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Executive Summary 
Distributed photovoltaics (DPV) are a growing source of electricity generation in the United 
States, and with adoption driven by customer behavior and localized economics, projecting the 
deployment of this technology is a challenging analytical problem. Moreover, understanding the 
sources of uncertainty in customer adoption models and how they can be reduced is important to 
a range of stakeholders that use their outputs, including grid planners, regulators, and industry. 
Most prior studies have used top-down methods, such as the use of population central tendencies 
to project aggregate adoption. In contrast, a growing field of work seeks to use bottom-up 
methods (i.e., individual-level decision-making).  

We explore trade-offs of top-down and bottom-up methods in their precision and computational 
burden using the National Renewable Energy Laboratory’s (NREL’s) Distributed Generation 
Market Demand (dGen) model, an agent-based model of residential and nonresidential 
distributed PV adoption. In particular, we assess the role of agent resolution in instantiating 
statistically-representative populations in the model—and the resulting variance of model 
projections at the state, sector, and county levels. At low sampling rates, the model resembles a 
top-down model, whereas as sampling rates increase dGen converges to a bottom-up structure 
by simulating more unique customer types. Though sampling-based models such as dGen can 
be operated with many agents to ensure accuracy, doing so greatly increases the computational 
burden of the simulation. This report lends insight into whether high-resolution results can be 
approximated sufficiently well using fewer computational resources. 

At the state and sector levels, we find systematic differences in mean projected DPV capacity 
adopted across different levels of agent resolution, namely that cumulative DPV adoption 
estimates decrease with greater agent resolution. Following this, we conclude that sets of low 
agent runs in dGen cannot be directly substituted for high-resolution runs. Moreover, we find 
that the average size of installed DPV explains decreases in system sizes by agent resolution, and 
we attribute this trend to a system-sizing mechanism that biases smaller sizes when agent annual 
load and roof area suitable to PV are not positively correlated. Thus, associating suitable roof 
area with annual load on an agent by agent basis in a manner more consistent with the 
relationship inherent in input data sets is expected to improve the interpretability of results. 
At the county level, we generally see similar trends to the state and sector levels; however, 
we also note the rates at which DPV estimates actually increase with agent resolution.  

We also find that the variance in projected DPV capacity adoption decreases substantially as 
agent resolution increases. This trend holds at the state and sector levels and for most cases at the 
county level. We find that precision improvements in both sectors are greatest at low levels of 
agent resolution, which matches our intuition that estimates will differ less across model runs as 
underlying samples increasingly resemble the full population. We also find reason to limit agent 
resolution in that each additional agent adds about 3 minutes to a minimum solve time of 18 
minutes. Also, significantly fewer than 100 iterations may be sufficient to achieve acceptable 
levels of precision; state-level variance varies by less than 5% beyond about 50 runs relative to 
the average of 100 runs. At the county level, we can explain most of the variance in the 
nonresidential sector, yet this scale reveals trends that diverge from those observed at the state 
and sector levels that are not fully explained. Therefore, we encourage further research into 
sources of variance in both sectors at this more-refined resolution.  
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Additionally, we observe that while the mean and variance trends are similar for the residential 
and nonresidential sectors, the magnitude of the variance for the nonresidential sector is 
substantially larger. This suggests modeling precision could be improved by increasing the 
number of agents sampled in the nonresidential sector. For example, extrapolating empirical 
results suggests that while 20-agent resolution is sufficient to settle on a standard deviation that 
is 1% of the mean in the residential sector, more than two and a half times as many agents are 
needed in the nonresidential sector to achieve the same level of precision. To date, there is little 
published agent-based modeling of nonresidential DPV adoption, and the variance observed in 
this model suggests more research is needed to better capture the complexities introduced by this 
sector’s more varied building types and customer use cases. 

Important further research will explore how key agent resolution trends we observed here play 
out in new geographies. As new agent-level attributes are added (e.g., socioeconomic status and 
environmental concern), we will also want to reassess these trends for consistency. Beyond agent 
resolution, understanding variance sensitivity to additional agent and county characteristics, such 
as DPV market maturity and macroeconomic parameters (e.g., technology costs and fuel prices) 
will improve the interpretation of results. Agent-based models have an increasingly important 
role to play in grid planning and policy analysis, and explorations such as this one into their 
mechanics will help inform critical decisions with increased certainty.   
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1 Introduction 
Customer-adopted distributed solar photovoltaics (DPV) are a growing source of electricity 
generation capacity in the United States. Over one gigawatt was added to national DPV capacity 
in the first quarter of 2018 [1], and recent trends suggest cumulative installed capacity may 
nearly double by 2023 [2]. 

Projecting future customer adoption of new distributed energy resources at high spatial 
resolution is recognized as a key challenge in the power systems domain. Unlike utility-scale 
generation assets, which are procured directly by centralized utilities or independent power 
producers, the adoption of DPV is driven by the purchasing decisions of broad customer bases, 
both residential and nonresidential (i.e., commercial and industrial). Accordingly, its adoption 
is subject to highly localized factors, including the local incentives and levels of neighborhood 
adoption [3], and its diffusion is not uniform across populations. Grid planners and researchers 
often turn to data-driven models to provide insight into the key drivers of future DPV diffusion 
and resulting changes in the electricity sector. As this question of DPV adoption poses a 
challenging analytical problem, effective use of the models requires a keen understanding 
of sources of uncertainty in their inputs and algorithms. 

In this report, we investigate how different population-sampling strategies impact the distribution 
of technology adoption in the context of an agent-based model (ABM). Specifically, we employ 
NREL’s dGen model, which samples one or more agents in each U.S. county before simulating 
their DPV adoption decisions over time to better understand the sensitivity of long-term 
estimates of DPV adoption to agent resolution. Our analysis examines DPV capacity at the state, 
sector, and county levels across iterative stochastic simulations at four agent resolutions to assess 
trends in the mean and variance. We also assess whether sets of low-agent simulations can be 
used to simulate high-resolution runs. Finally, we report observed model run times, precision 
variation by number of iterative simulations, and extrapolated trends in precision by agent 
resolution to inform model calibration decisions. 

The results of this analysis provide insight into the trade-off between computational expense and 
model accuracy. Though sampling-based models such as dGen can be operated with many agents 
to ensure accuracy, doing so greatly increases the computational burden of the simulation. 
Burdensome computing can result in prolonged run times or even the inability to complete 
a simulation. 

This report lends insight into whether high-resolution results can be approximated sufficiently 
well using fewer computational resources. It also informs the interpretation of dGen results and 
the design of stochastic sampling processes within similar models at a fundamental level. We 
anticipate that the empirical process we use to investigate the dGen model will help inform best 
practices regarding the calibration and validation of other stochastic ABMs.  

The report also contributes to a growing literature on methods for the projection of DPV 
customer adoption. These methods differ widely in the algorithms and input data used, though 
they can generally be classified as either top-down or bottom-up. Top-down models use central 
tendencies to project aggregate deployment, notable examples include time series models [4, 5] 
and econometric models [6–10]. Bass Models are perhaps the most widely used adoption models 
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[5 –11] . They capture the aggregate decisions of a heterogeneous population of technology 
innovators and imitators, which generally cannot be localized at high spatial resolutions.  

In contrast, bottom-up adoption models seek to simulate the decision-making of individual 
consumers, or at least the decisions of clusters of statistically-similar ones. They are an 
alternative to top-down methods in that they can simulate the decision-making processes of 
individual agents within heterogeneous populations and can account for external constraints and 
decision drivers that vary geographically at a high spatial resolution. And, bottom-up adoption 
models capture the effect of social influence. 

Agent-based modeling (ABM) is increasingly employed to project DPV adoption [5, 16–25] and 
is emerging as a critical method to inform distribution grid planning. Alyousef et al. [17] found 
that income, payback period, maximum budget, degree of environmental concern, and social 
influence largely explained the decision to adopt DPV or not in their German study population. 
Similarly, Rai and Robinson [16] calibrated agents using geographic data sets and customer 
surveys in Austin, Texas, using the theory of planned behavior [26] to simulate DPV adoption 
choices. NREL’s dGen model [27], and its predecessor SolarDS [19], take a hybrid Bass Model 
and ABM approach wherein synthetic spatially-aware agents are instantiated with characteristics 
reflective of their surroundings, and their adoption patterns are fitted to a Bass Model logistic 
curve based on prevailing economic trends.   

Several inherent sources of uncertainty are associated with agent-based DPV models. For 
example, high-resolution empirical data are commonly not available for study populations, 
so representative profiles or stochastic sampling from distributions are employed to simulate 
agents’ characteristics (e.g., income, building type and size, hourly load consumption) and 
geographic contexts (e.g., solar insolation and utility rate structure). Moreover, exogenous 
market parameters (e.g., inflation and capital costs) are also commonly used, based on 
assumptions about sustained patterns over long periods. However, few studies report on the 
sensitivity of results to agent resolution or how estimates vary by the number of stochastic 
model runs, which is the principal topic of this analysis.1  

The rest of the report is organized as follows. Section 2 describes the dGen model and lays out 
the study methodology. The results are presented in Section 3. They are followed by a discussion 
in Section 4 and conclusions Section 5. 

                                                 
 
1 Drury et al. (2014) quantify DPV modeling uncertainty in regards to investment risk, and they find that while inter-
annual solar variability at a given location tends to cancel itself out over multiple years, PV technical performance 
and variable retail electricity markets pose significant sources of modeling uncertainty [28]. 
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2 Methodology 
This analysis reported here employs NREL’s dGen model,2 an agent-based simulation platform 
that projects customer DPV adoption trends from 2014 to 2050 [29]. At the center of this 
analysis is a conceptual abstraction of the dGen model as a multivariate stochastic function for 
which the distribution of the output is unknown and will be estimated from a set of model runs. 
Because dGen assimilates disparate data sets based on interdependent relationships and 
conditional logic, the structure of underlying sampled distributions for attributes varies from 
agent to agent and can be burdensome to isolate programmatically. Each agent in effect may be 
endowed with attributes sampled from unique distributions as a result of pre-established traits 
(i.e., building size class and building type). Based on the law of large numbers, however, we 
propose that the outputs of dGen at the state level will display a central tendency over enough 
iterations, given fixed parametrization. 

For this analysis, we run dGen repeatedly at varying agent resolutions (i.e., the number of agents 
per sector-county). Within each set of runs at a given resolution, we vary only the random seed3 
used in a pseudorandom number generator to sample the probability distributions that instantiate 
agents; each seed yields distinct and repeatable results. Because of the computational constraints 
of national dGen simulations, this analysis is limited in geographic extent to California, which is 
the largest DPV market in the United States.   

In the next section, we present the essential mechanics of a conventional run of this model and a 
description of the agent instantiation procedure. We also discuss how we will assess the results 
of model runs at different levels of agent resolution. 

2.1 The dGen Model 
The dGen model simulates the adoption patterns of agents, which can be thought of as 
representing clusters of nonresidential and residential actors with each U.S. county. The dGen 
modeling approach is based on the “diffusion of innovations” framework [30, 31], which assumes 
new technologies are sequentially adopted by customers that vary in their innovativeness. Those 
who adopt earlier to pay higher prices than their mainstream counterparts who drive rapid growth 
once prices have declined.  

2.1.1 Agent Instantiation  
The dGen model instantiates agents at a fixed resolution for each county and sector (i.e., 
residential, commercial, and industrial). For the purposes of this report, we consider commercial 
and industrial agents collectively to form a nonresidential sector.  

Figure 1 diagrams key elements of the agent instantiation process, in which county data sets are 
first used to constrain the sampling with replacement of tract and associated block attributes that 
are assigned to the agent. Information about the agent’s location is also used to constrain the 
sampling of an integrated set of attributes from the U.S. Energy Information Administration’s 

                                                 
 
2 “Distributed Generation Market Demand,” NREL, https://www.nrel.gov/analysis/dgen/. 
3 A common practice in stochastic modeling is to use a random “seed” to initialize a pseudorandom number 
generator. In this way, modelers can exactly reproduce prior sampling using the same seed.  

https://www.nrel.gov/analysis/dgen/
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Residential Energy Consumption Survey (RECS) [32] and Commercial Buildings Energy 
Consumption Survey (CBECS) [33] data sets, which yields an agent’s annual load, building type, 
roof style, roof area, owner occupancy status and sampling weight. Sampling again occurs with 
replacement proportional to the survey weight, such that the same building would occasionally 
be sampled more than once within a simulation. The probability of selecting the same building 
multiple times at the county level grows as agent resolution increases, yet multiple selections 
of the same building is unlikely to happen frequently enough at any geographic level to notably 
impact the results.  

The RECS and CBECS data sets are provided publicly at the census division level, and 
distributions cannot be directly isolated to a particular state or county. In this study focused on 
California, for example, all agents draw from the Pacific Census Division (summarized in 
Appendix A). Aggregation in this way diminishes the visibility of variability in building 
characteristics at fine geographic resolutions and inhibits the ability to make county-level 
comparisons (or to make comparisons among states within the same census division). Note that 
both RECS and CBECS use an area probability sample design to facilitate the in-person data 
collection. Also, because observations are clustered within selected geographic areas, they are 
not guaranteed to reflect the building characteristics of all geographies sampled in the study. The 
cumulative effect of sampling from RECS and CBECS data is that the true variability of building 
characteristics at the state and county levels is underestimated relative to what one would expect 
with a more spatially resolved data set. Even so, the inclusion of variable county-level attributes 
(e.g., electricity rate and solar resource) is expected to enhance modeling precision at the county 
level. 

After RECS and CBECS building characteristics are sampled, lookup tables are created that link 
to derived attributes such as hourly load profiles, percentage of roof area that is suitable 
to development, maximum power demand, and the relative weight of the agent. Building 
characteristics, in conjunction with previously sampled locational attributes, are also used to 
constrain the selection of a set of additional lidar-based building footprint data sets [34] 
attributes, including tilt, azimuth, roof area suitable to DPV deployment, and flat roof status. 
Hourly solar capacity factor profiles for a typical year and ground cover are in turn derived using 
lookup tables.  

Figure 1 illustrates how the random sampling procedure has a hierarchical structure in which 
the distribution of one characteristic may depend on the realization of another; in other words, 
sampling of these characteristics is based on conditional distributions. Note that Figure 1 
does not include additional agent attributes that are derived using lookups at local and state 
geographic scales (i.e., incentives and subsidies), techno-economic calculations (i.e., the size 
and net present value of a system in a given year), or used-defined parameterizations (i.e., 
degradation rate, electricity price escalation). 
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Figure 1. Instantiation workflow for key stochastically sampled agent attributes 

 
The sampling processes outlined in Figure 1 will occur for as many agents are instantiated per 
county. At the lowest agent resolution of one agent per sector-county, one would expect to have 
low confidence in results at the county level because model results are initially based on a single 
draw that may not reflect the central tendency of the data set. The dGen model mitigates such 
variability in the sampling of weight, roof area suitable to DPV deployment, and annual load by 
an agent-mutation mechanism that scales these attributes in aggregate across all agents per 
county and sector to known totals.4 Though the scaling ensures central tendencies are reflected, 
it removes heterogeneity in these attributes at the county level. Alternatively, at sufficiently high 
agent resolutions, the distribution in roof area suitable to DPV deployment and annual load 
across all agents in a county will more closely resemble the true population distribution of each 
sector and county. Thus, at these higher resolutions, one can be more confident that agents 
accurately reflect both county totals and the distributions from which they were sampled. Note 
that the model only constrains weight, annual load, and roof area suitable to DPV deployment to 
known county and sector totals; there remain attributes, including building type, load profile, and 
solar resource profile that vary stochastically from run to run.  

2.1.2 Agent Choice Modeling  
After agent instantiation and mutation, the model assesses DPV adoption decisions over time 
steps every two years from 2014 until 2050. During each time step, financial calculations are 
simulated based on exogenous technology cost declines and electricity price escalations, 
inclusive of state net metering policies and state and federal government subsidies. Agent 
decisions to adopt DPV are primarily based on the modeled financial attractiveness of DPV, 

                                                 
 
4 For example, suppose there are two agents and the sampling procedure yields annual consumption values of 200 
and 300. If total consumption for the county is 750, the first agent’s consumption is scaled to 750

200+300
∙ 200 = 300 

and the second agent’s consumption is scaled to 450. 
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as measured by payback period, and the rate of technology adoption output from the Bass 
Diffusion Model.  

More specifically, for each agent 𝑖𝑖 in each time step 𝑡𝑡, we first derive the maximum technically-
feasible system capacity for each agent, 𝐶𝐶𝑖𝑖𝑖𝑖, which is defined as the minimum of the solar 
capacity that would utilize the agent’s entire suitable roof area, 𝑟𝑟𝑖𝑖𝑖𝑖 and the solar capacity that 
would generate enough electricity to supply 100% of the agent’s annual electrical load, 𝑙𝑙 (1). 

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟𝑖𝑖𝑖𝑖 , 𝑙𝑙)        (1) 

Next, we use the 𝐶𝐶𝑖𝑖𝑖𝑖 as the upper bound to determine the economically-optimal system capacity. 
Specifically, we search over linear increments for the system capacity, 𝑠𝑠𝑖𝑖𝑖𝑖, that maximizes the 
net present value of the agent’s considered investment (2). Note that this implies the agent would 
select a null system size if the roof is unsuitable or if DPV is uneconomic.   

𝑠𝑠𝑖𝑖𝑖𝑖 ∈ [0,𝐶𝐶𝑖𝑖𝑖𝑖]          (2) 

The payback period resulting from 𝑠𝑠𝑖𝑖𝑖𝑖  is used to determine the fraction of customers represented 
through each agent that would ultimately adopt DPV (i.e., the market potential fraction, 𝑚𝑚𝑖𝑖𝑖𝑖). 
Recall that each agent is instantiated with a weight, 𝑤𝑤𝑖𝑖, thus 𝑤𝑤𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖 can be interpreted as the 
continuous number customers within the population subset represented by the agent that would 
ultimately choose to adopt DPV. The market potential fraction is derived from consumer 
willingness-to-pay surveys [35, 36]. The market potential fraction is updated in each year based 
on year-to-year changes in projected DPV payback period. Figure 2 demonstrates the modeled 
consumer willingness-to-pay. For a 15-year payback period, we simulate that 12% of potential 
residential agents and 1% of possible nonresidential agents would eventually choose to install 
DPV. At more-attractive payback periods, a higher fraction of agents would choose to adopt, 
and conversely at less attractive paybacks, fewer agents would adopt.  

 

Figure 2. Market potential fraction as a function of payback period for residential and 
nonresidential agents 
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The market potential fraction defines the ultimate achievable level of adoption, whereas the 
annual number of adopters follows the Bass Model. During preliminarily modeling initiation 
procedures, annual new adopter counts by state and sector from 1999 to 2016 are fitted to the 
Bass Model using the non-linear least squares method [5, 29]. The initial year of diffusion is 
defined as the first year of at least five system installations, and starting conditions for the non-
linear least squares regression are obtained via a genetic algorithm. The first stage is only used 
to estimate diffusion growth parameters (i.e., p and q). Annual adoption counts are denoted as 
𝐵𝐵(𝑝𝑝, 𝑞𝑞,𝑚𝑚, 𝑡𝑡), where 𝑡𝑡 represents the time step. 

Cumulative capacity at the county or state level can be calculated from the annual adoption 
counts following a straightforward procedure. First, let 𝑎𝑎𝑖𝑖𝑖𝑖 be the cumulative number of adopters 
for agent 𝑖𝑖, where: 

𝑎𝑎𝑖𝑖𝑖𝑖 =  𝑀𝑀𝑀𝑀𝑀𝑀(𝐵𝐵(𝑝𝑝, 𝑞𝑞,𝑚𝑚𝑖𝑖 , 𝑡𝑡) ∗  𝑤𝑤𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑖𝑖𝑖𝑖−1) (3) 

The first argument (i.e., the Bass function) returns the fraction of adoption in period 𝑡𝑡, and the 
second argument ensures the cumulative amount of adoption does not decrease year-on-year. 
Next, let 𝑥𝑥𝑖𝑖𝑖𝑖 be the amount of cumulative capacity adopted by agent 𝑖𝑖, where: 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 ∗ 𝑠𝑠𝑖𝑖𝑖𝑖 . (4) 

Finally, the aggregate amount of capacity adopted in county 𝑐𝑐, 𝑀𝑀𝑐𝑐𝑖𝑖, can be calculated as: 

𝑀𝑀𝑐𝑐𝑖𝑖 =  � 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐼𝐼_𝑐𝑐

 (5) 

where 𝑀𝑀_𝑐𝑐 represents the set of agent types in county _𝑐𝑐. 

2.1.3 Model Results 
We choose to focus on cumulative DPV capacity in 2050 results because this metric is 
commonly reported publicly and it concisely summarizes the underlying model behavior. 
To deconstruct primary drivers of state-level results, we also record and discuss annual new 
capacity, number of annual new adopters, and annual DPV system size by county and sector.  

2.2 Methods for Assessing dGen Sensitivity to Agent Resolution  
To diagnose the impact of varying agent resolution on projected DPV capacity, we run the model 
repeatedly at 1-agent, 2-agent, 10-agent, and 20-agent resolutions, using the results to calculate 
summary statistics and perform hypothesis testing. As summarized in Table 1, the size of each 
set of runs at a resolution level, denoted as 𝑛𝑛, is 100, except for the single agent level, for which 
𝑛𝑛 = 1,000. All simulations at a given agent resolution are distinct in that a unique random seed 
is employed for sampling purposes. Accordingly, the selection process is randomized between 
runs at the same resolution, and we consider the samples independent in that one run does not 
influence the outcome of any other run. We do allow the same seed to be used across sets of 
simulations by agent resolutions, which results in the sequential selection of tract-related and 
RECS- and CBECS-based attributes to be fixed. Accordingly, the initial distribution of tracts, 
utility types, annual loads (and other RECS- and CBECS-based characteristics) for a set of 
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agents at a low resolution will always be a subset of set of agents produced at a higher resolution 
given the same random seed. Randomness is still introduced in the agent instantiation process 
through the secondary selection of roof characteristics (i.e., tilt, azimuth, and developable roof 
area), and the fixing of cumulative agent roof area and developable roof area to known county 
totals. Thus, while we expect the duplication of seeds across agent results to yield results that are 
more similar than they would be if entirely different seeds were used across all agent resolutions, 
we still expect results to be sufficiently distinct.  

For each agent resolution level, we directly calculate the mean and standard deviation of 
cumulative DPV capacity in 2050 for the first 100 distinct model runs. We then perform two-
tailed 𝑡𝑡-tests to compare the means of the multi-agent runs (each set of runs consisting of 100 
observations produced by distinct seeds) to the 1-agent resolution reference case5 and to each 
other. Similarly, we perform Brown-Forsythe tests to compare the variances across different 
agent resolutions [37]. 

Table 1. Number of Model Runs for Each Level of Agent Resolution 

Number of Agents per County  
Sector (Agent Resolution) Number of Model Runs (𝒏𝒏) 

1 1,000 

2 100 

10 100 

20 100 
 

The total set of 1-agent runs is larger than the sets for the other resolutions so that we can assess 
whether grouped sets of dGen simulations at low resolutions yield results equivalent to higher 
resolution simulations. For this analysis, we compare the 1,000 1-agent runs to 100 distinct 10-
agent runs, effectively normalizing the total number of agents per county-sector at 1,000 across 
all runs within each set. We first group the ordered set of 1,000 1-agent resolution runs into 100 
bundles of 10 1-agent resolution runs, such that each bundle contains results entirely distinct 
from any other bundle. We then take the mean and standard deviation within each of these 100 
bundles and treat this derived set as a simulated 10-agent data set. The mean and variance of the 
simulated 10-agent data set is then compared against the 10-agent simulations using two-tailed t-
tests.  

Within our analysis, we find some significant differences in mean and variance. For those 
instances, we unpack the model results and employ data visualization techniques to identity 
sources of variance in derived attributes and model inputs.  

                                                 
 
5 For hypothesis testing this set consists of the first 100 observations produced by distinct seeds. 
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3 Results 
In this section, we describe the results of our comparison of sets of model runs with different 
agent resolutions.6  

3.1 State-Level and Sector-Level DPV Capacity by Agent Resolution 
First, we compare the means and variances of the first 100 runs conducted at each agent 
resolution. In Figure 3, we plot state-level DPV capacity estimates over all time steps, 
representing mean estimates as lines and error bands representing two standard deviations from 
the mean. The figure illustrates that across all agent resolutions, mean estimated DPV capacity 
and the variance in DPV estimates increases over time until about 2040. After this time, new 
adoption slows and the variability among results at each agent resolution level stabilizes. 
Moreover, the figure reveals a key finding that both the mean and dispersion among estimates of 
DPV capacity across the first 100 runs is consistently greatest at the 1-agent resolution and 
decreases as the resolution approaches 20-agents per county. At the state level in 2050, as 
summarized in Table 2 (page 11), we see that the variance of 20-agent resolution runs is about 
one-tenth that of 1-agent runs and that the mean across all runs is reduced 6.5%. Moreover, as 
illustrated in Appendix B, the distribution of results for 2050 moves from a dispersed, possibly 
bimodal distribution to a more precise and normal distribution as agent resolution increases.  

 

Figure 3. Estimated mean cumulative DPV capacity by year and agent resolution   

We next dissect these results to understand the drivers of observed trends. We find that across all 
time steps, nonresidential DPV capacity correlates significantly with state-level capacity (𝑝𝑝 <
0.01, Pearson’s r=0.97), and that this correlation is stronger than is seen in the residential sector   
capacity (𝑝𝑝 < 0.01, Pearson’s r=0.94). See Appendix C for an illustration of how the 
nonresidential sector results closely resemble the combined state-level results in terms of the 
median and dispersion among estimates by year and agent resolution. Moreover, we provide 
                                                 
 
6 The magnitude of estimates reported in this section are not intended to be interpreted as likely outcomes. Rather, 
we are concerned with the repeatability of model outputs and executing a generalizable process for identifying the 
source of meaningful distinctions in the central tendency of model runs at varying agent resolutions. 
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additional depth on DPV capacity estimates by sector in 2050 in Figure 4. In it, mean estimates 
are represented as lines and error bands represent two standard deviations from the mean. We see 
that mean DPV capacity decreases as agent resolution increases in both the nonresidential and 
residential sectors, with the nonresidential sector decreasing from a DPV estimate of and a 
standard deviation of 2.45 GW at a 1-agent resolution, to a DPV estimate of 9.8 GW and a 
standard deviation 0.8 GW at a 20-agent resolution. In the residential sector, we similarly see a 
capacity decrease from 9.4 GW to 9.0 GW, and a standard deviation reduction from 0.2 GW to 
less than 100 MW. Mean and variance decreases are most pronounced in the nonresidential 
sector, where mean DPV estimates at the 20-agent resolution are about 9% lower than at the 1-
agent resolution; in the residential sector, we see less than a 4% decline across resolutions. We 
clearly see that that variance is much lower in the nonresidential sector and find that the 
variances between sectors are in fact significantly different (𝑝𝑝 < 0.01).  

 

Figure 4. Estimated cumulative DPV capacity in 2050 by sector and agent resolution 

In addition to the overall decreases in mean and variance that we observe in the extreme agent 
resolution cases (1-agent compared to 20-agent), we also see consistent decreases for the 
intermediate resolutions. Moving from a 1-agent to 2-agent resolution, the cumulative DPV 
capacity across all sectors and simulated runs in 2050 estimate decreases by 2.5% to 19.7 GW. 
Though these aggregate state means are not statistically significantly different in aggregate, the 
residential mean does decrease by 1%, which is significant at the 5% level (i.e., 𝑝𝑝 < 0.05). This 
result suggests the residential sector is more sensitive to resolution changes in this spectrum than 
the nonresidential sector and that this sector plays a less dominant role in state-level trends. 
Regarding variance in state-level 2-agent resolution results in 2050 compared to the 1-agent runs, 
variance decreases by more than 40% as the standard deviation decreases to 9.4% of the 
cumulative DPV mean; however, the significance of this difference is relatively weak (𝑝𝑝 <
0.10). Within each sector, we see declines in variance with weak significance.  

We also find that 10-agent runs tend towards a mean DPV capacity that is lower than 1-agent 
runs, while also demonstrating higher precision. For a 10-agent per county resolution, the 
estimated cumulative DPV capacity across all sectors and simulated runs in 2050 decreases by 
6% compared to the 1-agent resolution runs (𝑝𝑝 <  0.01). The DPV estimate is 8.5% lower in 
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nonresidential sector (𝑝𝑝 <  0.01) and only 3% lower in the residential sector (𝑝𝑝 <  0.01). The 
overall state-level variance decreases to one-fifth that of the 1-agents runs (𝑝𝑝 <  0.01) and 
standard deviation declines from 2.4 GW to 1.1GW. We find similar results within each sector as 
well; at a 10-agent resolution, the residential and nonresidential sector variances are less than one 
fifth that of the 1-agent runs (𝑝𝑝 < 0.01), and standard deviations respectively decrease to 1% and 
11% the cumulative sector mean.  

When comparing 10-agent to 2-agent resolution runs, we find again reduced mean DPV 
estimates and variance. Cumulative DPV estimates decrease both in the residential (-2.0%, 𝑝𝑝 <
 0.01) and nonresidential (-4.8%, 𝑝𝑝 < 0.05) sectors. At the state level, variance is reduced by 
approximately two-thirds (𝑝𝑝 < 0.5). Similar reductions are seen at the sector level, with variance 
being most reduced in the residential sector. 

As the resolution increases to 20-agents per county, we notice diminishing mean and variance 
changes. The cumulative DPV capacity estimates for the state and for the nonresidential sector 
are not significantly different than at 10-agents per county. Moreover, though there is a 
statistically significant decline in cumulative DPV capacity in the residential sector in 2050 (𝑝𝑝 <
0.01), it is at a rate of 0.7%. However, variance of the 20-agent resolution runs in the 
nonresidential sector (-46%, 𝑝𝑝 < 0.01) is half that of the 10-agent runs. Residential variance and 
variance at the state level do not significantly decline between 10-agent and 20-agent resolutions.  

Table 2. Summary of Two-Way Comparisons across Agent Resolution Levels of Statewide 
Cumulative DPV Capacity in 2050 

Base 
Resolution 

Comparison 
Resolution Percent Decrease 

Mean 
Ratio of Variance, 
Comparison : Base 

1 2 2.4 0.58a 

1 10 5.9a 0.21a 

1 20 6.5a 0.21a 

2 10 3.5%a 0.35a 

10 20 -0.7% 0.55a 

a Denotes 𝒑𝒑 < 0.01 

3.2 Equivalence of DPV Capacity by Agent Resolution 
Having found distinctions in DPV capacity by agent resolution, we briefly address the question 
of whether bundles of 10 1-agent simulation results are equivalent to 10-agent resolution runs 
on average at the state level. We group 1,000 1-agent results into a simulated 10-agent data set 
(n=100), with each bundle of observations being the mean of 10 distinct output results. As would 
be expected from previous results, we find that cumulative DPV capacities in the simulated data 
sets do not converge on the same mean as the 100 10-agent runs (𝑝𝑝 < 0.01). However, variance 
distinctions are perhaps less intuitive to anticipate, and here we find they are dissimilar as well.  
Empirically, the simulated data set variance is less than 3% that of the 10-agent runs (𝑝𝑝 < 0.01).  
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3.3 State-Level and Sector-Level Trends 
Having discovered meaningful differences in mean estimated DPV capacity at varying agent 
resolutions, we next seek to identify the mechanisms in agent instantiation and subsequent 
internal dGen processing procedures accountable for these divergent outcomes. We begin with 
data exploration and visualization that are guided by model intuition.  

Logically speaking, amounts of new installed DPV capacity (see Appendix D) are subject to 
exogenous economic conditions and are proportional to the number of new customers and 
the size of their system. Across all years and agent-resolution simulations, univariate linear 
regression suggests that observed new DPV capacity better aligns with the number of new 
adopters7 than it does with the weighted averaged installed size of a DPV system8. Similarly, at 
the sector level, we see the number of new adopters in each sector explaining a majority of that 
sector’s new DPV adoption.9  

 
Figure 5. Ratio of number of new adopters to 1-agent new adopters by year, sector and 

agent resolution  

                                                 
 
7 Described by Cs = .00002453 + 1.724*x, where Cs is new DPV capacity by year and agent resolution, x is total number of new 
adopters for that year and agent resolution; adjusted R-squared is 0.8108. 
8 Described by Cs = 2055593 - 287418*x, where Cs is new capacity by year and agent resolution, x is weighted average DPV 
system size for that year and agent resolution; adjusted R-squared is 0.13. 
9 Residential DPV Capacity is described by Cr = -.00167 + 1.156*xr , where Cr is new residential capacity by year and agent 
resolution, xr is number of new residential adopters for that year and agent resolution. Adjusted R-squared is 0.986. 
Nonresidential DPV Capacity is described by Cn = 19710 + 36.18*xn , where Cn is new nonresidential capacity by year and agent 
resolution, xn is number of new nonresidential adopters for that year and agent resolution. Adjusted R-squared is 0.744. 
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Though the number of adopters may explain the magnitude of new DPV adoption well, as 
revealed in Figure 5, this metric does not consistently decrease as agent resolution increases. 
Instead, across all years in the nonresidential sector, we observe a pattern of high agent 
resolution runs having increasingly greater numbers of new adopters on average than 1-agent 
resolution runs. In the residential sector, consistent trends in new adoption counts relative to the 
1-agent mean are not evident across all years. Though these phenomena are interesting on their 
own, we will continue to search for variables that explain the sector and state-level results.  

We next examine the mean size of installed DPV systems by agent resolution in the residential 
and nonresidential sectors (Figure 6). Here we find within each year after 2016 that the average 
size of a customer’s system consistently decreases with increasing agent resolution in both 
sectors. Thus, we conclude that DPV size is counteracting the trends in the number of new 
adopters to drive the new DPV installation outcomes that we see by agent resolution at the state 
(Figures 3) and sector (Figure 4) levels.  

 
Figure 6. Ratio of mean PV size to 1-agent mean PV size by year, sector and agent resolution  

We attribute the decrease in the weighted average size of a DPV installation at the sector level 
to the system-sizing mechanism in dGen that scales maximum system size to the lesser of that 
which the suitable roof size or annual load will support. Recalling that counties have fixed total 
county load and suitable roof areas, either metric independently will produce a suitable average 
supported DPV size at the county level. Moreover, independently the distribution of supported 
system sizes produced by either metric across all agents within the county will reflect the 
underlying building characteristic distributions from which agents are instantiated.  
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At the same time, however, supported system sizes derived from suitable roof size or annual load 
are not ensured to settle on the same average at the county level. More importantly, in selecting 
the minimum between the two possible supported sizes on an agent by agent basis within 
counties, we ensure the average selected system size at the county level will never be more than 
the lesser of the two alternatives. Furthermore, within a county, if supported DPV sizes are not 
consistently greater on an agent by agent basis according to either suitable roof size or annual 
load, the average selected DPV size will be less than what either metric alone would produce 
(see Appendix E for an illustration of these points). Given that suitable roof area and annual load 
are not ensured to be positively correlated at the agent level, it is increasingly likely that as agent 
resolution increases, one set of possible systems sizes will not be consistently greater, thus 
diminishing the average DPV system size over many iterations (see Appendix E).  

3.4 County-Level DPV Capacity by Agent Resolution 
Next, we examine DPV capacity estimates at the geographic extent at which agents are 
instantiated: the county.10 Provided that key building characteristics are sampled from RECS and 
CBECS data sets aggregated from select counties at the Census division level, we recognize that 
results will be inherently unreliable at the county level. An analysis of county-level results does 
provide a baseline understanding of variability, which provides context for the data and model 
enhancements that would facilitate interpretation at this granularity.  

We find that as agent resolution increases, the state-level trend of decreasing mean DPV capacity 
does not consistently hold. Figure 7 (next page) illustrates, for example, that while nonresidential 
county-level DPV estimates generally decrease with agent resolution, nearly one in five counties 
located mostly in southeastern California demonstrate increasing DPV capacity with increasing 
agent resolution. Moreover, we find that the magnitude in DPV fluctuations is amplified at the 
county level; in the nonresidential sector, we observe as much as a 40% decrease or 230% 
increase in estimated DPV capacity between the 1-agent and 20-agent resolutions. These same 
types of divergences are evident in the residential sector results as well, though in half as many 
counties, the fluctuations are less dramatic. For example, the mean among 20-agent resolution 
runs does not differ more by than 25% compared to the 1-agent resolution mean in any county. 
We expect that in these counties, trends in numbers of new adopters are outweighing the 
previously observed mechanisms reducing average system sizes.  

Variance at the county level is higher than at the state or sector levels. In the nonresidential 
sector, the standard deviation ranges from 3% to 34% of the county sector mean (22% on 
average), while in the residential sector it varies more closely between 2% and 8% of the county 
sector mean (4% on average). We generally see that variance declines with increasing agent 
resolution; however, in more than half the counties in the residential sector and in one-fifth of the 
counties in the nonresidential sector, we observe an increase in variance between the 1-agent and 
2-agent resolutions. At a 20-agent resolution, the proportion of counties that sustain this increase 
in variance is only 5% of counties in the residential sector and 10% of counties in the 
nonresidential sector.  

 
                                                 
 
10 California has 58 counties with 1-agent mean DPV capacity estimates in 2050 ranging from 0.1 MW to 2.3 GW. 
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Figure 7. Ratio mean nonresidential county-level DPV capacity estimates in reference to 1-agent 
resolution runs 

We employ a least-squares linear regression to correlate county-level attributes to standard 
deviation trends. In the nonresidential sector, we find that by aggregating agents at the county 
level and then averaging attributes across the first 100 simulations at each resolution, we can 
account for 60% (adjusted R-squared = 0.607) of the observed variability in standard deviation 
by county. Key explanatory variables include maximum observed capacity factor, the cross 
product of agent resolution, suitable roof area, annual load, as well the number of developable 
customers (all coefficients are significant at p < 0.001, except suitable roof area and its cross 
product with agent resolution). In isolation, the average range of observed capacity factors and 
the average suitable roof area of a county each account for up to 30% of observed trends in 
county standard deviations relative to the mean (p < 0.001, adjusted R-squared values of 0.28 
and 0.27 respectively). The correlation with the number of nonresidential developable customers 
in a county is significant at p < 0.01, though it accounts for relatively little of the observed 
variance (adjusted R-squared = 0.05). In the residential sector, the variance in standard deviation 
relative to the mean is not significantly explained by the same set of attributes, except for agent 
resolution.  

3.5 Precision by Agent Resolution  
As discussed previously in Section 3.1, nonresidential and residential results are seen to become 
more precise as agent resolution increases at the state level. We also noted that variance at the 
state level mostly comes from the nonresidential sector, and that this sector would require a 
substantially higher resolution than we modeled to achieve variance that is similar to that seen in 
the residential sector. From empirical results, we fit a log function to the nonresidential and 
residential state-level results and then plot trend lines in Figure 8. Based on the projections 
illustrated in this graphic, in the nonresidential sector (intercept – 0.22007, log=-0.04628), we 
find that at a 76-agent resolution is needed to obtain less than 2% standard deviation, and a 94-
agent resolution would be expected to bring deviation within less than 1%. Similarly, in the more 
inherently precise residential sector (intercept – 0.024129, log=-0.005094), a 17-agent resolution 
is expected to be sufficient to bring the standard deviation to within less than 1%. Given that we 
empirically find a standard deviation slightly greater than 1% at a 20-agent resolution, however, 
we interpret these estimates as approximate indicators of suitable agent resolution ranges.   
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Figure 8. Projected state-level standard deviation reductions with increasing agent resolution 

by sector  

3.6 Precision by Number of Runs 
We next employing bootstrap methodologies to examine how the precision of the first 100 
uniquely seeded runs fluctuates. For each agent resolution, at each number of runs between 2 and 
100, we sample a set of distinct 2050 DPV estimates sized to that number of run 100 times. For 
each sample, we measure the difference in its standard deviation and that of the first 100 runs at 
the same agent resolution. As plotted results reveal in Figure 9 (next page), the mean difference 
in standard deviation decreases asymptotically as the number of runs approaches that 100 runs at 
each agent resolution. Also, in general we see that as agent resolution increases, the rate at which 
intermediate variance approaches that of 100 runs slows.  

It is important to remember when interpreting Figure 9 that the actual magnitude of standard 
deviation at 100 runs in relation to the mean of those run varies by agent. For example, consider 
running dGen at 1-agent and 20-agent resolutions, twenty times each. Figure 9 suggests we 
would observe approximately 10% and 14% differences from the 100-agent standard deviation 
for the 1-agent and 20-agent resolution runs respectively. Recalling that the standard deviation at 
the state level is about 4% of the mean a 20-agent resolution at 100 runs, we would accordingly 
not expect the standard deviation relative to the mean to fluctuate more than 0.6%. However, at a 
1-agent resolution where standard deviation is 12% of the mean at 100 runs, we would expect the 
standard deviation as a percentage of mean to fluctuate by twice as much. More than two times 
as many runs at the 1-agent resolution would be needed to be match the magnitude of fluctuation 
seen at a 20-agent resolution. However, it is worth noting these standard deviation distinctions 
are not expected to dramatically impact the interpretation of results. This example best serves 
to highlight that the inherent variance of an agent resolution may be more influential in achieving 
an acceptable level of variance than the number of times at which that resolution is run.     
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Figure 9. Mean percent difference in standard deviation compared to that of the first 100 runs by 

agent resolution 

3.7 Average Run Time by Agent Resolution 
In this section, we report the average run time across all simulations at 1-agent (n=1000), 2-agent 
(n=100), 10-agent (n=100), and 20-agent (n=100) resolutions. As illustrated in Figure 10, we 
moreover fit a simple linear regression (adjusted R=0.90) to observed means and find that from 
an approximate minimum solve time of 18 minutes, each agent adds approximately three minutes 
to the total run time. 

 
Figure 10. Average run time in minutes by agent resolution  
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4 Discussion 
In this report, we explore trade-offs of top-down and bottom-up methods in their precision 
and computational burden using NREL's dGen model, an agent-based model of residential and 
nonresidential distributed PV adoption. Running the model for a single state with fixed 
macroeconomic assumptions, we vary both the number of agents instantiated and the number 
of unique simulations. Notably, we introduce sources of uncertainty in cumulative DPV adoption 
results during agent instantiation as we stochastically sample agent attributes from localized 
building characteristic and solar resource distributions. The composition of these distributions and 
the number of times that we sample from them have implications for the tendency of observed 
results, and we find three key trends that guide what can be expected of results. First, precision 
of the model projections, as measured by the variance of the unique simulations increased as a 
function of the number of agents sampled, though with diminishing returns to scale. Second, the 
mean or expected value of projections decreased as the number of agents instantiated increased. 
Finally, the variance of model projections differed by sector, where variance was substantially 
larger in the commercial sector, largely because of differences in parameterization by sector.   

We explain the results both as a function of how the dGen model is constructed as well as known 
statistical phenomena. The first result, that variance decreases as sampling rate increased, is self-
explanatory through the law of large of numbers—namely that we are more fully representing the 
underlying distributions instantiating agents. However, the second and third results require more 
consideration. For the second result, we demonstrate that projected capacity decreased as agent 
resolution increased due to a corresponding decrease in the size of PV systems agents selected to 
install. Crucially, the systems are smaller due to the system-sizing mechanisms tied to independent 
suitable roof area and annual load distributions that biases smaller system sizes at larger agent 
resolutions. Model improvement mechanisms that serve to more directly correlate these 
distributions at agent instantiation will help more sensibly reflect system size at the agent level. 

We explain the larger variance in the nonresidential sector as an outcome of the greater variance 
in building uses and load shapes as compared to the residential sector. Note that nonresidential 
building use cases span from small commercial offices to large industrial complexes. This diversity 
of building uses and their resulting load shapes affects the optimal size of the PV system for each 
agent and therefore requires more agents to accurately represent does the residential sector. At a 
minimum, a sensible approach to efficiently improving dGen precision could be to parameterize 
agent resolution with higher numbers of nonresidential agents than residential agents. More-
advanced model enhancements in the nonresidential sector, including further agent stratification 
(i.e., building classification, tariff structure, and land use type) and distinct financial and adoption 
models by customer user case, would also help improve both the precision and accuracy of results.  

A perennial challenge in systems modeling is deciding the optimal trade-off between model 
resolution and computational feasibility. For example, at a 20-agent resolution, the coefficient of 
variance is 1% in the residential sector, and eight times higher in the nonresidential sector. 
Improving nonresidential variance to 1% or less in both sectors would require nearly 100 agents per 
county and subsequently, roughly 22 days of computation. Because reducing the number of runs to 
as low as 20 iterations is found not to substantially impact the interpretation of results relative to 
100 iterations; however, that computational time could be scaled down to five days with modest 
precision losses.  



19 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Ultimately, more resolved models offer greater precision and more spatially-granular results, yet 
they are more burdensome in parameterization, sensitivities assessment, and computation resources. 
Our results give insight to the prospective modeler of these trade-offs, where model run time 
increased with the agent resolution and precision decreased as a logarithmic function. For example, 
our results suggest that sets of 100-agent resolution runs would demonstrate high precision in 
cumulative DPV capacity estimates such that the magnitude of observed standard deviations would 
be expected to be within 5% of the mean DPV capacity of the set. At the same time, a single run at 
this resolution would be expected to take more than five hours and compiling a set of 20 runs alone 
could take more than four days. Considering that these metrics are relevant to analyses bounded to 
the state of California, national results would be expected to increase computing time and resource 
requirements considerably. Research exploring multi-criteria optimization in terms of precision, 
run time, and computing capacity would help improve modeling efficiency. 

Furthermore, note that both the mean and variance changed as a function of agent resolution. 
A priori, any single 20-agent simulation is closer to its population mean than any single 1-agent 
simulation, yet we would not estimate the population mean without multiple simulations. This 
implies that an efficient frontier exists for determining the minimum run time necessary for any 
given precision level.  

Tradeoffs of precision and computational burden have practical implications for analysis of dGen 
results. For the purposes of policy analysis, a high level of precision is a prerequisite for simulating 
potentially subtle effects. Also, customer adoption models are increasingly expected to inform 
distribution system planning, for which even county-level results are too coarse. Uniformly 
increasing agent-resolution across all counties is a promising pathway toward higher precision at 
higher spatial granularity. This broad approach is subject to computational constraints, and scaling 
agent resolution in relation to county standard deviation or weighting county resolution by relevant 
county-level attributes could help achieve computational efficiencies. Resolution parameterization 
by county, however, requires further research to understand (1) possible biases either sampling 
approach would introduce to counties and (2) acceptable sampling rates for interpreting county-
level results. 

Our analysis also highlights that understanding model parameterization is significant to the 
interpretation of results when evaluating potential policy or technology decisions—in particular, 
one must be assured that differences in modelled outcomes are actually due to policy differences, 
and not sampling error. Parameterization of advanced models can be complex and interdependent 
such that we posit that different macroeconomic parameters (e.g., technology costs and fuel prices) 
will require different sampling resolutions to achieve comparable precision to results detailed in this 
report. Furthermore, having noted that localized building characteristics and solar resource 
distributions play key roles in model results, it is also important to have more robust methodologies 
for gauging the precision limitations at various scales based on the quality and resolution of input 
data. We did not explore interstate differences in precision; for instance, states with different market 
maturities might behave differently. Furthermore, the results are in some sense determined by 
arbitrary modeling relationships. For instance, the choice of 16 different nonresidential load shapes 
versus a single one. As new agent-level attributes are added (e.g., income or environmental 
concern), they potentially reduce precision by requiring more sampling to represent the fully-
convolved distribution. 
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5 Conclusions 
Our empirical analysis of the dGen model provides insights that are relevant to the quantification 
of stochastic model uncertainty. Through empirical observations at varying agent resolutions, we 
find that aggregate DPV capacities projected by dGen are more precise at a 10-agent resolution 
compared to at a 1-agent resolution. We also find results are also on average 7% lower at this 
higher resolution. Moreover, estimated DPV capacities are up to 10% lower at a 10-agent 
resolution compared to a 1-agent resolution the nonresidential sector, and this sector accounts for 
the majority of state-level variation. A resolution on the order of 100 agents per county would be 
needed to bring nonresidential variance in line with residential variance at a 2-agent resolution. 
We attribute precision gains at a 10-agent resolution to the Law of Large Numbers and mean 
DPV capacity reductions to a system-sizing scheme that biases lower cumulative installed 
capacity as agent resolution increases when roof size and annual load consumption attributes are 
not positively correlated. We propose that further research explore increasing agent resolution in 
the nonresidential sector and more clearly quantify sources of variability at the county level such 
that resolution can by dynamically increased where county-level results are least precise. 
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Appendix A. RECS and CBECS Summary for the 
Pacific Census Division  
The following Table A-1 summarizes the key descriptive statistics of the Pacific Census Division 
subset of the RECS and CBECS data sets used in this analysis. From this subset, dGen samples 
annual load, building type, roof style, roof area, owner occupancy status and weight.  

Table A-1. Summary of RECS and CBECS in the Pacific Census Division 

Building Type Sectora Cumulative 
Weight  

Mean 
Roof 
Area 
(sq. ft.) 

Std. 
Dev. 
Roof 
Area 
(sq. ft.) 

Mean 
Annual 
Load 
(kWh)b 

Std. Dev. 
Annual 
Load  
(kWh) 

Full Service Restaurant Non-Res. 52,200 5,200 4,600 197,000 185,400 

Hospital Non-Res. 27,700 9,600 19,300 2,188,800 528,600 

Large Hotel Non-Res. 5,400 32,200 35,700 2,628,200 2,109,900 

Large Office Non-Res. 14,600 24,500 16,800 2,831,700 2,318,900 

Medium Office Non-Res. 103,900 8,600 8,900 803,300 225,000 

Midrise Apartment Non-Res. 6,000 19,800 14,500 320,600 404,900 

Out Patient Non-Res. 34,200 5,900 8,400 341,100 139,700 

Primary School Non-Res. 59,300 8,100 17,000 436,600 124,000 

Quick Service Restaurant Non-Res. 16,500 4,000 2,500 208,700 308,400 

Reference Home Residential 9,359,700 1,800 900 7,500 10,400 

Secondary School Non-Res. 134,800 7,600 14,800 249,700 107,800 

Small Hotel Non-Res. 16,900 10,900 19,400 203,200 99,100 

Small Office Non-Res. 329,200 3,700 4,300 153,800 63,600 

Stand Alone Retail Non-Res. 143,000 11,500 21,700 501,200 157,700 

Strip Mall Non-Res. 47,100 41,500 152,700 2,911,000 877,900 

Supermarket Non-Res. 28,900 5,100 9,600 436,100 189,100 

Warehouse Non-Res. 142,400 12,100 37,900 389,000 91,800 
a Non-Res. = nonresidential 
b kWh = kilowatt-hours 
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Appendix B. Distributions in Cumulative DPV 
Capacity Estimates for 2050 
To investigate the differences in results across different agent resolution levels more closely, we 
can look at the distributions of outcomes in 2050. Figure A depicts kernel density estimates of 
cumulative PV capacity for each agent resolution level. The figure suggests that at low resolution 
levels (𝑛𝑛 ∈ {1,2}), the distributions are heavily right-skewed and possibly bimodal.11 As agent 
resolution increases, the distributions become less skewed. At the highest resolution level (𝑛𝑛 =
20), the distribution appears almost normal, with just a small degree of skewness. 

 
Figure B-1. Distributions of state-wide cumulative PV capacity in 2050 by agent resolution 

 

 

                                                 
 
11 We say “possibly” bimodal because this feature depends on the smoothing parameters used to calculate the 
densities. 
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Appendix C. Annual DPV Estimates by Agent 
Resolution 
We plot cumulative DPV capacity by year and agent resolution for the residential and 
commercial sector, as well as for both combined. Visually, the nonresidential sector more closely 
resembles the combined state-level results. 

 
Figure C-1. “Boxplots” of cumulative PV capacity by year and agent resolution 
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Appendix D. Annual DPV Adoption by Agent 
Resolution 
Here we illustrate the year to year trends in new DPV adoption by sector. Lines reflect the mean 
across 100 simulations at each agent resolution and ribbons reflect two times the standard 
deviation. We see mass adoption in the nonresidential sector delayed relative to the residential 
sector. 

 

 

Figure D-1. New DPV capacity by year, agent resolution and sector 
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Appendix E. Example Illustrating Bias of the DPV 
System Sizing Mechanism  
Here we illustrate how selecting the minimum of possible system sizes reduces average selected 
system size as agent resolution increases.  

Consider first the simple case of a 1-agent resolution. In this case the selected size will simply be 
the lesser of the system sized to either load or roof area, or 10 kW resulting from the load. 

Table E-1. Average System Size at 1-agent Resolution 

Agent kW sized to Load kW sized to Roof Area Selected Size, kW 

1 10 15 10 

Average Size 10 15 10 
  

Next, consider the case of a 2-agent resolution and note that average sizing by load and roof area 
remain consistent. In this case, if the roof sizing is consistently larger than the load sizing, so the 
average selected system size remains consistent at its maximum of 10 kW.  

Table E-2. Average System Size at 2-agent Resolution with Proportional Roof Sizes and Loads 

Agent kW sized to Load kW sized to Roof Area Selected Size, kW 

1 10 15 10 

2 10 15 10 

Average Size 10 15 10 
 

If roof sizing is not consistently larger than load sizing however, the average selected size must 
decrease as shown in Table #, where it decreases to 9.5 kW.  

Table E-3. Average System Size at 2-agent Resolution without Proportional Roof Sizes and Loads  

Agent kW sized to Load kW sized to Roof Area Selected Size, kW 

1 10 21 10 

2 10 9 9 

Average Size 10 15                         9.5 
  

At a 1-agent resolution, we are guaranteed to observe the maximum possible system size. If 
relative sizing is purely random, however, at a 2-agent resolution we would expect one sizing 
column to be consistently greater than the other only 50% of the time. This likelihood is reduced 
to 25% at a 3-agent resolution, and it continues exponentially decrease as the number of agents 
increases. Thus, intuitively we expect to observe an average selected system size to be below its 
maximum more often as agent resolution increases. 
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