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Optimization of a power plant’s output 
requires the ability to predict
output temperatures and pressures 
of production wells based on 
the inputs of injection wells, production 
mass flow rates, and the history of the field

Machine Learning (ML) techniques can capture 
nonlinear relationships between 
independent/dependent variables
in geothermal systems   
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Problem

Approach

Investigation

1-injector, 1-producer analytical 
model (Song, et al., 2018) 

Timeseries 
Forecasting Multi-well 

modeling for 
Brady reservoir

Forecasting with 
additional channels
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Simulations & Data ML 

• 3D numerical thermo-hydraulic (TH) dual-
porosity reservoir model developed for 
Brady Hot Springs in CMG STARS

• Model validated using historical data
• Future production temperature and 

pressure profiles simulated for various 
injection and production flow scenarios

• MLP (Multilayer Perceptron) 
• LSTM (Long Short-Term Memory) networks
• CNN (Convolutional Neural Network)

Producer’s 
temperature

in the past and now

Injectors’ current
temperature, pressure, mass flow

(12 channels for 4 injectors)

Future value of producer’s temperature
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Example Temperatures ProfilesInitial Reservoir Temperature

Analytical Model
(Song, et al., 2018) 

Brady

2 channels added to 
producer’s temperature sequences:

injection temperature and mass flow
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Learning Brady Reservoir’s data

37 simulated scenarios (baseline + 36)
--------

Training: 24
(65%)

Validation: 3 
(10%)

Test: 10 
(25%)

Train multiple models See which model 
generalizes best

Evaluate selected model’s 
prediction accuracy/error 

on unseen data

Evaluation Metric:
MAPE – Mean Absolute 

Percentage Error

Vary 
# of neurons 

and 
# of epochs
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Future Work:
• Train multi-headed networks 

to predict several quantities 
• Model exergy & energy

• Run & learn from simulations 
with additional constraints

Evaluation of Prediction Quality 

• Average MAPE: 1.8 - 6.5% 
• Maximum MAPE: 3 - 16%
• Errors get smaller if we predict <20 years
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Examples of scenarios predicted from start to finish (2020-2040)
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MAPE for individual predicted scenarios
(best trained MLP model is shown)

Summary 
of Learning

Experiments 
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