing only on the two WRF setups that use the ERA5 reanalysis, OSTIA sea-surface 

temperature and Noah MP (all of which validated best in Section 2.4), we explore PBL sensitivity in Table 4. Here, 

the mean values of the three performance metrics across all observation stations are summarized. The table shows 

that YSU has lower unbiased RMSE, whereas MYNN has lower absolute bias and EMD. 

To better understand the differences in modeled wind profiles between the MYNN- and YSU-based WRF runs, an 
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Figure 7. Mean diurnal cycle of modeled wind speeds from the different ensembles, normalized to the mean 

wind speed and averaged across all observations stations. The dashed black line denotes the observations. 

Table 4. Mean Performance Metrics for MYNN- and YSU-Based Simulations Across All Observation Stations

 

Metric MYNN YSU

 

Unbiased RMSE (m·s− 1) 2.07 1.98 

Bias (m·s− 1) 0.28 0.36 

EMD (m·s− 1) 0.46 0.54
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Figure 8. RMSE of normalized diurnal winds for the differ- 

ent WRF ensembles, averaged across all observation stations

 

Figure 9. Mean modeled wind profiles at Buoy 46022 (a) and Buoy 46028 

(b), which are adjacent to the Humboldt and Morro Bay Call Areas, respec- 

tively. MYNN-based profiles are in blue and YSU-based profiles are in orange. 
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analysis of PBL schemes in different atmospheric stability conditions is required.5 There are various metrics used to 

quantify atmospheric stability in the lower part of the atmosphere. Here, we use the bulk Richardson number, RiB, 

which is a combined measure of wind shear and temperature shear between two vertical layers: 

RiB 

= 

g

 

θv 

∆ z ∆ θv

 

( ∆ U )2 +( ∆ V )2 

(2.2) 

where g is gravitational acceleration, θv 

is absolute virtual potential temperature, ∆ θv 

is the virtual potential tempera- 

ture difference across a layer of thickness ∆ z , and ∆ U and ∆ V are the changes in horizontal wind components across 

that same layer. Values of RiB 

< 0 represent thermodynamically unstable conditions and RiB 

> 0 represent stable 

conditions, with instability or stability increasing monotonically with the magnitude of RiB. For neutral conditions, 

RiB 

≈ 0. 

We calculate RiB 

between 200 m and the surface and compare the frequency of different stability regimes using RiB 

in OCS in Figure 10 over the 2017 validation year. We contrast both the MYNN and YSU schemes directly by using 

the same reanalysis product (ERA5), SST product (OSTIA), and LSM (Noah). We categorize stability regimes based 

on the RiB 

thresholds listed in Table 5, adapted from Kalverla et al. 2020 to include six stability categories ranging 

from very unstable to very stable conditions. 

Table 5. Stability Regimes Used in This Study, Based on the 

Bulk Richardson Number Between 200 m and the Surface

 

Stability Regime RiB 

Range

 

Very unstable RiB 

≤ − 0 . 1 

Unstable − 0 . 1 < RiB 

≤ − 0 . 025 

Weakly unstable − 0 . 025 < RiB 

≤ − 0 

Weakly stable 0 < RiB 

≤ 0 . 025 

Stable 0 . 025 < RiB 

≤ 0 . 1 

Very stable RiB 

> 0 . 1

 

A breakdown of stability regimes by percentage frequency across the OCS is shown in Figure 10. Both the MYNN 

and YSU schemes model predominately weakly unstable and weakly stable conditions across the whole OCS out to 

the 200-nautical-mile Exclusive Economic Zone. However, YSU tends to model very unstable to unstable conditions 

more frequently than MYNN, with the opposite true for weakly stable through very stable conditions. Focusing on 

the locations of the wind energy Call Areas, the bottom row reveals that both PBL schemes estimate very stable 

conditions close to the coastline, which reflects strong upwelling of cold seawater to the surface, inducing a stable 

stratification in the lower atmosphere. In these areas, the MYNN scheme is considerably more likely to model very 

stable conditions than the YSU scheme. It is likely that there is seasonal dependence in stability conditions (e.g., 

warmer air or a colder sea would favor stable conditions); however, a seasonal analysis is beyond the scope of the 

present study. 

The impact of these stability regimes on hub-height wind speeds is illustrated in Figure 11. Here, we compare the 

mean 100-m wind speeds in 2017 across the OCS between MYNN and YSU in the different stability regimes. The 

top row in Figure 11 shows weak mean-modeled 100-m winds in very unstable conditions that would produce little 

power. In unstable to weakly unstable conditions, YSU models slightly higher wind speeds. From weakly stable to 

stable conditions, we observe a significant increase in mean 100-m winds in MYNN than YSU, particularly close 

to the coast and at the current wind energy Call Areas. At some locations, the mean annual wind speed difference 

5Unstable conditions usually occur when warm air sits underneath colder air (e.g., during strong surface heating in summer). The lower 

density of the warmer air causes it to rise above the cold air, inducing strong vertical mixing of momentum and leading to wind profiles that are 

relatively constant with height. By contrast, stable conditions occur when colder air sits underneath warmer air (e.g., during surface cooling at 

night). The higher density of the underlying colder air suppresses turbulent vertical mixing and produces wind profiles with strong wind shear. 
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Figure 10. Percentage breakdown of atmospheric stability regimes across the 

OCS between the MYNN PBL scheme (left column) and the YSU scheme (mid- 

dle column). The difference in frequencies is shown in the rightmost column. 
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exceeds 2 m·s− 1. Based on this map, it appears that the divergence of MYNN- and YSU-based wind profiles as 

shown at Buoys 46022 and 46028 is driven by this divergence in weakly stable to stable conditions.

 

Figure 11. Mean 100-m wind speeds in each stability regime across the OCS for 

the MYNN PBL scheme (left column) and the YSU scheme (middle column). The 

difference between the two PBL schemes is shown in the rightmost column. 

We can explore this difference in more detail at these buoys by examining wind profiles by stability regime in Figure 

12. Here, we focus on Buoy 46022 (i.e., at the Humboldt Call Area). As suspected, the figure shows close agreement 

between the two PBL schemes from unstable to weakly stable conditions, but strong divergence in weakly stable to 
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stable conditions. Most of this divergence occurs in the lower 50 m of the atmosphere, where the MYNN scheme 

shows a considerably sharper gradient before both PBL schemes model similar wind shear up to 200 m. Finally, we 

note that Humboldt is subject to some form of stable atmospheric conditions most of the time (81.9%) according to 

the RiB 

values. Therefore, the mean modeled wind profiles in OCS Call Areas are strongly influenced by how the 

PBL scheme performs under such conditions.

 

Figure 12. Mean modeled wind profiles at Buoy 46022 (Humboldt Call Area) by sta- 

bility regime for the MYNN-based (blue) and YSU-based (orange) WRF setups 

The lack of observations available to validate these divergent wind profiles is a significant limitation to this anal- 

ysis. Specifically, a floating lidar measuring offshore wind profiles near these wind energy Call Areas is crucial to 

determine which of these PBL schemes is best suited for accurate wind modeling in the OCS. 

2.5.1 Leveraging Atlantic Lidars 

Lacking floating lidar to validate the modeled wind profiles in the OCS, we instead leverage recently deployed 

floating lidars in the Atlantic via NYSERDA (see Section 2.2.1). 

An exhaustive analysis of the 16 WRF model setups at these lidar locations is beyond the scope of this study. In- 

stead, we compare only the MYNN and YSU planetary boundary layer schemes to determine which is most accurate 

across the different stability regimes. For this analysis, we use the ERA5 reanalysis, the OSTIA sea-surface tempera- 

ture product, and the Noah land surface model, which validated best against the OCS observations. We run the same 

WRF setup described in Section 2.2 from August 2019 to May 2020 over a domain centered on the two lidars. 

Mean modeled and observed wind profiles at each lidar location are shown in Figure 13. Both the MYNN- and 

YSU-modeled profiles overestimate wind shear at lower heights and underestimate shear at upper heights. There 

is relatively little difference between the mean modeled profiles apart from higher shear observed with the MYNN 

profile at lower heights. These similar profiles are in contrast to the mean profiles observed in the OCS (Figure 9). 
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Figure 13. Mean modeled and observed wind profiles at NY- 

SERDA floating Lidar E05 from September 2019 through May 2020 

Similar to Figure 12, we separate wind profiles at Lidar E05 into stability regimes according to the modeled bulk 

Richardson number between 200 m and the surface, as modeled from the MYNN-based run. Results are shown 

in Figure 14, and we note that similar results were found at Lidar E06 and therefore not shown here. Similar to 

the OCS (Figure 12), the winds at Lidar E05 are weaker in unstable conditions and very unstable conditions, and 

stronger from weakly unstable through stable conditions. The modeled profiles also show similar relative behavior 

to the OCS: they are similar from very unstable to weakly unstable conditions before diverging in weakly stable to 

stable conditions, with higher winds modeled using the MYNN scheme. Compared to the observations, there is no 

clear improvement in one modeled profile over another. Focusing on weakly stable and stable conditions where the 

modeled profiles differ the most, Figure 14 indicates better performance with YSU in weakly stable conditions and 

with MYNN in stable conditions. 

Focusing on the 100-m wind speeds, we present performance metrics for the MYNN- and YSU-based profiles, 

averaged across both lidars, in Figure 15. The YSU model has slightly lower unbiased RMSE in most stability 

regimes, apart from very unstable and very stable conditions. The YSU model generally has lower bias in the un- 

stable regimes, whereas the MYNN model has lower bias in the stable regimes. Modeled performance in EMD is 

similar to that of the bias metric. Overall, neither the MYNN nor YSU model is showing a clear improvement over 

the other. 

Given the predominance of stable conditions in the OCS, the relative performance of the MYNN- and YSU-based 

simulations at the NYSERDA lidars should be more weighted toward performance in stable conditions. To do so, 

we multiply the performance metrics in each stability regime in Figure 15 by the mean percentage frequency of that 

stability regime across the three Call Areas. By taking the sum across all weighted stability regimes, we can assess 

how well the MYNN- and YSU-based simulations might perform in the OCS had floating lidar data been available. 

Results are summarized in Table 6 and Figure 16. 

The weighted results show that the MYNN and YSU performances are very similar: YSU-based simulations have 

slightly less unbiased RMSE overall, whereas MYNN-based simulations have moderately lower bias and slightly 

lower EMD overall. 
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Figure 14. Mean modeled wind profiles at NYSERDA floating lidars, taken as an average be- 

tween E05 and E06. MYNN profiles are in blue, YSU in orange, and observed in dotted black. 

Table 6. Performance Metrics for MYNN- and YSU-Modeled 100-m Wind Speeds, 

Averaged Across Both the E05 and E06 NYSERDA Floating Lidars and Weighted 

by Frequency of Stability Regimes Across the Three California Call Areas

 

Stability Regime Frequency at Humboldt (%) Unbiased RMSE (m·s− 1) Bias (m·s− 1) EMD (m·s− 1) 

MYNN YSU MYNN YSU MYNN YSU

 

Very unstable 1.1 1.57 1.57 -1.04 -0.47 1.04 0.47 

Unstable 6.4 1.90 1.83 -0.34 0.02 0.47 0.25 

Weakly unstable 10.5 2.27 2.24 0.67 0.66 0.67 0.67 

Weakly stable 22.3 2.53 2.30 0.62 -0.10 0.68 0.31 

Stable 23.2 2.87 2.80 0.07 -0.91 0.51 0.94 

Very stable 36.4 2.79 2.82 -1.00 -1.12 1.01 1.12

 

Weighted total 2.62 2.56 0.63 0.72 0.75 0.79
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Figure 15. Performance metrics for MYNN- and YSU-modeled 100-m wind 

speeds, averaged across both the E05 and E06 NYSERDA floating lidars

 

Figure 16. Performance metrics for MYNN- and YSU-modeled 100-m wind 

speeds, averaged across both the E05 and E06 NYSERDA floating lidars and 

weighted by frequency of stability regimes at the Humboldt Call Area in California 
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2.6 Final Choice on 20-Year Model Setup 

In this section, we present a comparison of 16 WRF model setups to be considered as the final model setup in which 

to run the updated 20-year wind resource analysis for the OCS. These simulations were compared against buoy and 

coastal radar measurements in California, as well as two floating lidars in the Atlantic off the coast of New Jersey. 

Based on the analysis of buoy and coastal radar measurements in the OCS, we found that: 

1. WRF models forced using the ERA5 reanalysis product had lower unbiased RMSE, bias, and EMD than those 

forced by the MERRA-2 reanalysis product 

2. The impact of SST product was less significant, with the OSTIA product generally showing slightly better 

performance 

3. The impact of LSM was not significant. 

These results justify the choice of the ERA5 reanalysis, OSTIA SST, and the Noah LSM scheme for use in the 20- 

year simulations. 

The choice between MYNN and YSU is more challenging given how similar they performed against observations. 

However, the MYNN PBL scheme slightly outperformed YSU overall in the following ways: 

1. Moderately lower bias and EMD than YSU when evaluated at the California buoys and radars 

2. Moderately lower bias and slightly lower EMD than YSU when evaluated at the NYSERDA floating lidars and 

weighted based on the frequency of stability regimes across the three Call Areas. 

Furthermore, as described in Section 2.1, the MYNN scheme continues to be the focus of significant R&D and is 

used in most other operational NWP products and wind atlases. Therefore, there is a precedent in the atmospheric 

community toward aligning with the use of MYNN. 

Table 7. Final WRF Component Selection for New 20-Year Wind Resource Data Set for the OCS

 

Model Component Selection for New 20-Year Data Set

 

Reanalysis product ERA5 

PBL scheme MYNN 

SST product OSTIA 

LSM Noah

 

21

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



 

3 CA20 Final Data Set 

3.1 Updated Wind Resource Maps 

Using the final WRF setup summarized in Table 7, the updated annual 100-m wind resource maps for the OCS are 

shown in Figures 17, 18, and 19 for all of OCS, Northern California, and Southern California, respectively.

 

Figure 17. Mean annual wind resource for the OCS based on the new 20-year data set 

3.2 Update to Technical Potential 

The resource assessment using the CA20 wind resource data indicates an increase in technical potential for the 

OCS, summarized in Table 8. This increase in technical potential is based on comparisons with NREL’s 2016 U.S. 

wind energy resource assessment, which was largely based on an AWS Truepower data set (Musial et al. 2016) and 

comparisons with the NREL WTK data. In NREL’s 2016 resource assessment (Musial et al. 2016), the technical 

potential included the offshore wind capacity that could be developed while taking into account exclusion factors 

related to water depth (1,000 m), mean wind speed (greater than 7 m·s− 1), and reductions due to possible conflicting 

uses and environmental conflicts (a total of 150 GW). By contrast, gross potential is the capacity without these 

filters. 

In this new CA20 resource assessment, the technical potential increases to 201 GW. This is due to three factors: 
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Figure 18. Mean annual wind resource for the OCS based 

on the new 20-year data set, focused on Northern California 
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Figure 19. Mean annual wind resource for the OCS based 

on the new 20-year data set, focused on Southern California 

1. In the 2016 assessment, a significant reduction was taken on the technical resource to account for possible 

competing uses and environmental exclusions. In this CA20 assessment, these exclusions were not taken, 

which makes the total technical potential significantly higher. The 2016 exclusions, based on percentages 

of the resource area, were based on national estimates and did not reflect a careful marine spatial planning 

process for California. Therefore, the CA20 assessment does not try to account for any possible competing 

uses or environmental reductions. This task is left to state and federal planning agencies. 

2. We have increased the depth limit from 1,000 m to 1,300 m for floating wind installations (Figure 20, with 

bathymetry data provided by NOAA’s Coastal Relief Model), which reflects potential advancements in floating 

wind mooring technologies. This new depth limit resulted in some additional resource area, mostly on the 

western boundary. We do not explicitly calculate the increase in technical potential as a result of the increased 

depth limit, but it is expected to be minor compared to the impact from exclusion adjustments, as described in 

the previous point. 

3. The 7-m·s− 1 wind speed low-wind filter remained the same, but because of some modeled increases in the an- 

nual average wind speeds in the CA20 data set, the resource area expanded and pushed the southern boundary 

slightly outward. We calculated this increased wind resource capacity caused by higher average wind speeds in 

the CA20 assessment to be 4.7% compared to the 2016 assessment. 

Breakdowns of technical potential by wind speed bins, distance to shore, and water depth are shown in Tables 9, 10, 

and 11, respectively. 
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Figure 20. Bathymetry of the OCS up to 1,300 m 

Table 8. Comparison of Technical Potential Estimates from 2016 Report and This Report

 

2016 Report This Report 

Metric WIND Toolkit CA20 Data Set

 

Minimum average wind speed (m·s− 1) 7.0 7.0 7.0 

Maximum water depth (m) 1,000 1,300 1,300 

Array density (MW·km− 2) 3.0 3.0 3.0 

Gross potential (km2) 566,058 566,058 566,058 

Gross potential (GW) 1,698 1,698 1,698 

Technical potential (km2) 49,916 64,048 67,067 

Technical potential (GW) 150 192 201 
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Table 9. Technical Potential Estimates from CA20 Data Set by Wind Speed Bins. Northern and 

Southern Potentials are Split Based on a Line at 37.8o, Which Runs Through San Francisco.

 

Bin (m·s− 1) Northern CA (MW) Southern CA (MW) Total (MW)

 

7.0–7.5 2,845 14,636 17,480 

7.5–8.0 3,086 16,106 19,192 

8.0–8.5 3,540 19,787 23,327 

8.5–9.0 4,233 21,388 25,621 

9.0–9.5 5,313 33,465 38,778 

9.5–10.0 6,972 26,836 33,808 

10.0–10.5 12,268 549 12,817 

10.5–11.0 15,540 0 15,540 

11.0–11.5 8,404 0 8,404 

11.5–12.0 6,234 0 6,234

 

Total 68,435 132,767 201,202

 

Table 10. Technical Potential Estimates from CA20 Data Set by Distance to Shore. Northern and 

Southern Potentials are Split Based on a Line at 37.8o, Which Runs Through San Francisco.

 

Bin (Nautical Miles) Northern CA (MW) Southern CA (MW) Total (MW)

 

<3 6,643 9,094 15,737 

3–15 36,364 53,143 89,507 

>15 25,428 70,530 95,958

 

Total 68,435 132,767 201,202

 

Table 11. Technical Potential Estimates from CA20 Data Set by Water Depth. Northern and 

Southern Potentials are Split Based on a Line at 37.8o, Which Runs Through San Francisco.

 

Bin (m) Northern CA (MW) Southern CA (MW) Total (MW)

 

<60 6,317 6,907 13,224 

60–400 27,533 34,227 61,761 

400–700 9,620 31,612 41,232 

700–1,000 12,969 27,740 40,709 

1,000–1,300 11,996 32,280 44,276

 

Total 68,435 132,767 201,202
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4 Comparison to WIND Toolkit 

In this section, we compare the CA20 data set against the original WIND Toolkit. We focus mainly on changes to the 

annual wind resource, particularly at the wind energy call areas, and describe the cause for any changes. 

Throughout this section, we refer to the original WIND Toolkit as WTK for brevity. 

4.1 Summary of Changes in Wind Resource 

In Figure 21, we compare the mean annual wind resource between CA20 and WTK. The rightmost figure shows 

the difference in annual 100-m wind speeds between the two data sets, with positive (red) values indicating a higher 

wind resource modeled using the new CA20 data set. We see significant increases in the wind resource across the 

OCS, especially near the coastline and at the wind energy call areas.

 

Figure 21. Mean 100-m wind speeds for the OCS modeled using CA20 (left) 

and WTK (middle). The difference between the two modeled data sets is shown 

on the right. Call areas are shown in red (left and center) and green (right). 

Table 12 summarizes the change in mean annual 100-m wind resource at the centroids of each wind energy call area. 

The modeled mean wind speeds increase substantially at each call area with the CA20 data set: 10.6%, 16.1%, and 

19.2% at Humboldt, Morro Bay, and Diablo Canyon, respectively. 

Table 12. Comparison of Mean Annual 100-m Wind Speeds Between the WIND 

Toolkit and the New 20-Year Data Set at the Offshore California Call Area Centroids

 

Call Area Mean Wind Speed (m·s− 1) Change 

WIND Toolkit Updated Data Set (m·s− 1) (%)

 

Humboldt 9.41 10.41 1.00 10.6 

Morro Bay 8.20 9.52 1.32 16.1 

Diablo Canyon 7.70 9.18 1.48 19.2

 

These large increases in the wind resource will have important implications for the feasibility and competitiveness of 

the California offshore wind industry. Because of these implications, we explore in Section 4.2 the reasons for this 

increase and attribute it to the main differences in the CA20 and WTK model setups. 

4.2 Explaining the Increased Wind Resource Estimates 

To explain the substantial increase in the modeled wind resource with the new CA20 data set compared to the origi- 

nal WTK, we first highlight the main differences between the models. These differences are summarized in Table 13 

and here: 
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• Updated reanalysis product from ECMWF : The ERA5 reanalysis, which replaces its predecessor ERA- 

interim, used in the WTK. 

• PBL scheme : As described in Section 2, the choice of PBL scheme has significant impact on mean wind 

profiles in the OCS. The new CA20 model uses MYNN, whereas the original WIND Toolkit uses the YSU 

scheme. 

• Time period : The time period of simulation is another major difference; the new CA20 data set models a full 

20 years (2000–2019), whereas the WTK modeled only the years 2007–2013. 

• Sea-surface temperature product : The two data sets use different SST products. CA20 leverages the OSTIA 

0.25-degree data set for model years 2007 and higher and the HadISST2 data set for the 2000–2006 model 

years; WTK uses the NCEP RTG 1/12-degree SST data set, which was discontinued in 2019. 

• WRF version : Finally, the data sets use different versions of the WRF NWP model. The CA20 data set 

leverages a recent release of the WRF model, Version 4.1.2, whereas the WTK used Version 3.4, which was 

the state of the art in 2013. 

Table 13. Comparison of Key Attributes Between WTK and CA20

 

Feature WIND Toolkit CA20

 

Reanalysis product ERA-interim ERA5 

Planetary boundary layer scheme YSU MYNN 

Time period 7 years (2007–2013) 20 years (2000–2019) 

Sea-surface temperature product NCEP RTG 1/12 degree HadISST2 0.25 degree (pre-2007) 

OSTIA 0.25 degree (post-2007) 

WRF version 3.4 4.1.2

 

4.2.1 Reanalysis Data 

The ERA5 reanalysis data set is the latest state-of-the-art product released by ECMWF and now replaces ERA- 

interim. The code was released in 2016 and over the last 4 years, reanalysis data back to 1979 have been produced 

and disseminated. Table 14 summarizes the main differences between ERA5 and its predecessor ERA-interim. Most 

notable is the increased horizontal resolution from 79 km in ERA-interim to 31 km in ERA5—increasing by nearly 

a factor of 3. The number of vertical levels more than doubled from 60 to 137. Finally, the time frequency of the 

publicly released data increased from every 6 hours to hourly, allowing much better resolution of the large-scale flow. 

Beyond the improvements highlighted in Table 14, an extensive range of physics, dynamics, and parameterization 

improvements went into ERA5. Discussion of these improvements is beyond the scope of this report, but can be 

found in Hersbach et al. 2020. 

Table 14. Comparison of Key Attributes Between ERA-Interim and ERA5

 

Feature ERA-Interim ERA5

 

Model release 2006 2016 

Horizontal resolution 79 km 31 km 

Vertical resolution 60 levels 137 levels 

Output frequency 6 hours Hourly

 

In Figure 22, we compare the mean annual wind resource in 2017 when ERA5 and ERA-interim are used as bound- 

ary forcings to the WRF model. The figure shows that despite extensive improvements from ERA-interim to ERA5, 

there are only modest differences in the 100-m WRF-modeled wind speeds in the OCS. 
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Figure 22. Mean 100-m wind speeds for the OCS modeled using WRF when forced by the ERA5 reanal- 

ysis product (left) and the ERA-interim reanalysis product (middle). The difference between the two 

modeled data sets is shown on the right. Call areas are shown in red (left and center) and green (right). 

4.2.2 PBL Scheme 

As detailed in Section 3, the use of MYNN and YSU schemes in WRF can have a substantial influence on the mean 

wind profile, especially in stable conditions. Figure 21 shows the difference in mean annual wind speeds for 2017 

in the OCS when using MYNN compared to YSU. As shown in the figure, the use of MYNN results in higher wind 

speeds, particularly closer to the coastline, with increases of 1.02, 0.70, and 0.64 m·s− 1 at the Humboldt, Morro Bay, 

and Diablo Canyon call areas, respectively.

 

Figure 23. Comparison of mean 100-m wind speeds in 2017 when using MYNN 

(left) and YSU (middle) PBL schemes. The difference between the two is shown 

on the right. Call areas are shown in red (left and center) and green (right). 

4.2.3 Time Period 

The impact of modeling time period (i.e., use of 20 years in CA20 versus 7 years in WTK) is shown in Figure 24. 

Here, we plot the mean annual 100-m wind speeds from the CA20 data set over the full 2000–2019 data period and 

over the 2007–2013 period. As shown in the figure, there is an overall slight decrease in the mean resource when 

modeled over the full 20 years compared to the 7-year period, indicating that the 2007–2013 period had a slightly 

above-average wind resource. Overall, we find decreases of -0.08, -0.37, and -0.32 m·s− 1 at the Humboldt, Morro 

Bay, and Diablo Canyon call areas, respectively. 

We further investigate estimates of interannual variability (IAV) between the 20-year and 7-year periods. The IAV 

metric is defined as the expected variation of the wind resource from year to year, and is calculated as the standard 

deviation of annual wind speeds divided by the long-term mean. This IAV metric is a critical component of precon- 

struction energy estimates and a key source of risk for investing in new wind farm construction. 

A comparison of IAV over the 20-year and 7-year time periods is shown in Figure 25. As shown in the figure, the 

two time periods model substantial differences in IAV, particularly in the middle of the domain, where we see differ- 
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Figure 24. Comparison of mean long-term 100-m wind speeds in the CA20 wind resource data set when 

considering the full 20-year period (2000–2019; left) and only a 7-year period (2007–2013; center). The differ- 

ence between the two is shown on the right. Call areas are shown in red (left and center) and green (right). 

ences of 5% or greater. The impact is less at the wind energy call areas, where we find increases of around 1.0% to 

1.5%.

 

Figure 25. Comparison of interannual variability estimated from the CA20 

data set (left) and the WTK (middle). The difference between the two is shown 

on the right. Call areas are shown in red (left and center) and green (right). 

We explore the reason for the large increase in the central domain in Figure 26. Here, we plot the time series of 

annual wind speeds at Buoy 46014, where an increase of more than 5% IAV is observed using the full 20-year time 

period. The figure shows that the annual wind speeds during the WTK modeling period (2007–2013) were consistent 

with very low variability. Indeed, this period represents the most consistent wind speeds in the entire 20-year record. 

Outside this WTK modeling period, we observe much more variability in the wind resource. 

This discrepancy in IAV highlights a key limitation of the 7-year WTK data set and the importance of a longer time 

period to more accurately capture the annual variability of the wind resource. 

4.2.4 Sea-Surface Temperature Product 

The impact of SST product (i.e., OSTIA in ERA5 and NCEP Real-Time Global in WTK) is shown in Figure 27. In 

general, the modeled resource is similar when different SST forcings are used, with differences across the OCS from 

-0.25 to 0.25 m·s− 1. For annual timescales, at least, the impact of SST product is relatively low. 

4.2.5 WRF Version 

The impact of WRF version (i.e., 4.1.2 for CA20 and 3.4.1 in WTK) is shown in Figure 28. There are some modest 

differences in the modeled resource between the two WRF versions, mostly ranging from -0.25 to 0.25 m·s− 1. For 

annual timescales, at least, the impact of WRF version is relatively low. 
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Figure 26. Mean annual wind speeds modeled from CA20 at 

Buoy 46014. The WTK period of record is shaded in blue.

 

Figure 27. Comparison of mean long-term 100-m wind speeds in the new wind re- 

source data set when using the OSTIA sea-surface temperature data set (left) and the 

NCEP RTG sea-surface tempterature data set (middle). The difference between the two 

is shown on the right. Call areas are shown in red (left and center) and green (right). 

4.2.6 Combined Impact 

In Figure 29, we combine the previous subsections to explore the combined impact of reanalysis product, PBL 

scheme, modeling time period, and SST product on explaining the increase in wind resource between CA20 and 

WTK. The figure shows that although most of the difference in the Northern California OCS is accounted for, there 

remains significant increases in the mid- and Southern California OCS not. Specifically, there remains an unex- 

plained 0.98 and 1.11 m·s− 1 increase at the Morro Bay and Diablo Canyon Call Areas; by contrast, only 0.17 m·s− 1 

is left unexplained at Humboldt. 

There are several potential explanations for the unaccounted increase in the wind resource between CA20 and WTK: 

• WRF version : The WTK used WRF Version 3.4, whereas CA20 used WRF Version 4.1.2. Given the exten- 

sive improvements across all aspects of the WRF model over the last 7 years, there are likely other model 

improvements not considered here that influence the wind resource (e.g., change to hybrid vertical coordinate 
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Figure 28. Comparison of mean long-term 100-m wind speeds in the new wind resource data 

set when using WRF version 4.1.2 (left) and WRF version 3.4.1 (middle). The difference between 

the two is shown on the right. Call areas are shown in red (left and center) and green (right). 

system in WRF version 4.0). 

• Topographic data : The WTK and CA20 model simulations used different topographic data sources: the 

WTK used the GTOPO30 data set from the U.S. Geological Survey (USGS) at a 30-second spatial resolution, 

whereas the CA20 data set used the next-generation GMTED2010 data set—a collaboration between USGS 

and the National Geospatial-Intelligence Agency—also at a 30-second spatial resolution. 

• Land-use data : The WTK and CA20 model simulations used different land-use category data sets: the WTK 

used the National Land Cover Database (NLCD) at a 3-second spatial resolution, whereas CA20 used the 

MODIS 30-second resolution data. 

• Vertical resolution : The WTK was run with 5 vertical levels below 200 m, whereas CA20 was run with 10 

vertical levels. Higher vertical resolution near the surface can have a large impact on modeled wind speeds at 

hub height. 

It is likely that these additional differences in model setup are driving some changes in the annual offshore wind 

resource. Further sensitivity analyses on these differences would be a good area for future study.

 

Figure 29. A summary of mean 100-m wind speed differences modeled between CA20 and WTK. The total 

difference is shown on the left. The explained difference in terms of reanalysis product, PBL scheme, time 

period, and SST product is shown in the middle. The remaining unexplained difference is shown on the right. 
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5 Quantifying Sensitivity in the Modeled Wind Resource 

This section summarizes the approaches to quantifying sensitivity (i.e., the spread in the distribution of WRF model 

setups) in the new wind resource data set. Sensitivity is quantified in terms of the standard deviation of 100-m wind 

speed normalized by wind speed itself, and it calculated on annual and hourly scales. 

5.1 WRF Ensemble Sensitivity in Wind Resource for 2017 

The use of multiple WRF setups (i.e., ensemble members) for numerical modeling allows for a direct assessment of 

the sensitivity or variability in the modeled wind resource. The use of this metric is limited to 2017, the year during 

which WRF ensemble runs were performed. 

This sensitivity metric is calculated using annual wind speed data (i.e., one value for each ensemble member at each 

location) and hourly average data (i.e., 8,760 values for each ensemble member at each location). At each time stamp 

at each grid point, the across-member standard deviation is calculated and normalized by the corresponding average 

wind speed. Then, the mean value at each location is taken. 

Figure 30 shows maps of the obtained average values of sensitivity in 100-m wind speed, computed using annual and 

hourly average wind speed data. Sensitivity varies between 1% and 7% and is largest closest to the coast and within 

the wind energy call areas. Most of this sensitivity can be attributed to the choice of PBL scheme (MYNN or YSU) 

and the diverging wind profiles associated with each under strong stable atmospheric conditions near the coastline.

 

Figure 30. Mean annual sensitivity in 100-m wind speed quantified as an 

across-member normalized standard deviation from the 2017 ensemble runs 
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5.2 Extrapolation of Sensitivity in Wind Resource to 20-Year Period 

Because of computational limitations, the ensemble runs produced in 2017 could not be run for the whole 20-year 

period. However, it is still valuable to provide high-resolution sensitivity metrics for the full long-term period. To 

address this problem, state-of-the-art techniques can be leveraged to extrapolate the hourly sensitivity in 100-m wind 

resource to the full 20-year period. Two different approaches are followed so that a confidence interval can be added 

to the proposed uncertainty extrapolation: 

1. A machine-learning algorithm to extrapolate the WRF-based ensemble uncertainty from 2017 to the full 20- 

year period 

2. An analog ensemble technique (e.g., Alessandrini et al. 2015) to quantify local sensitivity in wind resource 

from the spread in modeled cases with similar atmospheric conditions. 

5.2.1 20-Year Wind Speed Uncertainty from Machine-Learning Approach 

A machine-learning gradient-boosting algorithm is used to extrapolate the WRF ensemble spread calculated for the 

2017 100-m wind speed to the full 20-year record of 100-m wind speeds. To do so, the machine-learning algorithm 

is trained to predict the hourly average ensemble standard deviation of 100-m wind speed, normalized by the 100-m 

wind speed itself. The following set of variables from the WRF runs are used as inputs to the learning model: 

• Wind speed at 100 m above ground level (AGL) 

• Wind direction at 100 m AGL 

• Temperature at 40 m AGL 

• Inverse of Obukhov length at 2 m AGL 

• Standard deviation of 100-m wind speed calculated over the preceding 6 hours 

• Standard deviation of 100-m wind speed calculated over the preceding 2 hours 

• Shear exponent calculated between 200 m and 10 m AGL 

• Time of day 

• Month. 

The gradient-boosting model is trained at each grid location using the 2017 data and then applied to predict the 

100-m wind speed normalized standard deviation for the full 20-year period. The algorithm is trained using the 

coefficient of determination, R2, as the performance metric to tune the model weights. Randomized cross validation 

is used to adapt the hyperparameters1 to optimize the model performance while avoiding overfitting. The considered 

hyperparameters and the ranges of values sampled in the cross validation are reported in Table 15. 

Table 15. Hyperparameters Considered in the Gradient-Boosting 

Model and Range of Values Sampled for Each in the Cross Validation

 

Hyperparameter Values Sampled

 

Learning rate From 0.05 to 1 

Maximum tree depth From 4 to 10 

Maximum number of features From 1 to 7 

Minimum number of samples to split From 2 to 20 

Minimum number of samples for a leaf From 1 to 20 

Number of estimators From 100 to 300

 

1Hyperparameters are algorithm parameters that are set before the learning process begins 
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Figure 31 shows the 100-m wind speed uncertainty for the region surrounding the Humboldt lease area, calculated 

as the median value of the hourly prediction for the full 20-year period. Sensitivity in wind speed increases closer 

to land, with values greater than 20% at the hourly scale. In the region of interest for the Humboldt lease, median 

uncertainty in hourly wind speed ranges between 11% and 12%.

 

Figure 31. Median hourly uncertainty in 100-m wind speed as derived 

from the machine-learning approach applied to the full 20-year period. 

5.2.2 20-Year Wind Speed Uncertainty from Analog Ensemble Approach 

The second approach applied to quantify long-term hourly wind speed uncertainty uses an analog ensemble (AnEn) 

technique (Alessandrini et al. 2015). With this approach, at each site, the value of multiple physical variables (the 

same inputs used in the machine-learning model, except for time of day and month) is retrieved for a time window 

centered around each hourly time stamp. Then, analog windows are identified as other historical cases with condi- 

tions similar to those in the target window and occurring around the same hour of the day. The analogs are ranked 

by closeness of match. The 20 best analogs are chosen, and the corresponding modeled values of 100-m wind speed 

saved. The choice of using 20 analogs is justified to resemble the number of WRF ensemble members used in the nu- 

merical modeling. In computing the closeness of match metric to identify the analogs, relative weights are assigned 

to the various physical variables considered, as shown in Table 16. 

The final result of this approach is the analog ensemble, which is a set of 20 hourly average wind speed values for 

each time stamp at each location. It is assumed that the spread of the 20 analogs can be considered as a proxy of the 

uncertainty in wind resource. The standard deviation of the 20 analog values, normalized by their average, is then 

calculated and used as metric to quantify this uncertainty. Research into the analog ensemble method is still ongoing; 

therefore, we present preliminary results for the area around the Humboldt Call Area. 

Figures 32 and 33 contrast the machine-learning and analog ensemble-based approaches around the Humboldt Call 

Area. As found with the machine-learning approach, sensitivity in wind speed increases closer to land. Overall, the 

values found with the analog ensemble (ranging from about 4% to 11%) are substantially smaller than what was 

estimated with the machine-learning approach (ranging from about 9% to 25%). Reasons for these differences will 

be the focus of future analysis. 
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Table 16. Weights Given to Each Physical Variable in Com- 

puting the Closeness of Match Metric to Identify the Analogs

 

Physical Variable AnEn Weight

 

Wind speed at 100 m AGL 0.5 

Wind direction at 100 m AGL 0.2 

Temperature at 40 m AGL 0.05 

Inverse of Obukhov length at 2 m AGL 0.05 

Standard deviation of 100-m wind speed over preceding 6 hours 0.05 

Standard deviation of 100-m wind speed over preceding 2 hours 0.1 

Shear exponent calculated between 200 m and 10 m AGL 0.05

 

Figure 32. Median hourly uncertainty in 100-m wind speed around the Humboldt Call Area 

(grey) as derived from the machine-learning approach applied to the full 20-year period. 
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Figure 33. Median hourly uncertainty in 100-m wind speed around the Humboldt Call Area 

(grey) as derived from the Analog Ensemble (AnEn) approach applied to the full 20-year period 
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6 Summary and Key Findings 

This report presents a state-of-the-art wind resource data set by NREL for the OCS. This CA20 data set is intended 

to be used in place of NREL’s WIND Toolkit, which was produced and released publicly in 2013 and is currently 

the principal data set used by stakeholders for wind resource assessment in the OCS. This update to the OCS wind 

resource data set is part of a larger study funded by BOEM that will provide an updated cost model for floating 

offshore wind in the OCS. This work is also part of a broader effort to replace NREL’s WIND Toolkit using the 

20-year, ensemble-based modeling approach employed here. 

The CA20 data set improves upon the WIND Toolkit through: 

1. A 20-year modeling period from 2000 through 2019 (compared to the 7-year 2007–2013 modeling period in 

the WIND Toolkit) 

2. A sensitivity analysis of the hub-height wind resource, driven by an ensemble of 16 different WRF simulations 

run in the 2017 calendar year 

3. An updated WRF version, from Version 3.4 used in the WIND Toolkit to Version 4.1.2 used here, which 

incorporates significant R&D advancements 

4. The use of the state-of-the-art reanalysis product ERA5 to provide atmospheric forcing at the WRF domain 

boundaries. The ERA5 product is produced by the ECMWF and replaces its older ERA-interim product, 

which was used in the WIND Toolkit. 

This report found significantly higher mean wind speeds modeled in the new data set compared to the WIND Toolkit. 

In some areas, the increase approaches and even exceeds 2 m·s− 1, or an increase of about 20%. Increases in the 

estimated mean 100-m wind speed at the centroids of current wind energy call areas are 9.7%, 17.4%, and 19.7% at 

Humboldt, Morro Bay, and Diablo Canyon, respectively. 

This increase in the modeled wind resource is significant and will impact economic and energy modeling and plan- 

ning for offshore wind in the OCS. Therefore, this report largely focuses on explaining and justifying this increase 

in the modeled resource, primarily through validation against observation and examining the underlying differences 

between the new CA20 data set and the WIND Toolkit model setups. 

Based on this detailed analysis, much of the increase in the modeled wind resource can be attributed to an updated 

PBL scheme. The WIND Toolkit used the YSU scheme, whereas the new data set uses the MYNN scheme. The 

MYNN scheme has become the global standard and has been the subject of significant research and development 

over the past decade. The use of the MYNN scheme produces significantly higher hub-height wind speeds than 

YSU, which can be attributed to the high frequency of stable atmospheric conditions in the OCS and the divergence 

of these PBL schemes under such conditions. 

This increase in the modeled wind resource leads to an increase in estimated technical potential for the OCS. The 

new technical potential is compared against the values quantified in NREL’s 2016 report on the U.S. offshore wind 

resource (Musial et al. 2016). The increased wind resource in the new data set leads to a 4.7% increase in area-based 

and capacity-based technical potential, which can be attributed to a slightly larger OCS area that exceeds 7 m·s− 1. 

Finally, the significant increase in the modeled wind resource compared to the WIND Toolkit highlights the spread 

of NWP-modeled wind speeds to model inputs and setup. To quantify the sensitivity of this modeled OCS wind 

resource data set, NREL considered an ensemble of 16 WRF setups ran in the 2017 calendar year that vary in the 

inputs and model parameterizations within WRF. These setups account for different reanalysis products as boundary 

forcing, different PBL schemes, different SST forcing products, and different land surface schemes. Sensitivity in 

the annual 100-m wind resource was found to be 5% to 7% across the OCS wind energy Call Areas. These values 

can be interpreted as confidence in the modeled wind resource at each grid point. Sensitivity calculated for the 

2017 calendar year was then extended to the 20-year data set by training a machine-learning model to predict this 

sensitivity based on key modeled atmospheric variables. This novel approach developed by NREL is then contrasted 
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against a more typical analog ensemble approach in which wind speed spread or sensitivity is deduced from a single 

model run without the use of actual ensembles. 
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7 Recommendations for Future Analysis 

7.1 The OCS Wind Resource 

This analysis reveals that the OCS is characterized by high frequencies of stable atmospheric conditions, which 

have a significant impact on the wind profile. A detailed analysis of OCS wind conditions under such stability was 

beyond the scope of this analysis; however, it is likely that strong low-level jets and high-shear events are common 

in the OCS. This high frequency of stable conditions, which is most common near the coastline, is likely caused by 

upwelling of cold water to the surface along the coast, which cools the air near the ocean surface and induces a stable 

stratification. 

NREL recommends future work to fully characterize the wind resource under such unique meteorological condi- 

tions. An analysis of floating lidar data (to be deployed in the near future by DOE) and comparison against the WRF 

model would highlight how well these highly stable conditions can be modeled and how accurately WRF can predict 

low-level jets and other events associated with this phenomenon. Such lidar data would also be extremely valuable in 

validating the CA20 data set. 

In addition, now that a 20-year wind resource data set has been produced, a detailed analysis of wind and solar re- 

sources can be performed for the OCS. NREL’s National Solar Radiation Database contains more than 20 years 

of estimated solar irradiance from satellite measurements. These data, combined with the new 20-year wind re- 

source data set, can be used to explore how the wind resource in different parts of the OCS can complement the 

solar resource and mediate the well-known “duck curve” in California, where the solar resource decreases in the late 

afternoon and evenings just as demand is increasing. 

7.2 Extending New Data Set to More Offshore Domains 

This new wind resource data set for the OCS highlights the advancement of NWP modeling capabilities at NREL. 

The creation of a 20-year data set, as well as 16 ensemble setups run over a year, are made possible by investment in 

both computational resources and atmospheric science expertise at the lab. The methods and framework developed 

to produce this new data set are currently being leveraged to begin the full replacement of the national-scale WIND 

Toolkit, which is expected to be complete by 2022. However, 20-year data sets for key U.S. offshore areas (e.g., 

Atlantic, Hawaii, Oregon) will be completed in late 2020 to early 2021 to further support the U.S. offshore wind 

industry. 

Given the rapid pace of R&D in NWP science, with an emphasis on improving offshore wind resource modeling, 

NREL anticipates the need to continually update its wind resource modeling capabilities and products, likely through 

5- to 7-year update periods. These frequent updates will ensure that NREL is producing the most accurate and 

comprehensive wind resource data sets for both its U.S. and global wind energy stakeholders. 
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8 Appendix 

8.1 Validating With Coastal Measurements 

As discussed in Section 3, the use of coastal stations for offshore wind resource characterization and model valida- 

tion is not ideal. Coastal stations are located far from current offshore wind energy lease areas and can have very 

different wind resource characteristics than those farther offshore. More importantly, large wind speed gradients at 

the coastline generally prohibit a meaningful validation of mesoscale-modeled wind speeds when these models are 

run at coarse resolution (e.g., 2-km resolution in the WIND Toolkit). Under these conditions, modeled wind speed 

from one model grid box to the next can change significantly, and the interpolation of modeled wind speeds to the 

observation station for purposes of validation is highly uncertain. 

Figure 34 illustrates this coastal gradient problem at the McKinleyville radar station. The figure shows a 2-by-2- 

km grid of mean annual 200-m wind speeds from the WRF in 2017. The radar station is located in an area of high 

coastal gradients in which wind speeds in neighboring grid boxes can vary by over 1 m·s− 1. Therefore, validating 

different model setups—where model differences in mean annual wind speeds can be on the order of 0.25 m·s− 1 or 

less—can be difficult if not unreliable at coastal stations.

 

Figure 34. Mean annual wind speeds in 2017 at the McKin- 

leyville radar site (red star), modeled in 2-km grid boxes by WRF 

8.2 Ensemble Validation 

Heat maps of unbiased RMSE, bias, and EMD for each WRF model setup at each of the OCS observation stations 

are shown in Figures 35–37. 
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Figure 35. Unbiased RMSE for each WRF model setup at each of the observation stations

 

Figure 36. Bias for each WRF model setup at each of the observation stations 
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Figure 37. EMD for each WRF model setup at each of the observation stations 
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