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ADVANCES IN CALIBRATION OF BUILDING 
ENERGY MODELS TO TIME SERIES DATA 

David Goldwasser1, Brian Ball1, Amanda Farthing1, Stephen Frank1, and Piljae Im2 
1National Renewable Energy Laboratory, Golden, CO 

2Oak Ridge National Laboratory, Oak Ridge, TN 

ABSTRACT 
Advanced building analytics and control applications, 
such as fault detection and diagnostics and model 
predictive control, benefit from building energy models 
calibrated to time series data. This paper recommends 
best practices for aligning EnergyPlus™ model time 
series output with measured building performance. 
These include the use of subcalibration procedures to 
fine-tune envelope, heat transfer, and mechanical system 
parameters; initialization of zone temperatures to match 
observed conditions at the beginning of each calibration 
period; and calculation of calibration metrics across 
multiple run periods using a new OpenStudio reporting 
measure. 

INTRODUCTION 
Building energy models and simulations provide a 
virtual laboratory for exploring and refining energy-
saving design, equipment, and operational strategies 
before using them in buildings. However, discrepancies 
between modeled and actual building performance are 
common (Calì et al. 2016; Turner and Frankel 2008; 
Herrando et al. 2016). These discrepancies affect 
projections of energy savings, the performance of 
predictive control algorithms, and confidence in the 
usefulness of building energy simulations. 
Therefore, calibration to measured data is necessary to 
ensure accurate representation of a building’s physical 
attributes, equipment, schedules, and energy use. 
Calibration involves iterative improvements to bring 
model outputs (e.g., electricity consumption, zone 
temperatures) in line with measured data from an actual 
building. Coakley et al. (2014) provide a detailed review 
of existing calibration tools and techniques for building 
energy models. 
For use cases such as automated fault detection and 
diagnosis (AFDD) and model predictive control (MPC), 
which depend on the timing and pattern of energy 
consumption, it is important to calibrate energy 
consumption to time series data (as opposed to monthly 
or annual totals). Use of hourly data for time series 
calibration is common in the literature (Coakley et al. 
2012; Haberl and Bou-Saada 1998; Soebarto 1997; Bou-
Saada and Haberl 1995; Harmer and Henze 2015). 
However, if accurate load profile shapes are needed at 
subhourly resolutions, higher-resolution (e.g., 15-
minute) metrics should be used. In addition to calibrating 

to whole-building electricity consumption, calibration of 
building subcomponents (e.g., equipment electricity use 
and rooftop air handling unit [RTU] air temperatures) 
can expose otherwise confounded errors and improve 
model accuracy (Ji and Xu 2015). Although necessary, 
calibration at this level of resolution can be time 
consuming and error prone, particularly if metrics are 
manually calculated across multiple run periods and if a 
systematic calibration approach is not employed. 
This paper describes lessons learned and recommends 
best practices for calibrating building energy models to 
time series data for nonconsecutive calibration periods 
when building operations are unknown during 
noncalibration periods. Calibration of the Oak Ridge 
National Laboratory (ORNL) flexible research platform 
(FRP) #2, an experimental facility designed to resemble 
a small office building, serves as a case study. The 
authors performed calibration for this facility using 15-
minute time series data and a newly developed, publicly 
available OpenStudio reporting measure that calculates 
calibration metrics across multiple run periods (NRELa). 
ASHRAE Guideline 14 standards for normalized mean 
bias error (NMBE) and coefficient of variation of the 
root mean square error (CVRMSE) (ASHRAE 2002) 
were used as calibration targets. For time series data, the 
guideline considers a model well-calibrated if NMBE 
does not exceed 10% and CVRMSE does not exceed 
30%. Although these targets are intended for hourly data 
for whole-building energy consumption, in this work the 
authors calculated the metrics using 15-minute whole-
building and end-use electricity consumption data, 
resulting in more stringent calibration requirements. 
This paper outlines the calibration methods used for the 
case study, describes key challenges, and proposes 
mitigation strategies for these challenges. Topics 
covered include data preparation; initialization of zone 
temperatures; identification of anomalies to exclude 
from calibration periods; handling missing or incorrect 
values in measured data; and calibration across multiple 
nonconsecutive run periods. 

FACILITY DESCRIPTION 
The ORNL FRP #2 is a 3,200 ft2 structure designed to 
emulate a 1980s-era office building (Figure 1). The 
building is unoccupied and used only for experiments. 
Occupancy is simulated by process control of lighting, 
humidifiers for human-based latent load, and heaters for 
miscellaneous electrical loads (Im and Bhandari 2016).  

https://paperpile.com/c/Ssv4KW/I5qe+cIFg+9vQs
https://paperpile.com/c/Ssv4KW/I5qe+cIFg+9vQs
https://paperpile.com/c/Ssv4KW/Tj0G/?noauthor=1
https://paperpile.com/c/Ssv4KW/P0aZ+9I6M+AgoK+bZHU+jNVa
https://paperpile.com/c/Ssv4KW/P0aZ+9I6M+AgoK+bZHU+jNVa
https://paperpile.com/c/Ssv4KW/P0aZ+9I6M+AgoK+bZHU+jNVa
https://paperpile.com/c/Ssv4KW/DekF
https://paperpile.com/c/Ssv4KW/61K3
https://paperpile.com/c/Ssv4KW/znCG
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Figure 1 Flexible research platform #2 at Oak Ridge 

National Laboratory (Image courtesy of Piljae 
Im/ORNL) 

Im and Bhandari (2016) provide a detailed description of 
the facility’s design, envelope, equipment, 
instrumentation, and research capabilities. The heating, 
ventilation, and air conditioning (HVAC) system used 
within the FRP #2 during the test periods was an RTU 
connected to a multi-zone variable air volume (VAV) 
system. The RTU is a Trane® YCD150 12.5-ton unit 
with an energy efficiency rating (EER) of 9.6. The 
connected VAV system serves a total of 10 zones (8 
perimeter and 2 core). Each VAV box includes electric 
resistance reheat. To better control the outside air 
introduced to the building during experiments, the 
RTU’s outdoor air intake is permanently blocked. In 
addition, the RTU’s natural gas heating system was 
disabled, such that the RTU provided cooling only and 
the VAV boxes provided all required heating. 
CALIBRATION METHODOLOGY 
To facilitate model calibration, the athors developed the 
model using a built-up workflow of OpenStudio 
measures (scripts), programmatically applying a series 
of controlled changes to the initial model (NRELb). This 
methodology allowed systematic, independent adj-
ustment of model characteristics during calibration. The 
automated workflow started with a baseline model 
developed according to the operating conditions of the 
FRP #2 during the calibration run periods. Next, a series 
of measures, each of which focused on different 
calibration variables, was applied. The OpenStudio 
model was then translated to EnergyPlus and run using 
actual meteorological year (AMY) weather data col-
lected onsite. Lastly, reporting measures automatically 
generated the calibration metrics. This modular 
workflow, depicted in Figure 2, made it easy to modify 
assumptions or underlying data, add additional 
calibration periods, and quickly rerun the process. All 

tools and measures referenced in this paper are open 
source and freely available for download (NRELe). 

Calibration variables 
The primary variables for the calibration parameter 
space are: 

• Primary fan attributes 
• Air loop set point strategy 
• Infiltration schedule 
• Heating and cooling set point adjustments 
• Supply air duct leakage 
• Internal mass (various arguments for different 

areas of the building) 
• Solar heat gain coefficient for windows 
• Window U-factor 
• Air mixing between zones 
• Roof and wall insulation values. 

These variables represent building characteristics that 
are unknown or uncertain and are therefore appropriate 
for adjustment during calibration. 

Measured calibration data 
FRP #2 includes extensive permanent instrumentation 
that collects building performance data at a 1-minute 
resolution. Data available include electricity and natural 
gas consumption for the entire building and individual 
equipment; outside, supply, mixed, return, and zone 
temperature and humidity; supply and return air 
volumetric and mass flow rates; and HVAC system 
commands. Of these, the authors selected several data 
streams likely to be available from a typical building 
automation system and/or from electrical submeters: 

• Whole building electricity consumption 
• End-use electricity consumption for heating, 

cooling, fans, lighting, and plug loads 
• Supply and return air temperatures at the RTU 
• Zone air temperatures. 

Because heating is provided exclusively by the VAV 
boxes, it was possible to meter cooling and heating 
electricity separately. End-use electricity consumption, 
supply and return air temperatures, and zone air 
temperatures were used for quantitative calibration. 

https://paperpile.com/c/Ssv4KW/znCG/?noauthor=1
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However, measured zone temperatures were not 
available for the stairs or plenum zones. 
One-minute interval calibration data were available for 
11 periods of 2 days each, spread over 9 months. The 
first calibration period was July 25–26, 2015, and the last 
was March 5–6, 2016. These periods represent days 
when calibration data were available, and the operating 
condition of the building matched the configuration 
described in “FACILITY DESCRIPTION” above. To 
enable free oscillation calibration as outlined by Ruiz et 
al. (2016), one additional period was run from August 
11–16, 2016, with the FRP #2 HVAC system disabled.   
Prior to calibration, the authors verified the quality of the 
relevant data, time-averaged to a 15-minute resolution, 
converted to units compatible with EnergyPlus, and 
aligned to Eastern Standard Time (no daylight saving). 
These quality-controlled data then served as ground truth 
for the calibration process. 

Weather data 
Weather is a major determinant of building loads and an 
important source of uncertainty in building energy 
simulations. Erba et al. (2017) show the significant effect 
of weather data choice on simulated building 
performance and energy use. Therefore, for calibration 
to time series data, local weather data are essential. The 
National Weather Service provides historical hourly 
weather data for a large number of locations (NOAA 
2017). In this case study, the authors used hourly data 
collected from a weather station located on the roof of 
FRP #2. Locally measured data include ambient dry bulb 
temperature, ambient humidity, direct and diffuse solar 
irradiance, wind speed, and wind direction. These data 
were converted to the EnergyPlus Weather (EPW) file 
format (NRELc) for use with the energy model. 

Baseline building energy model 
The baseline FRP #2 EnergyPlus model was developed 
by ORNL's Building Technologies Research and 
Integration Center as a part of the FRP research project 
(Buckberry and Bhandari 2012). The energy model 
reflects the geometry and basic characteristics of the 
physical FRP #2 building. However, several adjustments 
were needed prior to calibration to align this model with 
FRP #2 operations during the case study test periods. 
First, any model inputs known with certainty were 
assigned to their measured values and held constant, 
which removes them from the parameter space for the 
calibration. For example, the authors developed 
OpenStudio measures to injected measured electric 
equipment, lighting, and other equipment energy 
(simulated occupants) using schedules derived from the 
measured data. This approach minimized lighting, plug 
loads, and occupancy as sources of error, which allowed 
the calibration to focus on the envelope and HVAC 
system. Second, HVAC system control schedules were 
aligned with the experimental configuration. Third, 
infiltration schedules were altered so there was not a 
reduced daytime rate because there was no positive 
internal pressure due to outdoor air during HVAC 
operation. Finally, the generic DX cooling performance 
curves used in the baseline model were replaced with 
performance curves generated from laboratory test data 
(NRELf) with the EER and capacity adjusted to match 
that of the unit installed on the FRP #2. 

Model evaluation with OpenStudio time series 
reporting measure 
The calibration acceptance criteria established by 
ASHRAE Guideline 14 are NMBE <10% and 
CVRMSE <30% for hourly, whole-building energy 

Figure 2 Workflow for calibrating building energy models to time series data 

https://paperpile.com/c/Ssv4KW/iS0P/?noauthor=1
https://paperpile.com/c/Ssv4KW/VY2c/?noauthor=1
https://paperpile.com/c/Ssv4KW/ceuA
https://paperpile.com/c/Ssv4KW/ceuA
https://paperpile.com/c/Ssv4KW/sV6s
https://paperpile.com/c/Ssv4KW/72in
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consumption (ASHRAE 2002). To compute these 
metrics, the authors ran each calibration data point for 
12 run periods in EnergyPlus, then used an OpenStudio 
reporting measure to generate the respective metrics at 
the 15-minute time interval (Figure 3). The 11 
conditioned run periods as a group were assigned a 
single CVRMSE and NMBE value for each objective 
function. The 12th free oscillation unconditioned run 
period was assigned a CVRMSE and NMBE for 
average building air temperature. The free oscillation 
run period provides an excellent way to calibrate 
envelope and thermal mass in the model (Ruiz et al. 
2016). In the free oscillation period, the zone 
temperatures were initialized to the correct starting 
values, as described in “Recommendations and lessons 
learned.” 
 

 
Figure 3 Multiple run periods and associated metrics 

calculated by OpenStudio reporting measure; simulated 
(blue) and measured (red) load shown for July 25–26, 

while metrics are for all days 

Iterative model adjustments 
The authors used an OpenStudio Parametric Analysis 
Tool (PAT) project to manage both manual and 
algorithmic calibration analyses (NRELd). After manual 
runs to ensure modeled results were within realistic 
bounds, the variables were confined to logical ranges. 
Next, a Morris screening method (Campolongo et al. 
2007) was executed to inform the sensitivity of the 
variables and to indicate which variables should be 
included in the parameter space. Engineering judgment 
and knowledge of the building informed the parameter 
space by limiting variables to reasonable ranges 
considering onsite conditions. Next, the analysis was 
updated to sample all variables simultaneously to 
characterize interactions between variables.  
The authors selected a “best point” model from the 
output of the multivariable sampling analysis: a data 
point that was a good fit (low CVRMSE and NMBE) for 
both the whole building and individual subcomponents. 
The updated model was the starting point for an 
optimized calibration with an objective function that 
incorporated the NMBE and CVRMSE metrics. 
Through visual inspection of data points (trial models) 
generated from this optimization, the authors discovered 

a number of atypical days during which the measured 
data differed substantially from the modeled data (Figure 
4). These anomalies persisted across many model 
perturbations, which suggested that they could not be 
adequately explained by adjusting the calibration 
variables. However, modeled and measured data were 
well aligned during other times. Because the anomalies 
were limited to well-defined time periods, showed no 
clear pattern, and persisted across all trial models, they 
are hypothesized to represent unknown, transient 
changes in the operating conditions for the building, such 
as temporarily altered HVAC controls or substantial 
infiltration from an open door. 
The goal of calibration is to properly capture the normal 
operating condition of the building. If the anomalies 
present a clear pattern, then they suggest an error in the 
underlying modeling assumptions that should be 
corrected. However, in the absence of a clear pattern, it 
would be possible but extremely time consuming to 
manually tune schedules for the model parameters until 
the model matched each observed anomaly. Instead, the 
authors developed the best fit for the non-anomalous 
periods by removing 7 of the 22 conditioned days from 
the objective function and rerunning the optimization 
using the remaining 15 days. When reporting final 
calibration results, values were provided both for these 
“typical” days and the full set of days. Although a lower 
value could have been achieved for all days by 
optimizing the full set, the optimization performed 
against the typical days better represents true building 
parameters and better predicts typical future behavior. 

 
Figure 4 Simulated data (blue) vs. measured data (red) 
for November 27–28 for heating electricity (top) and 

supply air temperature (bottom); November 27 was one 
of the atypical days removed from the optimization. 

Data are not available for supply air temperature when 
system is off. 

https://paperpile.com/c/Ssv4KW/61K3
https://paperpile.com/c/Ssv4KW/iS0P
https://paperpile.com/c/Ssv4KW/iS0P
https://paperpile.com/c/Ssv4KW/xpui
https://paperpile.com/c/Ssv4KW/fm6K
https://paperpile.com/c/Ssv4KW/fm6K
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Table 1 CVRMSE and NMBE metrics for modeled vs. measured data for whole building and components for “All 
Days” and “Typical Days”

    All Day Typical Days 
Component Type CVRMSE (%) NMBE (%) CVRMSE (%) NMBE (%) 

Whole Building Electricity 26.20% 5.70% 14.70% 0.81% 
Cooling (RTU) Electricity 44.50% 4.20% 40.60% 0.03% 
Heating (zone 

terminals) Electricity 120.90% 24.40% 69.20% 5.20% 

Fan Electricity 15.50% 4.00% 14.60% 4.00% 
Lights Electricity 3.30% 0.23% 3.80% 0.28% 

Electric Equipment Electricity 3.90% 0.20% 4.50% 0.24% 

RTU Entering Air Temperature 9.90% 7.90% 6.90% 7.00% 

RTU Exiting Air Temperature 21.20% 5.70% 20.10% 6.80% 
No HVAC Avg. Bldg. 

Air Temperature 0.68% 0.04% 0.68% 0.04% 

 

DISCUSSION AND RESULTS 
FRP #2 calibration results 
Following the optimization, the authors selected a final 
model with balanced results for all the time series 
evaluated. Had total electricity consumption been the 
only calibration variable, it would be possible to obtain 
a lower CVRMSE for typical days. However, when 
submetered and environmental data are also considered, 
it becomes apparent that this whole-building metric 
target would be a result of incorrect underlying 
assumptions. When focusing on maintaining a good fit 
across subcomponents as well, the calibration achieved 
a total electricity CVRMSE of 14.7% (shown in Figure 
5). Fit metric values for all days and typical days for -
whole-building and building subcomponents are 
summarized in Table 1. Figure 6 and Figure 7 show 
examples of calibrated electricity and temperature 
profiles, respectively. 

 
Figure 5 Whole-building electric consumption metrics 

for multiple simulation runs 

Most subcomponents had CVRMSE values less than 
30%. Exceptions included cooling (40.6%) and heating 
(69.2%). The large heating error has two likely causes. 
First, when heating is a small fraction of cooling (e.g., 
during summer months), a small error in supply air 
temperature or envelope conditions can create a large 
error in heating. Another possible cause is that the small 
time step places more stress on the accuracy of the 
control schedules for the building. There could be a clock 
drift between the model and the real building that causes 
misalignment in the heating profiles even when the total 
heat produced aligns well. As a result of this 
misalignment, CVRMSE may be high even when 
NMBE is low. 

 

     
Figure 6 Whole-building electricity consumption during 

the August 7–8 run period; simulated data (blue) vs. 
measured data (red), pre- (top) and post- (bottom) 

calibration 
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Figure 7 Building volume weighted average 

temperature for 6-day “free oscillation” simulation 
with calibrated model; simulated data (blue) vs. 

measured data (red) 

LESSONS LEARNED 
This section discusses lessons learned, while the 
“Recommendations” section below lists specific 
recommendations for ensuring a high-quality 
calibration. 

1. Data points for measured consumption and 
environmental conditions do not always map 
cleanly to EnergyPlus outputs.  

2. Synchronization of time steps can be 
misinterpreted or inadvertently offset. 

3. Calibrating during a year containing a leap day 
requires paying extra attention to EnergyPlus 
reporting. 

4. Missing data for a sensor or gaps in coverage 
for specific building elements can introduce 
uncertainty. 

5. It is important to understand the building’s 
controls and how they impact other elements. 

6. Look closely at time series profiles and not 
just the metrics they produce.  

7. It is critical to properly model the building 
operation prior to the start of the time period 
being used for the analysis. 

8. Time spent gaining a deeper understanding of 
the building is worth the effort to minimize 
both the required calibration effort and 
uncertainty. 

9. Let the use case for the calibration inform the 
metrics used and the building elements that 
receive the most attention. 

10. Exercise the building throughout its designed 
operational range. 

RECOMMENDATIONS 
Based on lessons learned, the authors recommend the 
following as best practices: 

Sensor mapping: Carefully validate that there are not 
gaps or overlap in submetered sensors and that unit 

conversion between power and energy as well as si/ip 
units are correct for subhourly time steps. 

Time step synchronization: It is easy to inadvertently 
offset time in the measured or simulated data—for 
example, misinterpreting the meaning of the time stamp 
in the measured data. Does data for time labeled 6 a.m. 
represent the 15 minutes ending at 6 a.m., the 15 
minutes starting at 6 a.m., or the 15 minutes centered at 
6 a.m.? In the case of EnergyPlus output, the time 
stamp is at the end of the time period. 

Confirm whether the data are reported in the local time 
zone or Coordinated Universal Time and if daylight 
saving time has been used for any of the data.  

Exclude the day that daylight saving time starts and 
ends from the calibration data set, as the time stamps in 
the measured data may be ambiguous. 

Leap year: When calibrating time series data for a leap 
year after February 28, make sure simulation data are 
from the correct day. EnergyPlus may report February 
29 as March 1. 

Missing data or sensors: Address missing or invalid 
measured data by skipping that time step when 
calculating the calibration metrics. The multirun period 
time series OpenStudio calibration reporting measure 
will exclude any time steps that lack values for either 
simulated or measured data from metric calculations. 

The authors did not have access to stair, plenum, or 
building surface temperatures but used careful analysis 
of the responses of surrounding zones to infer the 
expected conditions for the elements without sensors. 

Building controls: Carefully manage HVAC system 
availability, setpoint managers, outdoor air, and other 
related elements such as thermostats and infiltration. 

Time series profiles: The authors found multiple 
anomalies in the measured data that skewed calibration 
results. Although real buildings also experience 
anomalies, if the point of the calibration is to produce a 
model that is accurate for normal building operation, 
then anomalies should be excluded from the objective 
function during calibration—with two caveats. First, be 
careful that the anomalies observed are truly random 
and do not represent a systematic flaw in your 
underlying modeling assumptions. Second, for 
transparency, calculate and report final calibration 
metrics both with and without the anomalies included. 

Run period startup: When calibrating specific days, it 
is important to know or estimate what was happening 
with the building in the days leading up to the 
calibration period, specifically related to zone 
conditions. Building air temperatures may look good at 
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the first time step of your calibration, but if the thermal 
mass is lagging far behind, it will be hard to get a good 
calibration for heat gain and loss.  

Familiarity with the building: If you are not familiar 
with the building you are calibrating, learn about any 
special characteristics that might impact the calibration. 
For example, investigation revealed that there were four 
200-gallon water tanks near windows in one zone that 
are part of a different HVAC system used in other 
experimental configurations. When possible, it is ideal 
to walk through the building or interview someone with 
first-hand knowledge of the building.  

Calibration use case: If calibration will be done on 
data that have not yet been collected, think about what 
sensors you would like to have. In this case study, the 
authors identified the air temperature of the 
unconditioned stair and the first and second floor 
plenums as additional data points that would be helpful. 
If you are performing a calibration with a specific 
purpose in mind for the resulting model, more data 
collection effort might be spent for building 
components most important for your use case. A 
calibration setup might look different if you are 
considering envelope versus HVAC energy efficiency 
measures. 

Operational range: If feasible, run the HVAC system 
in different configurations and environmental 
conditions to isolate the behavior of different building 
components and exercise the full range of the building 
and HVAC system. If a free oscillation test is done, 
ideally, it should be at a time with a high temperature 
difference between the initial inside conditions and the 
seasonal outside conditions. Of course, care needs to be 
taken so that the building conditions do not drift to a 
point that might cause problems or damage equipment 
by, for example, producing condensation. 

CONCLUSION 
Calibration of building energy models to time series data 
is significantly more difficult than calibration to monthly 
utility billing data, but careful attention to detail and the 
use of proven strategies can improve time series 
calibration outcomes. This paper has discussed the 
identification and exclusion of anomalous time periods 
when tuning calibration parameters, techniques for 
mitigating errors due to thermal transients at run period 
start, and a new OpenStudio measure for calculating 
calibration metrics across multiple run periods. The 
paper also provides lessons learned and recommends 
best practices, including proper alignment of measured 
and model time series and strategies for effective 
calibration parameter tuning. It is challenging but 
possible to produce a model that accurately predicts 
building performance at hourly or subhourly intervals 
using the techniques described in this paper. 
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