
Overview of CGI/Dynos/PHIL Platform

Przemyslaw Koralewicz, Robb Wallen, and Vahan Gevorgian November 16, 2018

5th Annual International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains

NREL/PR-5000-72923

National Wind Technology Center

NWTC Dynamometers

Specifications

Source: NREL/Mark McDade (27249)

Source: NREL/Robb Wallen (17400)

2.5-MW Dyno

- 2.5 MW (on the low-speed shaft)
- 17–31 rpm (at full power)
- 1.64 MNm (1.2 M ft-lb) max torque
- Non-torque loads, 3 degrees of freedom
- 50-t crane, 30-ft (9-m) hook height
- 12.2 x 15.2-m test bay
- 0–6-degree adjustabledrive table tilt.

5-MW Dyno

- on the low-speed shaft)
- 12–24 rpm (at full power)
- 4.6 MNm (3.4 M ft-lb) max torque
- Non-torque loads, 5 degrees of freedom
- Dual 75-t cranes, 45-ft (14-m) hook height
- 20 x 12-m test bay
- 5-degree fixed-drive table tilt.

2.5-MW Dynamometer Projects

- Multiple projects in 2017–2018 for validating wind turbine power train low-voltage ride-through (LVRT) response to foreign grid codes (50 Hz using controllable grid interface [CGI])
- Preinstallation verification of Gearbox Reliability Collaborative 1.5 data acquisition system. The gearbox was installed in the U.S. Department of Energy-owned (DOE-owned) GE 1.5-MW turbine and is subjected to grid events using the CGI.
- Year 2019 projects include validation of two different wave energy devices.

GE 1.5-MW high-speed shaft instrumentation checkout at 2.5-MW dynamometer.

Source: NREL / Jonathan Keller (49498)

4

Installation of instrumented gearbox at NWTC. NREL

Source: NREL/Mark McDade (49050)

5-MW Dynamometer Projects

- 2016–2018: Validation of the Columbia Power Technologies (C-Power) utility-scale wave energy device. The device was tested using realistic, oscillating, bidirectional speed and torque profiles. Testing was complete as of Nov. 2018.
- 2018: Validation of multimegawatt, medium-voltage, doubly-fed induction generator power train via direct coupling with 5-MW motor
- 2019: Projects include upgrading non-torque loading system to achieve 10-MNm moment capacity and potential wind turbine power train tests
- 2019: The 2.5-MW and 5-MW facilities will be upgraded with additional 13.2-kV medium-voltage feeds selectable between CGI

or Xcel utility.

Source: NREL / Mark McDade (44103)

C-Power wave energy device installation at the NREL 5-MW dynamometer.

Wave Direction

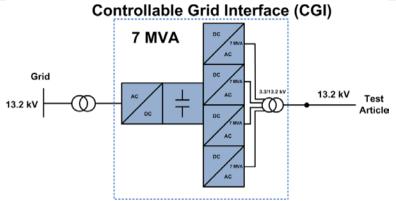
Source: C-Power website / www.columbiapwr.com/how-it-works/

C-Power wave energy device installation at the NREL 5-MW dynamometer C-Power

NWTC 7-MVA Controllable Grid Interface

Power rating

Source: NREL / Mark McDade

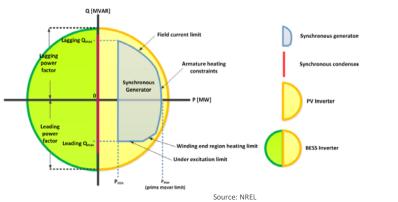

- 7-MW continuous
- 39-MVA short-circuit capacity (for 2 s)
- 4-wire, 13.2 kV.

Frequency control

- Fast output frequency control (3 Hz/s) within a range 45–65 Hz
- 50/60-Hz operation
- Can simulate frequency conditions for any type of power system.

Voltage control (no load total harmonic distortion <2%)

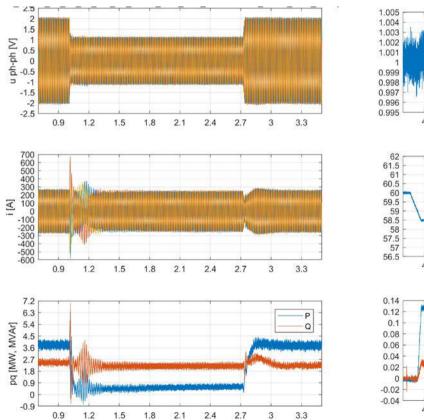
- Balanced and unbalanced voltage fault conditions (zero-voltage ridethrough and 130% high-voltage ride-through [HVRT])—independent voltage control for each phase on 13.2-kV terminals
- Response time: 1 ms (from full voltage to zero, or from zero back to full voltage)

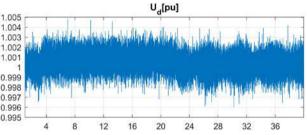

- Long-term symmetrical voltage variations (+/- 10%) and voltage magnitude modulations (0–10 Hz)—subsynchronous resonance conditions
- Programmable impedance (strong and weak grids).

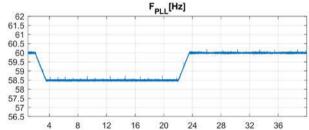
within a range of Real-time digital simulator (RTDS) – powerhardware-in-the-loop (PHIL) capability

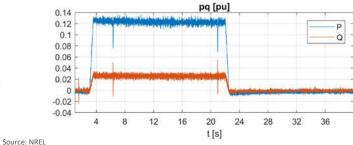
Open-Loop Single PCC: DER Validation

Testing of grid connected inverters and tightly coupled generation mixes

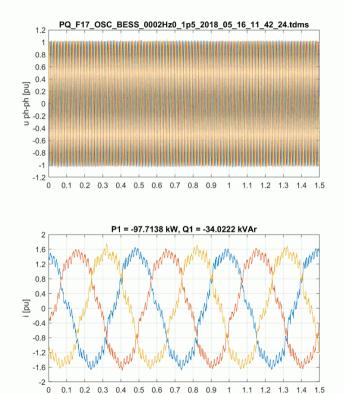

- Testing of frequency responses
- Characterization of droop characteristics
- LVRT/HVRT testing
- Full 4Q operation testing
- Models validation
- Wide spectrum analysis (impedance).

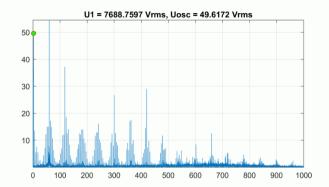


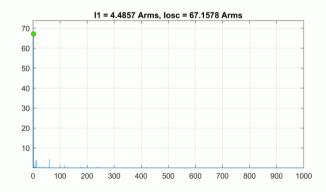


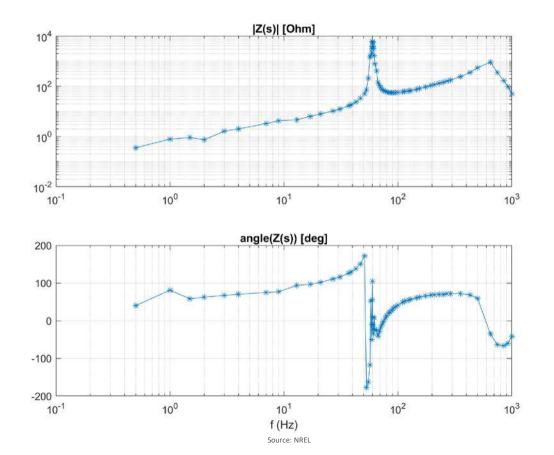

Source: NREL

Open-Loop Single PCC: DER Validation Examples

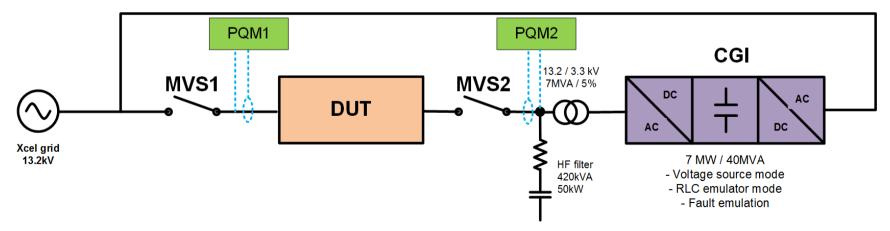






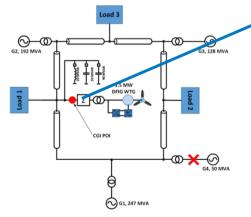

Impedance Measurements

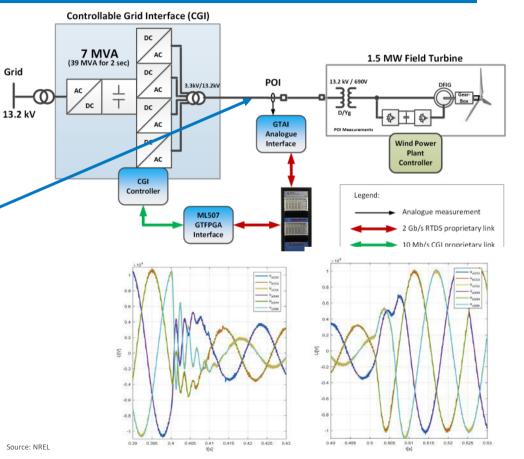
Impedance Measurements

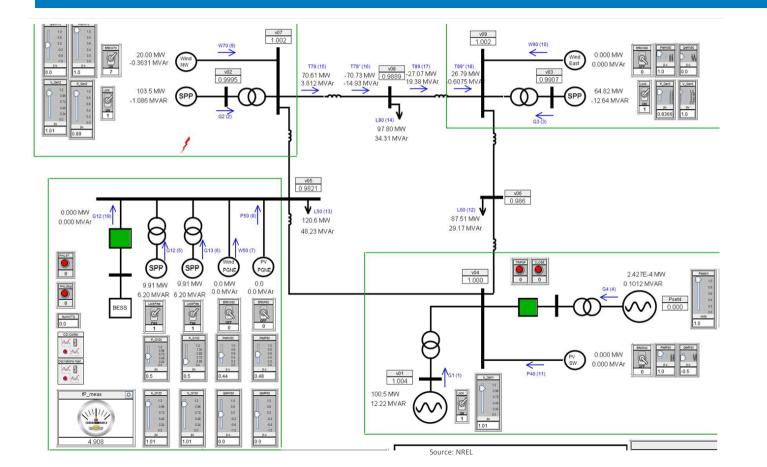

Open-Loop Double PCC: DER Validation

Example device:

- Microgrid feeder breakers
- Power electronic tie controllers
- AC/AC converters
- Protective relays/synchronization check logic
- Transformers.

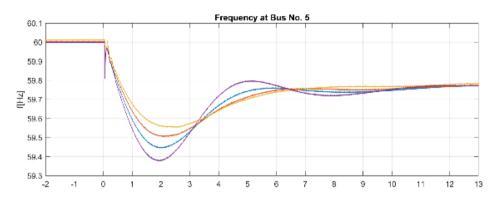

Capabilities:

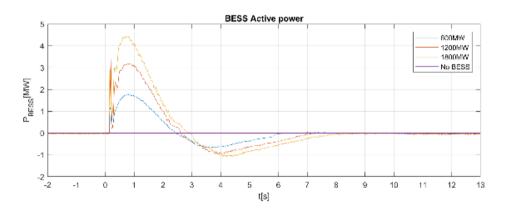

- Ability to generate any angle difference
- Ability to generate independent frequencies
- Fault testing at CGI side possible
- CGI side can run as voltage or current source inverter (VSI or CSI).


Closed-Loop Testing: PHIL

- Voltage from simulation is tracked by CGI in real time.
- Current measured is injected back to RTDS model. Grid
- Allows testing device under test under various grid conditions and events (e.g., microgrids)
- Distances between RTDS point of interconnection and CGI ca. 300 ft
- 2 Gb/s RTDS optical link: Glass Optical Fiber
- 10 Mb/s CGI-ABB proprietary link: Plastic Optical Fi
- Data exchange every 25 us (40 kHz).

RTDS 9-Bus Transmission Model




Assumptions Used for PHIL Testing of 9-Bus System with BESS

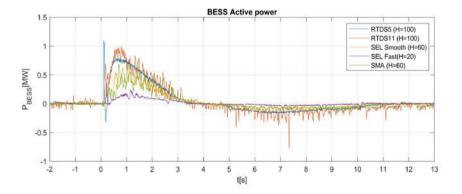
Conventional Generators		PV & Wind	Loads	Total H			
in, MW H _G , sec	P _{Gdispatch} , GW	P _{Rn,} GW	Loads GW	H _{Tot}	$H_{Tot} = \frac{H_G P_{Gn} + H_B P_{Bn} + H_R P_R}{P_{Tot}}$ $H_R = 0$		
3.3 4	40	60	100	2.13	$H_R = 0$		
80 4	60	40	100	3.20			
06.7 4	80	20	100	4.27			
13.3 4	85	15	100	4.53	Generation loss = 3.8 GW/3.8%		
33.3 4	100	0	100	5.33			
60.1		Free	quency at Bus I	No. 5			
60	A						
59.9							
59.8					60%		
[1] 59.7		2//			40%		
59.6			No BE	SS cases fo			
59.5							
59.4			pener		15		
59.3					9 10 11 12 13		
59.4	-1	-1 0 1	-1 0 1 2 3 4		-1 0 1 2 3 4 5 6 7 8		

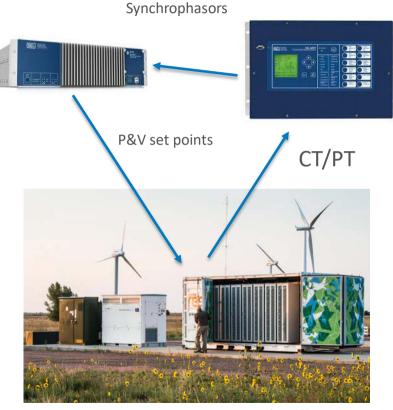
Renewable Penetration 60%: Inertia

Source: NREL

Battery scaling assuming 100-GW system:

- 600 MW -> 0.6%
- 1200 MW -> 1.2%
- 1800 MW -> 1.8%

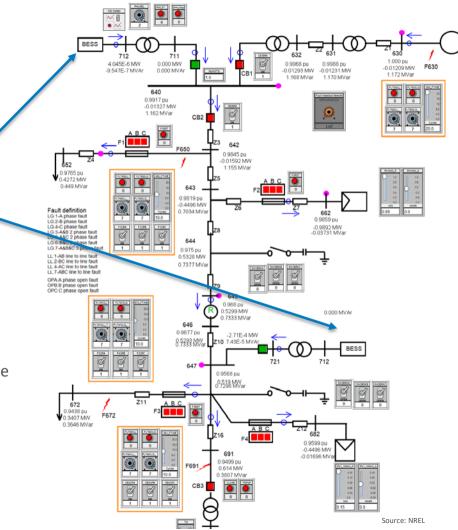

BESS controlled proportional to ROCOF using LabView controller. H=50 s


Frequency response improves with increasing BESS installed capacity at 60% renewable penetration.

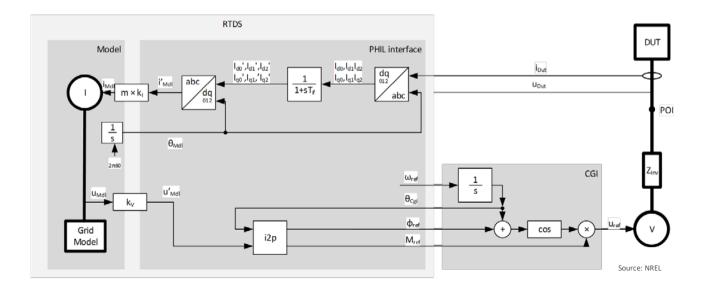
BESS [MW]	0	600	1200	1800
60%	2.13	2.43	2.73	3.03
40%	3.20	3.50	3.80	4.10
20%	4.27	4.57	4.87	5.17
15%	4.53	4.83	5.13	5.43
0%	5.33	5.63	5.93	6.23

Renewable Penetration: RTAC Inertia Controller

- Implemented inertia controller based on commercial of-the-shelf devices
- Found limitations on maximum inertia depending on where frequency is measured
- Tested various frequency sources.



Source: NREL

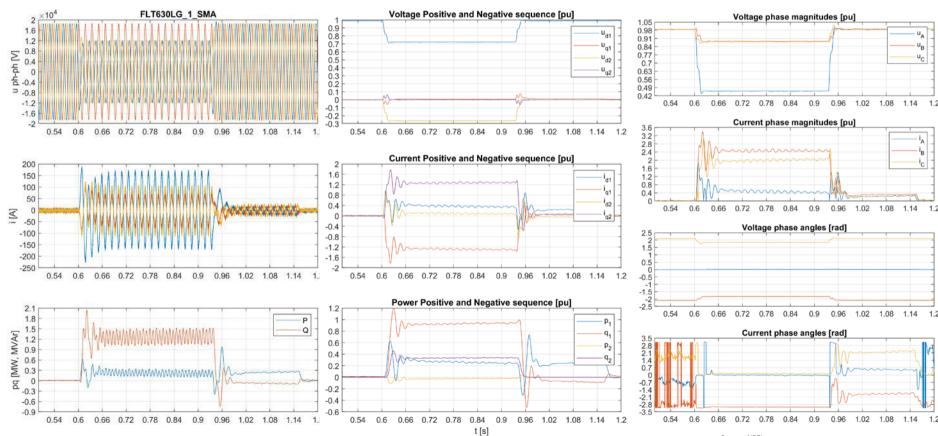

About RTDS Distribution Model

- Model based on data from PG&E
- BESS can be added using PHIL to two locations:
 - Bus 640
 - Bus 647.
- Four fault locations used for fault emulation:
 - Bus 630: Fault at transmission level
 - Bus 650: Fault at load branch—unfused
 - Bus 672: Fault at load branch—fused (F3)
 - Bus 691: Fault at motor branch—unfused
- Faults can be:
 - 1 x L-G, 2 x L-G, 3 x L-G, 1 x L-L, 2 x L-L, open phase
 - Low impedance: 0.1 Ohm
 - High impedance: 10 Ohm.

CGI-RTDS PHIL Interface

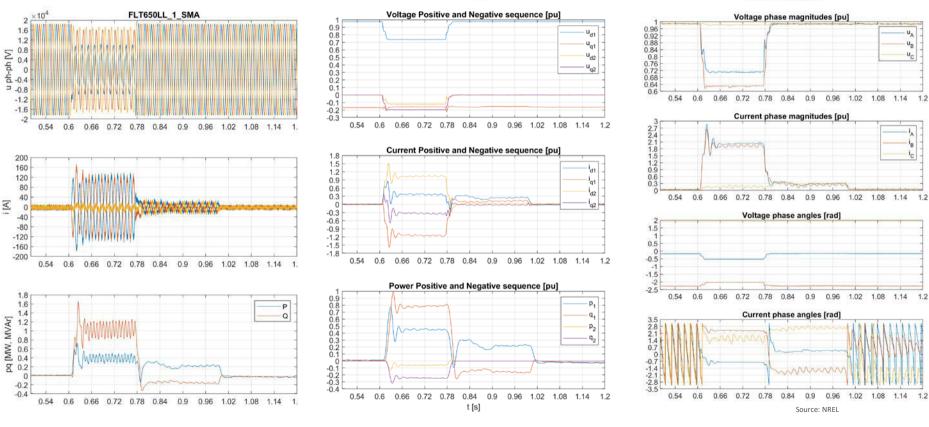
- Instantaneous voltage measured in model and commanded to CGI
 - Very fast tracking achieved thanks to instantaneous-to-phasor (I2P) algorithm
 - Compensated phase delay.
- Positive-, negative-, and zero-sequence current injection into model
 - Decoupled positive- and negative-sequence DQ current measurement
 - Filtered with 10-ms filter for high-frequency stability.

About RTDS Distribution Model

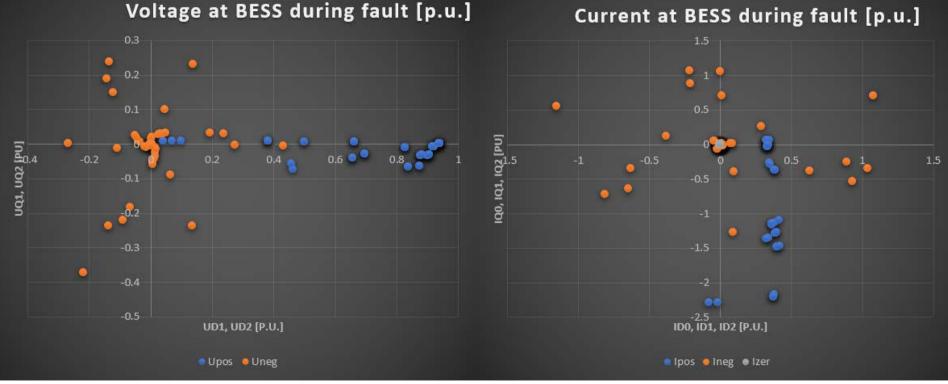

- RTDS automated script
- Total number of fault cases executed per script run (ca. 15 min): 53x
- For each test case, data were captured using RTDS:
 - 100-us resolution
 - 7 x 3 phase voltage measurements (magenta dots)
 - 12 x 3 phase current measurements (blue arrows)
 - 3-s data buffer
 - ~ 1.5 GB of data per run.

FLT630 Line A to Ground

FLT630LG_1_SMA



Source: NREL


FLT650 Line A to Line B

FLT650LL_1_SMA

FLT650LL_1_SMA

Spectrum of LVRT Voltage During Faults

Source: NREL

Thank you

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

