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Motlvatlng Question: To what extent can demand response
mitigate the increasing variability and uncertainty associated
with variable generation?

Demand response Analogy with Storage

N
Ll

* Low capital cost g My

* Uncertain opportunity cost i ; .

* New communication and control § : E
technologies 2| -

» Potential depth of deployment? § o s

» Ability to provide reserves and absorb Increasing VG Penetration ,

curtailment?
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Production Cost Model

Simulate operation of electric power
system
* Hourly or sub-hourly chronological
dispatch
* Commits and dispatches generating units
based on:
* Electricity demand
* Operating parameters of generators
* Transmission grid parameters

* Used for system generation and
transmission planning

* Increasingly used for real-time operation
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FRCC Production Cost Model

 Base model extracted from ERGIS

* FRCC broken into 6 Balancing Areas
e Captures major IOUs, Munis, and Co-ops

* Major connections to SERC captured

Denholm et. al, Impact of Flexibility Options on Grid Economic Carrying
Capacity of Solar and Wind: Three Case Studies, NREL 2016

www.peakload.org
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FRCC Capacity
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Scenario Framework

Flexibility Option Modeling Description Levels
Demand LBNL + NREL resource data modeled with two virtual Low DR
Response generators per region and end-use combination. High DR

Battery Storage

20 batteries of equal size are deployed throughout
FRCC. Each battery has 6 hours of storage.

Battery =1 GW
Large Battery =4 GW

PV Reserve
Provider

40% CC Min Gen

Reduced BA
Friction

PV is allowed to provide regulation and contingency
reserves.

The minimum generation for all CCs in FRCC are

reduced from 50% of their maximum capacity to 40%.

Reserve products in FRCC are merged into single
product rather than individual products for each BA.
Hurdle rates to import power are also removed.

Flex
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Scenario Framework

( PV Level, DR Option, Flex Option, Gas Price )

5%

10%

15%

20%

25%

30%

35%

40%

45%

None None AEO 2014 Mid
Low DR 1GW Battery (56.37-7.36/
MMBtu)
High DR Flex System
AEO 2016 Low
LGW + Flex ($4.39-5.08/
4GW Battery MMBtu)
4GW + Flex

www.peakload.org
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Demand Response Resource

disaggregated by county

Methodology described in:

Western Interconnection.” Technical Report LBNL-6417E.

residential hotwater
residential heating

residential cooling

municipal waterpumping
municipal wastewaterpumping
municipal outdoorlighting
industrial refrigeratedwarehouses
industrial manufacturing
industrial datacenters
industrial agriculture
commercial ventilation
commercial lighting
commercial heating
commercial cooling

* Load shapes tor end-uses that could participate in demand response are

Olsen, Daniel J., et al. 2013. “Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the

www.peakload.org
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Demand Response Resource

2500

1500
B commercial cooling

1000

500

* Looking at one particular end-use: commercial cooling

(MW)
M
(=]
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S

Load by End-Use

Methodology described in:
Olsen, Daniel J., et al. 2013. “Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the

Western Interconnection.” Technical Report LBNL-6417E.

www.peakload.org
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Demand Response Resource
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* Three filters are applied to this data
* Fraction of the load that is sheddable
* Fraction of the load that can be controlled

* Fraction of the load that would be acceptable to customers to be shed

Commercial Cooling
Sheddable
Low DR Contingency

rLIh
&
S P il
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Demand Response Resource Categories
Schedulable

High Thermal Capacity Storage

Storage

Sheddable
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Demand Response Resource Categories

Schedulable - discrete decisions per end-use, little environmental coupling

High Thermal Capacity Storage — set-point-driven, moderate environmental
coupling

Storage — often set-point-driven, potential for high environmental coupling

Sheddable - /ittle tolerance for change in service levels; capacity-only
resources
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Demand Response Resource Categories

Schedulable - e.g. pumping, manufacturing

High Thermal Capacity Storage — e.qg. refrigeration

Storage — e.g. heating & cooling

Sheddable —e.g. lighting & ventilation
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Grld Serwces Modeled

Energy — only a subset of end uses can provide energy shifting, must account
for payback capacity and timing

Contingency — most inclusive service — capacity is held to respond to
outages, peak (net) load conditions

Regulation — modeled like contingency in PCM, but resource needs to be
able to follow a fast signal, and performance needs to be measured
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Modeling Demand Response in the bulk power system

* Constraints
* Which grid services can be provided
* How long each service can be used
* When must the load be recovered by
* Restrictions on timing of the load recovery

* Assumptions
* Demand Response resource is given
e Zero marginal cost
* Centrally dispatched along with everything else to minimize system cost

* Allows us to measure the maximum value of the resource without insight
into future market structures

www.peakload.org
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nnuaT Generation differences from analogous Base
scenario

Difference in Generation (TWh)
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Impact of demand response is similar to 1 GW battery
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Demand response can provide significant portions of
regulation reserves
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Demand response is very well suited to provide
contingency reserves
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* Again, regulations
must be in place to
allow such a high
fraction of DR to
provide reserves

PV
I Demand Response
M Battery
Gas
Bcc
H Coal

Hale, Stoll, Novacheck, Forthcoming

www.peakload.org


http://www.peakload.org/

PLMA

Demand Response Leadership Since 1999

£ ()] oo
o o o

Incremental PV Value ($/MWh)
]
o

o

i =

e

10

15 20 25 30 35
Annual PV Penetration, %

Demand Response increases the value of PV
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Demand Response increases Economic Carrying

Capacity of PV
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Flexibility has a complex impact on emissions

Mid Gas Price Low Gas Price
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Hale, Stoll, Novacheck, Forthcoming
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Value of DR

* Each end-use differs in load shape, operating constraints, and level of grid
deployment. These all impact the amount of value they bring to the grid

g Commercial cooling 10 Municipal wastewater pumping

S 4001 Flexibility

O 5. Scenarios

= — Base

< 200- — 1GW Battery
XS] 0 — Flex System
o N — 1GW + Flex
9 _5- — 4GW Battery
= —4GW + Flex
S 0 5 10 15 20 0 5 10 15 20

= Hour

www.peakload.org
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Grid Service Provision by End-Use

Low DR High DR
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End-use Value by Component

* Capacity

* Emissions

* Fuel and VO&M

* Imports

e Startup & Shutdown Costs
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End-use Value by Component, Base scenario

Capacity

Emissions

Fuel+VO&M

Imports

Startup/Shutdown
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DR Scenarios
— Low DR
-- High DR

DR End Use

— Commercial cooling

— Commercial heating
Commercial lighting

— Commercial ventilation

— Industrial agriculture

— Industrial datacenters

— Industrial manufacturing
Industrial refrigerated warehouses
Municipal outdoor lighting

— Municipal wastewater pumping

— Municipal water pumping

— Residential cooling

— Residential heating

— Residential hotwater

www.peakload.org
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Total Value

* The total system
value of DR ranges
from -5.43 to
338.37 S/kW-year

e DR value is not
saturated in these
scenarios

* Additional flexibility
impacts value of DR

Base 1GW Battery | | Flex System | | 4GW Battery
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DR Scenarios
— Low DR
-- High DR

DR End Use

— Commercial cooling

— Commercial heating
Commercial lighting

— Commercial ventilation

— Industrial agriculture

— Industrial datacenters

— Industrial manufacturing
Industrial refrigerated warehouse
Municipal outdoor lighting

— Municipal wastewater pumping

— Municipal water pumping

— Residential cooling

— Residential heating

— Residential hotwater

www.peakload.org
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during curtailment (MWh/MW-year)
o

Availability of DR to increase load

Curtailment Reduction
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DR Scenario
— Low DR
-- High DR

DR End Uses

— Commercial cooling

— Commercial heating

— Industrial agriculture

— Industrial datacenters

— Industrial manufacturing
Industrial refr. warehouses

— Municipal wastewater pumping

— Municipal water pumping

— Residential cooling

— Residential heating

— Residential hotwater
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Conclusions

* Demand response can provide significant benefits to bulk power system
operations, particularly by displacing peaking units and helping to balance
variable generation

* Demand Response can provide much of the reserves needed by the system.
In some jurisdictions, participation rules focused on ensuring grid reliability
are the primary limitation on the fraction of reserves provided by load.

* The value of different end-uses vary dramatically based on their availability
and constraints. The more flexible end-uses whose availability coincides
with peak demand are most valuable

www.peakload.org
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Questions?

Brady Stoll
brady.stoll@nrel.gov

NREL/PR-6A20-70500

Thanks to
Elaine Hale, Josh Novacheck (NREL)
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Total value of Demand Response

Capacity Value Emissions Fuel, VO&M
401
301
e~ 0 B g
201 #=--#--8--8~0--u -0
17101 dr.scen
= — lowDR
& 07 - - highDR
S =10 15 20 25 30 35 flex.scen
© Imports Starts & Shutdowns 5 10 15 20 25 30 35 . b-
= 40+ ase
o battery
0O 30 -+ kitchensink
© largebattery
0 20 =* largekitchensink
|_
10
D_

5 10 15 20 25 30 35 5 10 15 20 25 30 35
Annual PV Penetration, %
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Services Resource | Load Recovery | T, Taay
Provided | Type Restrictions (CEVS) hrs)

Residential Cooling E+C+R Storage 5am—-6pm 1
Heating E+C+R Storage 3am—7pm 1 1
Water heating E+C+R Schedule - 1 -
Commercial Cooling E+C+R Storage 5am—-6 pm 1 2
Heating E+C+R Storage 3am-7 pm 1 2
Lighting C+R Shed - - -
Ventilation C+R Shed - - -
Municipal Outdoor lighting C+R Shed - - -
Wastewater pumping E+C Schedule - 1 3
Water pumping E+C Schedule - 1 2
Industrial Agricultural pumping E+C+R Schedule - 7 8
Datacenters E+C+R Schedule 4am-8 pm 1 4
Manufacturing E+C+R Schedule - 1 -
Refrigerated warehouses E+C+R Storage - 1 4

E = Energy, C = Contingency Reserves, R = Regulation Reserves

www.peakload.org
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Schedulable Resource Example: Agricultural Pumping

discrete decisions per end-use, little environmental coupling

Average Daily Profiles for High DR Scenario

Modeled as a Generator with Storage Energy Contingency Regulation
Reservoirs

- Generation capacity is maximum over all
services

on
=
JB1UIAN

P
]

an
=

Buuds

P
]

- Pumping Capacity(i) = min(2*Energy(i),
max(Energy)) - Energy(i)

o =3}
= =
JaLInNs

- Storage must hit a weekly target (daily for
other schedulable end-uses)

Industrial Agriculture Resource (MW)

3]
=

i
o
ULy

www.peakload.org
38
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Storage Resource Example: Commercial Heating

often set-point-driven, potential for high environmental coupling

Modeled as a Generator with Storage Reservoirs Average Daily Profiles for High DR Scenario

Energy Contingency Regulation

- Generation capacity is maximum over all 2000
services 1000 .\_/-\_ '\_/’L‘
N

0
- Pumping Capacity(i) = min(max(Energy) - S 2000

Energy(i), max(Energy(day)) € 1000
\'_/-\_ \_f

2000

JBIUIAN

M

Bunds

—

o

- Storage must hit a daily target

1000

IBlwns

- Pumping is restricted to 3am — 7pm (make up
during occupied hours) 2000

o

Commercial Heating Resource

1000

ULy

- Energy shifting is limited to a total of 2 use-
hours (sum(Generation(i) / Energy(i)) < 2)

www.peakload.org
39
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Sheddable Resource Example: Commercial Ventilation

little tolerance for change in service levels; capacity-only resources
Average Daily Profiles for High DR Scenario

Energy Contingency Regulation
Modeled as a Plain Generator 0 ﬂ E
- @Generation is restricted to zero 220 3
s O —
-3
- Reserves provision restricted to the g % 7 T

Bunds

appropriate profile 250

o]

Commercial Ventilation Resourc
&
=
lawnuns

= 250

[

3

www.peakload.org
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Capacity Value

* Capacity value is

DR Scenarios

e —Low DR determined
-- High DR exogenously based
601 DR End Uses on availability of

— Commercial cooling each end-use
— Commercial heating

TR i Rl b Commercial lighting durlng peak hours
— Commercial ventilation
— Industrial agriculture
— Industrial datacenters
— Industrial manufacturing
Industrial refr. warehouses
Municipal outdoor lighting
— Municipal wastewater pumping
— Municipal water pumping
—_— — Residential cooling
0l = — Residential heating
| | | | — Residential hotwater
10 20 30 40

Pre-curtailment PV penetration (%)

N
o

Capacity value ($/kW-year)
N
o

www.peakload.org
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Emissions Reduction

Base 1GW Battery Flex System \ 4GW Battery
401 3 * Based on post-
201 .
O S| |t | 3 processing fuel use
-201 8' cenarios 1
a2 o on changes and a social

-- High DR .
e Usee cost of carbon analysis,

[eLsnpuj

— Commercial cooling

— Commercial heating S 5 O/to n
Commercial lighting

— Commercial ventilation

— Industrial agriculture

— Industrial datacenters ¢ Disaggregation Of COSt

DR value ($/kW-year)

§ — Industrial manufacturing
= Industrial refr. warehouses .
- % Municipal outdoor lighting by e n d = U Se .
3 | — Municipal wastewater pumping
o | — Municipal water pumping .
2 — Residential cooling e By fra Ct | O n Of e n e I’gy
- Residential heating .
g — Residential hotwater dlsplaced by eaCh end
-}
|5 use
o
o

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
Pre-curtailment PV penetration (%)
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Fuel and VO&M Reductions
LB 1GW Battery | | Flex System | | 4GW Battery Disaggregation of cost
4 | | -
1001 | | % by end-use:
501 - | | z ]
o | | | | OR Scenaris * By fraction of energy and
| ' | =| reserves provided by each
c DR End Use_s _
2| = Gommercal cooing end use
] i = it
| =l someans ® Performed on hourly basis
g — Industrial manufacturing .
o —mnaerweenses  t gccount for diurnal and
=1 —Municipalwastewater‘pumping . . .
|3 —Muneralwaterumoing - sagsonal variation in DR
S Rosidontal hotwatr
5 * Does not account for
| | - o second order effects
10 20 30 40 1020 30 40 10 20 30 40 10 20 30 40
Pre-curtailment PV penetration (%)
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Generator Startup/Shutdown Cost Reduction

Base 1GW Battery |  Flex System | 4GW Battery
- Q)
100 =
50+ 3
3
0 z
9]
_50- o)
DR Scenario
J —Low DR
~ 100 \—/\/\ S| --High DR
§ 501\ -F | N T || | AR
?\ 0_ S E =TT T ST TS L = ——— it s el g DR End Use
< V & | — Commercial cooling
x~ -50- = | — Commercial heating
o — Industrial agriculture
o 100- —| — Industrial datacenters
S ® | ~— Industrial manufacturing
® S0 t———T | [T | [ e |2 Industrial refrigerated warehouses
> [~ % — Municipal wastewater pumping
o 0 S | — Municipal water pumping
0 5p. 5| — Residential cooling
— | — Residential heating
— Residential hotwater
100- =
~ | |~ m Al
50‘_.-‘ Seeal e =~ - _/_.—_f""\'/ =1
] e o e __,..---——-.,._.__,.—-."_‘ ='_-__...'-'-l-—----I"I'-'—i-I-.'_.: —_——‘”-:-—_’,"
0 =
-50- L

10203040 10203040 10203040 10 20 30 40
Pre-curtailment PV penetration (%)
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. Base ' 1GW Battery | = Flex System | | 4GW Battery
101 S * DR generally reduces
e - : 3 import costs for a brief
. ;Rgggmui?éiil eating period duri g the
g g, morning and evening
7 — Industrial agriculture
§ -ztenmn,  peak loads, and
_nersouseerionns - jnCreases costs during all
C;E? —Municigal water pumpiﬂg P .
AR other times of the day,
c:,D — Residential hotwater . . .
- - resulting in a negative
2| Honox value to the system.
10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
Pre-curtailment PV penetration (%)

www.peakload.org


http://www.peakload.org/

PLMA

Demand Response Leadership Since 1999

Generator Startup/Shutdown Cost Reduction
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