



# Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines

Sertaç Akar, Chad Augustine, Parthiv Kurup, and Margaret Mann National Renewable Energy Laboratory

CEMAC is operated by the Joint Institute for Strategic Energy Analysis for the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

**Technical Report** NREL/TP-6A20-71128 September 2018

Contract No. DE-AC36-08GO28308



| Global Value Chain and    |
|---------------------------|
| Manufacturing Analysis in |
| Geothermal Power Plant    |
| Turbines                  |

Sertaç Akar, Chad Augustine, Parthiv Kurup, and Margaret Mann National Renewable Energy Laboratory

|                                                                                                                | CEMAC is operated by the Joint Institute for Strategic Energy Analysis                |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                                                                                | for the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. |
| Clean Energy Manufacturing<br>Analysis Center<br>15013 Denver West Parkway<br>Golden, CO 80401<br>303-275-3000 | Technical Report<br>NREL/TP-6A20-71128<br>September 2018                              |
| www.manufacturingcleanenergy.org                                                                               | Contract No. DE-AC36-08GO28308                                                        |

#### NOTICE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Geothermal Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S. Government.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at <u>www.nrel.gov/publications</u>.

U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov.

Cover Photos: (left to right) iStock 2225189; iStock 16687273; Oak Ridge National Laboratory; iStock 24304597; iStock 26005993; iStock 2069560

NREL prints on paper that contains recycled content.

## Foreword

The U.S. Department of Energy (DOE) established the Clean Energy Manufacturing Analysis Center (CEMAC) at the National Renewable Energy Laboratory (NREL) to conduct credible, objective, industry-relevant, recurring and consistent analyses of clean energy technologies based on established methodologies and prior successful analyses. These analyses provide insights on supply chain dynamics that can aid decision-makers in creating strategies for innovation in manufacturing. CEMAC analyses include several components that enable development of technology-specific and cross-technology insights affecting manufacturing cost and location decisions (Sandor et al., 2017). The main types of CEMAC analysis include;

- Current and prospective global supply chains and trade flows of materials and components necessary for the manufacture of clean energy technologies,
- Detailed manufacturing costs analysis, including the total costs of products manufactured in the U.S. relative to regions around the world,
- Determination of the main drivers of costs and the sensitivity of those drivers to technical and market inputs,
- Qualitative factors and their role in determining the location of new manufacturing facilities such as; intellectual property ownership and protection, opportunities for automation and advanced manufacturing, supporting infrastructure impacts, and trade restrictions.

In this study, we have undertaken a robust analysis of the global supply chain and manufacturing costs for components of Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. We collected a range of market data influencing manufacturing from various data sources and determined the main international manufacturers in the industry. We developed a bottom-up manufacturing cost model which includes the raw materials, intermediate products, and final manufactured parts. In addition, we established industry contacts to discuss challenges currently faced by the industry, focusing on both economic factors (e.g. labor availability, energy cost, and capital availability) and non-economic factors (such as innovation culture, proximity to universities/innovation hubs, government policies, trade security and ease of doing business), that influence manufacturing cost.

## Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Office (GTO) under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory (NREL). The authors wish to thank reviewers for their comments and suggestions including Doug Arent, Jill Engel-Cox, Emily Newes, Samantha Reese, and Ahmad Mayyas from NREL. The authors also thank Billy Roberts from NREL for his help on mapping. All errors and omissions are the responsibility of the authors.

## **Nomenclature or List of Acronyms**

| Internal Rate of Return<br>Net Present Value<br>Power Purchase Agreement<br>Net Capital Cost<br>Interest During Construction<br>Minimum Sustainable Price<br>Maximum Allowable Working Hours<br>U.S. Department of Energy |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Net Present Value<br>Power Purchase Agreement<br>Net Capital Cost<br>Interest During Construction<br>Minimum Sustainable Price<br>Maximum Allowable Working Hours<br>U.S. Department of Energy                            |
| Power Purchase Agreement<br>Net Capital Cost<br>Interest During Construction<br>Minimum Sustainable Price<br>Maximum Allowable Working Hours<br>U.S. Department of Energy                                                 |
| Net Capital Cost<br>Interest During Construction<br>Minimum Sustainable Price<br>Maximum Allowable Working Hours<br>U.S. Department of Energy                                                                             |
| Interest During Construction<br>Minimum Sustainable Price<br>Maximum Allowable Working Hours<br>U.S. Department of Energy                                                                                                 |
| Minimum Sustainable Price<br>Maximum Allowable Working Hours<br>U.S. Department of Energy                                                                                                                                 |
| Maximum Allowable Working Hours<br>U.S. Department of Energy                                                                                                                                                              |
| U.S. Department of Energy                                                                                                                                                                                                 |
|                                                                                                                                                                                                                           |
| National Renewable Energy Laboratory                                                                                                                                                                                      |
| Clean Energy Manufacturing Analysis Center                                                                                                                                                                                |
| System Adviser Model                                                                                                                                                                                                      |
| Geothermal Electricity Technology Evaluation Model                                                                                                                                                                        |
| Geothermal Energy Agency                                                                                                                                                                                                  |
| International Energy Agency                                                                                                                                                                                               |
| Bloomberg New Energy Finance                                                                                                                                                                                              |
| Organic Rankine Cycle                                                                                                                                                                                                     |
| Waste Heat Recovery                                                                                                                                                                                                       |
| Concentrated Solar Power                                                                                                                                                                                                  |
| Computer Numerical Model                                                                                                                                                                                                  |
| Over-Speed Testing and Balance                                                                                                                                                                                            |
| Coordinate Measuring Machine                                                                                                                                                                                              |
| Design for Manufacturing and Assembly                                                                                                                                                                                     |
| Software for Thermal Process Simulation                                                                                                                                                                                   |
| Weighted Average Cost Capital                                                                                                                                                                                             |
| Inflation on Cost of Goods Sold                                                                                                                                                                                           |
| Selling, General and Admission                                                                                                                                                                                            |
| Design and Engineering                                                                                                                                                                                                    |
| Full Time Employee                                                                                                                                                                                                        |
| Non-Condensable Gas                                                                                                                                                                                                       |
| Air Cooled Condenser                                                                                                                                                                                                      |
| Heat Exchanger                                                                                                                                                                                                            |
|                                                                                                                                                                                                                           |

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

## **Executive Summary**

The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). When planning geothermal power projects, geothermal project developers currently customize the size of the power plant to fit the resource being developed. The turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparison to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments and manufactured in larger volumes could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and geothermal steam turbines.

In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). The results showed that MSP could highly vary between 893 \$/kW and 30 \$/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number manufactured in a single run. As an example, the unit price of a 5 MW standard design turbine could be 150 \$/W cheaper than the custom design. Sensitivity analysis indicated that these savings come largely from reduced labor costs for design and engineering and manufacturing setup. In addition to manufacturing cost savings, there is a delivery time saving up to 10 months, which could have a positive effect on construction financing operation time. Another advantage of these standard turbines is their adaptability to different geothermal systems by operating at off-design conditions.

Standard turbine designs only make economic sense if the manufacturing cost savings offset potential losses in electricity generation and revenue over a wide range of operating conditions. Off-design turbine efficiencies determine the commercially-favorable operating range of a standard ORC compared to custom-designed ORC equipment. To compare the economics of standard and custom turbine designs, we developed a model of a 5 MW Geothermal Power Plant using a given design point optimized to maximize power generation for a 175 °C, 80 kg/s geothermal resource by using IPSEpro<sup>®</sup> software. Then, we varied the geothermal resource over a range of temperatures and flow rates and compared power generation of the standard turbine operating at off-design conditions to a custom turbine operating a constant isentropic efficiency. We used these performance calculations and power output results in a DCF analysis, using NREL's System Advisor model (SAM), of plant operations, costs and financing, thereby creating representative techno-economic models of a total geothermal power plant using Geothermal Electricity Technology Evaluation Model (GETEM) and).performed DCF analysis of standard and custom design turbines using results from IPSEpro over a range of temperatures of interest; 63 different off-design cases were analyzed. These data helped us to explore the question; "Can today's capital cost savings compensate the future revenue losses due to lower electricity generation?" The results showed that the net capital cost savings from a standard design vs. a custom design turbine at the standard turbine design point for the modeled 5 MW case study may reach up to \$2.3M, while the difference in the NPV a could reach up to \$1.4M. Our conclusion is that the study does not consider factors such as the demand for ORC turbines, the cost of carrying standard turbines as inventory, the optimum size for a standard turbine, etc., the results show that the standard turbines could be competitive over a wide range of temperatures and flow rates cases near their design point.

## **Table of Contents**

| Lis | t of Figures                                                                                                                                                                                          | x                                  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Lis | t of Tables                                                                                                                                                                                           | xi                                 |
| 1   | Global Geothermal Energy Market<br>1.1 Historical, current and projected global installations<br>1.2 Global Value Chain and Trade Flow                                                                | <b> 1</b><br>1<br>2                |
| 2   | Manufacturing Analysis         2.1 Methodology for Manufacturing Analysis         2.2 Machining Cost Analysis                                                                                         | <b> 6</b><br>6<br>11               |
| 3   | Minimum Sustainable Price (MSP) and Discounted Cash Flow (DCF) Analysis                                                                                                                               | 12                                 |
| 4   | Manufacturing Analysis Case Studies4.1 Case-1: 1 MWe geothermal ORC turboexpander.4.2 Case-2: 5 MWe geothermal ORC turboexpander.4.3 Case-3: 20 MWe geothermal steam turbine4.4 Sensitivity Analysis. | <b> 14</b><br>14<br>14<br>15<br>16 |
| 5   | Power Plant Design and Performance Analysis                                                                                                                                                           | 20                                 |
| 6   | Economic Analysis                                                                                                                                                                                     | <b> 24</b><br>26<br>27             |
| 7   | Discussions and Conclusions                                                                                                                                                                           | 35                                 |
| Re  | ferences                                                                                                                                                                                              | 37                                 |
| Ар  | pendix: List of Global Geothermal Power Plants                                                                                                                                                        | 39                                 |

## **List of Figures**

| Figure 1 Historical, current, and projected global installations of geothermal power plant turbines. Data displayed represent the median figures which have been compiled from GEA (2016), BNEF (2016), and Bertani (2016). (P = projection)                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2 Overview of global ORC turboexpander market between 2005 and 2016 (Data modified from Tartiere (Tartiere 2016); lab-scale prototypes and installed capacity lower than 50 kWe have not been included)                                                   |
| Figure 3 Global trade flow map of geothermal turbines, 2005–2015. Data are from a CEMAC analysis of industry outreach, GEA (2015 and 2016), BNEF (2013, 2014, 2015 and 2016), and Bertani (2016) 4                                                               |
| Figure 4 Manufacturing process flow diagram for geothermal power plant turbines                                                                                                                                                                                  |
| Figure 5 World Steel Production, *Units are in million metric tons per year. (Data Source: World Steel information system, World Steel Dynamics, 2015)                                                                                                           |
| Figure 6 World Titanium Ore Production, *Units are in thousand metric tons per year. (Data Source: USGS Minerals Year Book, 2015)                                                                                                                                |
| Figure 7 Machine inventory for the custom factory model                                                                                                                                                                                                          |
| Figure 8 Representative material and machining cost estimates of a typical impeller for both custom design and standard design (at a volume of 10 units per year) 5 MWe Turboexpander                                                                            |
| Figure 9 Calculated MSP and manufacturing cost breakdown for a 1 MWe ORC turboexpander in different volumes of manufacturing in the United States. Data is taken from an ongoing CEMAC cost analysis                                                             |
| Figure 10 Calculated MSP and manufacturing cost breakdown for a 5 MWe ORC turboexpander in different volumes of manufacturing in the United States. Data is taken from an ongoing CEMAC cost analysis                                                            |
| Figure 11 Calculated MSP and manufacturing cost breakdown for a 20 MWe geothermal steam turbine in different volumes of manufacturing in the United States. Data is taken from an ongoing CEMAC 15                                                               |
| Figure 12 Sensitivity analysis for 5 MWe turboexpander based on A) Manufacturing volume of 1 unit/year (Custom Design) and B) Manufacturing volume of 10 units per year (Standard Design) in the United States (Data is from an ongoing CEMAC cost analysis)     |
| Figure 13 Manufacturing cost drop by cost factor for a standard design (10 units) 5 MWe ORC turboexpander (Data: ongoing CEMAC cost analysis)                                                                                                                    |
| Figure 14 Sensitivity analysis for 20 MWe turboexpander based on A) Manufacturing volume of 1 unit per year (Custom Design) and B) Manufacturing volume of 5 units per year (Standard Design) in the United States (Data is from an ongoing CEMAC cost analysis) |
| Figure 15 Manufacturing cost drop by cost factor for a standard design (5 units) 20 MWe steam turbine (Data: ongoing CEMAC cost analysis)                                                                                                                        |
| Figure 16 Process Flow Diagram of Standard Size ORC Power Plant                                                                                                                                                                                                  |

| Figure 17 Off-Design Turbine Efficiency Curve                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 18 Actual Plant Brine Effectiveness22                                                                                                                                                                                                                                                                             |
| Figure 19 Thermal to electric conversion efficiency for 5 MWe ORC turbine                                                                                                                                                                                                                                                |
| Figure 20 Net capital cost per kW for different off-Design cases of the standard turbine                                                                                                                                                                                                                                 |
| Figure 21 NPV after tax for different off-design cases of the standard turbine                                                                                                                                                                                                                                           |
| Figure 22 NPV difference between custom and standard design scenarios for given resource conditions.<br>Green colored areas with positive values represent cases where standard design turbines are<br>favorable. Black solid line represents the economic boundary of standard turbines where NPV<br>difference is zero |
| Figure 23 Standard turbine design gross turbine output in kW as a function of geothermal brine temperature and flow rate. Standard turbine design output (nameplate capacity) is 5,000 kW                                                                                                                                |
| Figure 24. Sensitivity analysis for NPV difference with respect to relative isentropic efficiencies for select cases                                                                                                                                                                                                     |
| Figure 25 Sensitivity analysis for NPV difference with respect to relative isentropic efficiencies for all cases (Green, yellow and red dashed lines represent the lower limit, median and upper limit respectively.)                                                                                                    |
| Figure 26 The required isentropic efficiency of the standard turbine relative to a custom turbine to get a break-even NPV                                                                                                                                                                                                |
| Figure 27 Plant cost savings (standard minus custom) as a function of geothermal brine temperature and flow rate                                                                                                                                                                                                         |

## **List of Tables**

| Table 1 Inconel Alloy Element Compositions by Weight                                       | 9    |
|--------------------------------------------------------------------------------------------|------|
| Table 2 Number of required machines for different volumes of manufacturing at MAWH         | . 10 |
| Table 3 Summary of input parameters for DCF analysis                                       | . 13 |
| Table 4 Comparison of MSPs for standard and custom design turbines                         | . 19 |
| Table 5 Base Case Geothermal Resource Characterization for SAM financial Model             | . 24 |
| Table 6 Financial parameters for SAM Model                                                 | . 25 |
| Table 7 Summary of financial parameters used to calculate financial outputs                | . 27 |
| Table 8 Comparison of SAM financial model results for custom and standard design scenarios | . 27 |

## **1 Global Geothermal Energy Market**

The global geothermal market has significantly grown over the last decade with approximately 4.75 GW of new capacity, contributing to overall geothermal power capacity of 13.65 GW (GEA, 2016; TGE Research, 2017; Enerji Atlasi, 2018). In the 10 years ending in December 2015, 118 binary cycle, 58 flash cycle, and 14 dry steam geothermal power plants were installed around the world, including (in order of installed capacity) the United States, New Zealand, Turkey, Indonesia, Kenya, Iceland, Italy, Mexico, Nicaragua, Philippines, Germany, El Salvador, Papua New Guinea, Costa Rica, Guatemala, Japan, Portugal, China, Russia, France, Australia, and Romania (Bertani, 2016). Flash cycle plants accounted for the greatest share of the new capacity (49.5%), and the greatest quantity of installations was binary cycle. The capacity share of binary cycle and dry steam turbines was 38.7% and 11.8% respectively (Bertani, 2016).

### 1.1 Historical, current and projected global installations

Based on pipeline projects (BNEF, 2016), and forecasts (GEA, 2016), the number of geothermal electricity projects are expected to grow and reach about 18.4 GW by 2021 (Figure 1), which could then create demand for a diverse mix of geothermal turbine types. It is unclear currently whether the additional expected capacity increases and the demand are sufficient to allow for standard turbines and turboexpanders to be created, rather than the customized turbines today that can be optimized for the resource conditions. However, Given the information about proposed projects and resource assessments, there is potential value in creating standard turbine sizes that could be adapted to the diversity of projects to offer an economic advantage. This study evaluates the economics of possible standard geothermal turbine sizes and the associated manufacturing costs in the United States.



**Figure 1** Historical, current, and projected global installations of geothermal power plant turbines. Data displayed represent the median figures which have been compiled from GEA (2016), BNEF (2016), and Bertani (2016). (P = projection)

#### 1.1.1 Organic Rankine Cycle Turbines

Binary cycle geothermal plants mostly utilize ORC turboexpanders. Apart from geothermal energy applications, the ORC technology has also been used for other commercial applications—such as waste heat recovery (WHR), bioenergy production (from biogas and landfill gas), and concentrating solar power (CSP)—over the last decade. While bioenergy has the greatest number of ORCs installed (for waste heat recovery with smaller installed sizes), geothermal power plants contributed to 71% of all ORC installed capacity in the world between 2005 and 2016 (Figure 2), bioenergy and WHR follow with 15% and 13.7%, respectively (Tartiere, 2016).



Figure 2 Overview of global ORC turboexpander market between 2005 and 2016 (Data modified from Tartiere (Tartiere 2016); lab-scale prototypes and installed capacity lower than 50 kWe have not been included)

### **1.2 Global Value Chain and Trade Flow**

Geothermal project developers customize the size of the power plant to fit the resource being developed. The steam turbine in particular is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. For example, in the Imperial Valley, Southern California, the Salton Sea Unit 5 geothermal steam turbine is designed and optimized for 58.32 MWe (Fuji Electric, 2012). These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead times, and higher capital costs overall than larger-volume line manufactured in larger volumes for the fossil-based power industry, which results in lower costs per turbine.

Based on interviews with industry experts, the current manufacturing process for geothermal turbines is made-to-order; the challenges of geothermal reservoir chemistry force designs to use specialty metals that cost more than those used in fossil fuel-powered turbines; additionally, the large fixed costs of resource development and low geothermal energy sales prices lead developers to customize their turbine sizes to maximize resource utilization. In the case of turboexpanders, these factors result in greater manufacturing set-up costs, more extensive engineering and design, and up to 18 months lead time from initial design to installation. In turn, these factors may impact developers' returns and decrease the attractiveness of deploying geothermal energy.

The steam turbine market is driven by large coal-fired, natural gas-fired, and nuclear power plants. The global steam turbine market is expected to increase from \$14.5 billion in 2013 to \$17.4 billion by 2020, with an annual growth rate of 2.6% over this period (Frost and Sullivan, 2014). Annual global orders for steam turbines are broadly stable at around 100 GW, and geothermal steam turbines constitute only 1%–2% of the total annual demand (Frost and Sullivan, 2014).

In this study, we evaluated two major geothermal turbine technologies: binary cycle turboexpanders and flash cycle steam turbines. The analysis included manufacturing location decisions, manufacturing processes, and global regional costs, with a focus on potential economies of scale of both turbine technologies using different annual production rates and standardized unit design.

A handful of international manufacturers dominate the global geothermal turbine market. The main manufacturing locations for binary cycle turboexpanders are Israel, the United States, Italy, and Germany. The flash cycle geothermal steam turbine manufacturing countries are Japan, Italy, the United States, France, Mexico, Russia, India, and China. Japan accounts for 82% of the geothermal steam turbine manufacturing market while Israel accounts for 74% of the geothermal binary cycle turboexpander manufacturing market. Italian turboexpander manufacturers have started to increase their share in the geothermal market with significant growth in the last couple of years. The United States also plays an important role both as exporter and importer in the global trade flow of geothermal turbines (Figure 3). A full list of installed geothermal power plants between 1958 and 2015 can be found in Appendix.

A comprehensive study of the U.S. geothermal market by NREL suggests that approximately 784 MWe is expected to come online by 2020, and an additional 856 MWe could come online in the next 5 years if existing barriers could be removed to expedite project development (Wall and Young, 2016).

Indonesia is not only second worldwide in installed geothermal capacity; it also far exceeds all other countries in estimated geothermal potential and has a rapidly growing demand for electricity. Indonesia's current installed geothermal power capacity is 1,868 MWe, and the government has ambitious plans for geothermal development of 6,500 MWe by 2025 (Poernomo et al, 2015). Indonesia has a high feed-in-tariff (FIT) policy which ranges from 12.6 to 26.2 ¢/kWh (Poernomo et al, 2015).



Figure 3 Global trade flow map of geothermal turbines, 2005–2015. Data are from a CEMAC analysis of industry outreach, GEA (2015 and 2016), BNEF (2013, 2014, 2015 and 2016), and Bertani (2016).

Turkey has 1,129 MW of installed capacity as of March 2018 and a capacity target of 1,900 MWe including the projects in the pipeline (Enerji Atlasi, 2018). Turkey implemented a renewable energy law in 2010 to reach its target for increasing the share of renewables up to 30% of the energy mix by 2023 (IEA, 2011). The Turkish FIT for geothermal power plants is 10.5 ¢/kWh. The FIT applies for 10 years of power generation and producers also benefit from an 85% discount on transmission costs for the 10 years. The 2010 Renewable Energy Law also includes bonus payments for hardware components made in Turkey to support and boost the national manufacturing sector. Companies who rely on locally produced equipment/components receive a bonus FIT, fixed at 1.3 ¢/kWh for turbines, 0.7 ¢/kWh for generators, 0.7 ¢/kWh for pumps and compressors (IEA, 2011). This has increased developers' and manufacturers' interest in domestic manufacturing. The total FIT for geothermal could reach up to 13.2 ¢/kWh with 10 years of purchasing guarantee.

Kenya reached 681 MWe of installed capacity in 2016 by adding 45 MWe of extra capacity from refurbishment of the existing Olkaria power plant units (GEA, 2016). Kenya is currently under a very aggressive phase of development with an aggressive construction pipeline of new projects in several geothermal resource areas. An additional 680 MWe of capacity is expected to come online by 2018. Total estimated resource potential of the country is around 10 GW (GEA, 2016).

## 2 Manufacturing Analysis

For this study, we developed a bottom up manufacturing cost model that considers the materials, manufacturing steps and equipment, and assembly of turbine subcomponents. First, we collected data from literature and informative interviews with industry regarding actual manufacturing operations. Existing published cost analyses and previous models of current manufacturing practices developed by CEMAC were also used. Next, we developed a process flow diagram to identify the raw materials, required manufacturing processes and equipment, and utility requirements that are inputs to the cost model (Figure 4). Raw materials required for pre-processing are iron ore, carbon, chromium, molybdenum, nickel, titanium, and aluminum. The most common processed materials used are stainless steel, Inconel (nickel) alloys, and titanium alloys (Ellis and Conover, 1981; Kaya and Hoshan, 2005). Additionally, epoxy-based refined plastics are used for insulation and sealing purposes.

### 2.1 Methodology for Manufacturing Analysis

### 2.1.1 Manufacturing process flow

The manufacturing cost model includes three main steps 1) Materials (raw and processed), 2) Manufacturing (in-house machining and outsourced parts) and 3) final assembly. The final product could be either an ORC Turboexpander or a geothermal steam turbine.



Figure 4 Manufacturing process flow diagram for geothermal power plant turbines

#### 2.1.2 Materials

The most common corrosion resistant materials used for machining the impellers are titanium or stainless steel; the shaft is produced from stronger material such as forged nickel alloy or Inconel. Geothermal fluids contain dissolved CO<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub> and chloride ions that can cause corrosion of metallic materials. The main corrosion problems are pit corrosion, cracking corrosion, breaking with stressed corrosion, breaking with sulphur stressed corrosion, corrosion between the particles and wearing corrosion (Kaya and Hoshan, 2005).

Stainless steel material decreases the probability of uniform corrosion formation in geothermal fluid environment. AISI 400 series stainless steels contain 12-18% chrome, which is more suitable for turbine blades. AISI 430 (Ferrite) and AISI 431 (Martensitic) stainless steels are often used for valve and pump components in geothermal systems. Stainless steel production is wide spread throughout the world (Figure 5). Based on world steel dynamics 2015 data, China, Japan, and the United States are the top three countries in stainless steel production.



Figure 5 World Steel Production, \*Units are in million metric tons per year. (Data Source: World Steel information system, World Steel Dynamics, 2015)

Titanium and titanium alloys are more resistant to corrosion. In addition, titanium is resistant to cavitation and impact damages. Titanium alloys are much more resistant to local corrosion than pure titanium. Ti-code-7 (Ti-0.15 Pd), Ti code-12 (Ti-0.3 Mo-0.8 Ni), and Ti-code-29 (Ti-6 Al-4 V-0.1 Ru) show well resistance. When they are compared on the basis of cost and performance,

titanium alloys can be used properly as other stainless steel alloys. The critical places for the use of titanium alloys as the material can be; impellers, wellhead valves, pressure gauges, pipes and blow-out preventers.

The world's titanium production is limited to certain regions (Figure 6). Based on USGS Minerals Year Book 2015 data, Canada, Australia, China, South Africa, Vietnam, the United States, Brazil, India, Mozambique, Madagascar, Norway, Ukraine, Kenya, Kazakhstan, Indonesia, Malaysia and Siri Lanka are the main countries for titanium production.



Figure 6 World Titanium Ore Production, \*Units are in thousand metric tons per year. (Data Source: USGS Minerals Year Book, 2015)

Other important material for turbine manufacturing is the Inconel (nickel alloys). There are various types of Inconel available in the market, and the mineral content defines the strength and the corrosion resistance (Table 1). For the high temperature geothermal fluids, it is suitable to use nickel, chromium, and molybdenum (Ni-Cr-Mo) alloys as a material (Kaya and Hoshan, 2005). Inconel-625 and Hastelloy C-256 are especially strong in combatting corrosion. Other nickel alloys, which have iron elements, can also be used in some applications. These alloys are much stronger than the stainless steel. Forged Inconel is mostly used for turbine shafts because of its strength against rotational force.

| Inconel | Elements % by Mass |    |    |    |    |    |      |      |      |     |        |
|---------|--------------------|----|----|----|----|----|------|------|------|-----|--------|
| Alloys  | Ni                 | Cr | Fe | Mo | Nb | Со | Mn   | Cu   | AI   | Ti  | Others |
| 600     | 72                 | 16 | 10 | 0  | 0  | 0  | 1    | 0.5  | 0    | 0   | 0.5    |
| 617     | 44                 | 24 | 3  | 10 | 0  | 15 | 0.5  | 0.5  | 1    | 0.5 | 0.5    |
| 625     | 58                 | 20 | 5  | 10 | 4  | 1  | 0.5  | 0    | 0.4  | 0.4 | 0.7    |
| 690     | 60                 | 30 | 9  | 0  | 0  | 0  | 0.35 | 0.01 | 0.02 | 0   | 0.62   |
| 718     | 55                 | 21 | 12 | 3  | 5  | 1  | 0.3  | 1    | 1    | 0.2 | 0.5    |
| X-750   | 70                 | 14 | 9  | 0  | 1  | 1  | 1    | 0.5  | 0.5  | 2.5 | 0.5    |

Table 1 Inconel Alloy Element Compositions by Weight

#### 2.1.3 Machine inventory and factory model

Manufacturing processes for subcomponents include casting, forging, and machining. For casting and forging, an electric arc furnace and forging press are required. The manufacturing cost model that we developed includes the minimum factory space required for the machines in addition to machine-related labor requirements. We created an inventory of machinery for heavy machining and precise computer numeric control (CNC) machining processes (Klocke et al., 2014) in addition to quality control and assembly stages (Figure 7). Heavy machining includes electric arc furnace casting and forging operations. CNC machining includes a 5-axis CNC machine, a 3-axis CNC machine, a CNC horizontal lathe, and a CNC grinding machine. Quality control equipment includes a coordinate measuring machine (CMM) in addition to overspeed testing and dynamic balancing (OSTB).

We estimated a minimum machining rate for each machine based on annual maximum allowable working hours (MAWH) and operation hours with and without setup time for the factory model. MAWH is set at 3,400 hours based on 250 annual labor days, 8 working hours with 2 shifts per day, and 85% production-up-times.

Based on industry standard practices, these machines are as fully utilized as possible across several different projects. For this cost analysis, the capital cost share associated with facilities, space, and machine depreciation for the time when the machine is used on manufacturing the turbine parts is proportional to the use time. This splits capital costs for the equipment between turbine components and other projects that the manufacturer is involved in. In other words, we are only taking the capital cost share associated with facilities, space, and machine depreciation for the time when the machine is used on manufacturing the turbine parts, not the full 3,400 hours per year.

The amount of required machinery was selected based on total operational hours for different volumes of manufacturing and MAWH. If one of each machine type (e.g. one 5-axis CNC, one 3-axis CNC machine and so on) were chosen for all types, there would be enough manufacturing capacity to produce up to a volume of 100 units per year. For greater than 100 units per year, additional machines would be required (Table 2). We selected a manufacturing volume of 50 units/year as a threshold for our analysis, based on manufacturers' annual manufacturing capacities and project portfolio. Annual straight-line depreciation was selected for capital costs

associated with machinery, as handled in accounting procedures. Facility cost is defined based on minimum required working area for each machine. Energy cost is calculated based on average power consumption of each machine, operating for a given number of operational hours. Storage and shipping costs of the turbine parts/components are not included in the factory model.

| Precise CNC M                                                                                                         | achining                                                                                                    | Heavy Machining                                                                                                            |                                                                                                                                               |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 5 Axis CNC Machine<br>Price: \$150,000 - \$300,000<br>Footprint: 10-15 m <sup>2</sup><br>Energy Consumption: 20-30 kW | xis CNC Machine<br>ce: \$150,000 - \$300,000<br>otprint: 10-15 m <sup>2</sup><br>ergy Consumption: 20-30 kW |                                                                                                                            |                                                                                                                                               |  |  |  |  |
| 3 Axis CNC Machine<br>Price: \$100,000 - \$200,000<br>Footprint: 10-15 m2<br>Energy Consumption: 20-30 kW             |                                                                                                             | Forging<br>Price: \$400,000 - \$500,000<br>Footprint: 1000 m <sup>2</sup><br>Energy Consumption: 500 kW                    |                                                                                                                                               |  |  |  |  |
| Horizontal CNC Lathe<br>Price: \$60,000 - \$150,000                                                                   | 2 Es 12 2 +                                                                                                 | Quality Control & Assembly                                                                                                 |                                                                                                                                               |  |  |  |  |
| Footprint: 12-18 m <sup>2</sup><br>Energy Consumption: 30-40 kW                                                       | ergy Consumption: 30-40 kW                                                                                  |                                                                                                                            | Assembly Line<br>Price: \$ 50,000 -\$300,000<br>Footprint: 50 - 60 m <sup>2</sup><br>Energy Consumption: 5-10 kW                              |  |  |  |  |
| CNC Grinding Machine<br>Price: \$80,000 - \$150,000<br>Footprint: 35-40 m <sup>2</sup><br>Energy Consumption: 10-20kW | rinding Machine<br>\$80,000 - \$150,000<br>rint: 35-40 m <sup>2</sup><br>/ Consumption: 10-20kW             |                                                                                                                            | <b>Over-speed Testing &amp; Balancing Machine</b><br>Price: \$10,000 - \$20,000<br>Footprint: 10 m <sup>2</sup><br>Energy Consumption: 5-7 kW |  |  |  |  |
|                                                                                                                       |                                                                                                             | CMM Dimension Measuring Machine<br>Price: \$8,000 - \$10,000<br>Footprint: 10 m <sup>2</sup><br>Energy Consumption: 1-3 kW |                                                                                                                                               |  |  |  |  |

Figure 7 Machine inventory for the custom factory model

Table 2 Number of required machines for different volumes of manufacturing at MAWH

| #Units | 5 Axis<br>CNC<br>Machine | 3Axis<br>CNC<br>Machine | CNC<br>Horizontal<br>Lathe | CNC<br>Grinding<br>Machine | СММ | OSTB | Assembly<br>Line |
|--------|--------------------------|-------------------------|----------------------------|----------------------------|-----|------|------------------|
| 10     | 1                        | 1                       | 1                          | 1                          | 1   | 1    | 1                |
| 25     | 1                        | 1                       | 1                          | 1                          | 1   | 1    | 1                |
| 50     | 1                        | 1                       | 1                          | 1                          | 1   | 1    | 1                |
| 100    | 1                        | 1                       | 1                          | 1                          | 1   | 1    | 1                |
| 150    | 1                        | 2                       | 1                          | 1                          | 1   | 1    | 1                |
| 200    | 1                        | 2                       | 1                          | 2                          | 1   | 1    | 1                |
| 500    | 2                        | 5                       | 3                          | 4                          | 1   | 1    | 2                |
| 1000   | 3                        | 9                       | 5                          | 7                          | 1   | 2    | 3                |

### 2.2 Machining Cost Analysis

Design for Manufacture and Assembly (DFMA®) was used for some of the key, high value components such as impellers and shafts for the manufacturing cost analysis of turboexpanders. DFMA allows the user to produce a detailed projected cost of the component, based on the volume of material needed, the machines and process steps, machine setup time, and tooling if needed. Tooling investment is calculated for processes such as stamping, sand casting, and forging; it also considers tool wear and lifetime. Figure 8 shows the representative material and machining cost estimates of a typical impeller for both custom design and standard design (at a volume of 10 units) 5 MWe Turboexpander.

As can be seen in Figure 8, a custom design impeller could be ~\$4,000/unit, compared to ~\$1,000/unit with the standard design. If we assume same yield rate, the standard design impellers can lead a cost savings of between 25-30% compared to custom design (single unit) due to the setup times for machining the impeller. A similar approach is applied to other subcomponents of a turboexpander: shaft, nozzles, inlet guide lanes, disks and casings to calculate machining costs.

| Part         | Material Pr             | ocurement                     | Raw Mat<br>Unit Price            | terial Purch<br>(\$/kg) Unit      | ased Material<br>t Price (\$/kg) | Estimated Volume<br>(m <sup>3</sup> )       | Material<br>Density (kg/m³) | Estimated<br>Weight (kg)      | Material Cost<br>(\$)   |
|--------------|-------------------------|-------------------------------|----------------------------------|-----------------------------------|----------------------------------|---------------------------------------------|-----------------------------|-------------------------------|-------------------------|
| Impeller     | Titanium                | Plate                         | 22.8                             | 2                                 | 39.04                            | 0.037                                       | 4,500                       | 167                           | 6,500                   |
| Part         | Machining Process       | Setup<br>Time/Unit<br>(hours) | Process<br>Time /Unit<br>(hours) | Machine<br>Rate/Unit<br>(\$/hour) | Machining<br>Cost/Unit (\$)      | Manufacturing<br>Subtotal Cost/Unit<br>(\$) | Ce                          | nter Hole Dr                  | illing                  |
| 1 Unit (Cust | tom Design)             |                               |                                  |                                   |                                  |                                             |                             |                               |                         |
|              | Drilling                | 0.8                           | 0.2                              | 35                                | 5 35                             |                                             |                             | Blade Rough                   | ing                     |
|              | 5-Axis CNC Roughing     | 25.0                          | 5.0                              | 35                                | 5 1,055                          |                                             |                             | Highly flexib<br>5-axis rough | le simultaneous<br>iing |
|              | 5 Axis CNC Rest Milling | g 42.0                        | 8.0                              | 35                                | 5 1,760                          | 4.000                                       |                             |                               |                         |
| Impeller     | 5-Axis CNC Finishing    | 10.0                          | 2.0                              | 35                                | 5 422                            | 4,000                                       |                             |                               |                         |
|              | QC                      | 2.5                           | 0.5                              | 27                                | 7 80                             |                                             | The                         | Hub Finishin<br>Optimized to  | g<br>ol paths for       |
|              | Balancing               | 20.0                          | 4.0                              | 25                                | 5 648                            |                                             | VI                          | finishing hub                 | S                       |
| 10 Units (St | tandard Design)         |                               |                                  |                                   |                                  |                                             |                             |                               |                         |
|              | Drilling                | 0.3                           | 0.2                              | 35                                | 9                                |                                             |                             | Rest Milling                  |                         |
|              | 5-Axis CNC Roughing     | 2.5                           | 5.0                              | 35                                | 264                              |                                             |                             | Automate ren<br>remaining ma  | noval of<br>terial      |
|              | 5 Axis CNC Rest Milling | 4.2                           | 8.0                              | 35                                | 440                              | 1 000                                       |                             |                               |                         |
| Impeller     | 5-Axis CNC Finishing    | 1.0                           | 2.0                              | 35                                | 105                              | 1,000                                       |                             |                               |                         |
|              | QC                      | 0.3                           | 0.5                              | 27                                | 20                               |                                             |                             | Blade / Splitter              | Finishing<br>shing of   |
|              | Balancing               | 2.0                           | 4.0                              | 25                                | 162                              |                                             | 2110                        | blades and sp                 | olitters                |

**Figure 8** Representative material and machining cost estimates of a typical impeller for both custom design and standard design (at a volume of 10 units per year) 5 MWe Turboexpander

### 3 Minimum Sustainable Price (MSP) and Discounted Cash Flow (DCF) Analysis

MSP is the minimum price that a company would have to charge for a good or service to cover all variable and fixed costs and make sufficient profit to pay back investors at their minimum required rates of return (Goodrich et al., 2013). The MSP is computed by setting the net present value (NPV) of an investment equal to zero with the internal rate of return equal to the weighted average cost of capital (WACC). We used the U.S. capital assets pricing model to derive these debt and equity ratios, and weight them by their relative contribution to the overall capital structure of the firm to estimate WACC values (Ross et al., 2009).

We also developed a detailed financial model for the DCF of a manufacturing facility. The purpose of the DCF is to provide the necessary framework for deriving the MSP for each product. Within the DCF, we can account for several considerations for manufacturing, such as capital cost, fixed operating costs (labor, depreciation, inflation and taxes, insurance and rent), typical sales, general and administrative (SG&A) expenses; typical design and engineering (D&E) cost; and warranty coverage (Goodrich et al., 2013). Table 3 summarizes the input parameters for the DCF analysis.

We calculate the initial equipment and facilities expenditures over straight-line depreciation. The length of the calculation is set by the analysis period, and the discount rate is calculated from the required rates of return; the MSP is then derived by an iterative algorithm that runs until the NPV of the cash flows equals the total initial capital expenditure.

#### Table 3 Summary of input parameters for DCF analysis

| Inputs for DCF Calculations                         | Values                | Units |
|-----------------------------------------------------|-----------------------|-------|
| Inflation on cost of goods sold (COGS)              | 3                     | %     |
| Corporate interest rate                             | 3.3                   | %     |
| Initial Loan (or bond) maturity                     | 10                    | years |
| Corporate tax rate                                  | 30                    | %     |
| Dividend payout rate                                | 0                     | %     |
| Cost of equity                                      | 10.6                  | %     |
| Cash flow analysis period                           | 20                    | years |
| Working capital collection period                   | 10                    | years |
| Calculated WACC                                     | 5.3                   | %     |
| Working capital inventory turnover                  | 4                     | years |
| Working capital payable period                      | 10                    | years |
| CAPEX Initial target capital structure, (% of debt) | 64                    | %     |
| Replacement equip. target capital structure         | 50                    | %     |
| Depreciable life for plant                          | 25                    | years |
| Capital replacement loan maturity                   | 10                    | years |
| Equipment depreciation type                         | 7 Year Straight-line  | N/A   |
| Tooling depreciation type                           | 3 Year Straight-line  | N/A   |
| Building depreciation type                          | 15 Year Straight-line | N/A   |

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

## 4 Manufacturing Analysis Case Studies

We analyzed the manufacturing cost and MSP for three different scenarios, where each scenario had 5 volumes of manufacturing: 1) a 1 MWe ORC turboexpander; 2) a 5 MWe ORC turboexpander; and 3) a 20 MWe steam turbine, at manufacturing volumes of 1, 5, 10, 25 and 50. All 3 scenarios assume U.S. production facilities and costs. The generator is considered as a separate piece and is not included in the manufacturing cost analysis. Increasing volumes of manufacturing effectively decreased the manufactured cost per unit, since we spread the capex over more units. Machine setup times and D&E costs are the cost components that are most impacted by volume manufacturing, as these are essentially one-time charges that are not volume dependent.

### 4.1 Case-1: 1 MWe geothermal ORC turboexpander

In case 1, the results showed that MSP decreases significantly when we increase the volume of manufacturing from 1 unit (custom design) to 5 units (standard design). The MSP of a single custom design 1 MWe turboexpander was found to be 893 \$/kW whereas a standard-design 1 MWe turboexpander has an MSP of 226 \$/kW at a manufacturing volume of 5 (Figure 9).



**Figure 9** Calculated MSP and manufacturing cost breakdown for a 1 MWe ORC turboexpander in different volumes of manufacturing in the United States. Data is taken from an ongoing CEMAC cost analysis.

### 4.2 Case-2: 5 MWe geothermal ORC turboexpander

In case 2, the results showed that MSP decreases significantly when we increase the volume of manufacturing from 1 unit (custom design) to 5 units (standard design). The MSP of a single custom design 5 MWe turboexpander was found to be 216 \$/kW whereas a standard-design 1 MWe turboexpander has an MSP of 66 \$/kW at a manufacturing volume of 5 (Figure 10).



Figure 10 Calculated MSP and manufacturing cost breakdown for a 5 MWe ORC turboexpander in different volumes of manufacturing in the United States. Data is taken from an ongoing CEMAC cost analysis

### 4.3 Case-3: 20 MWe geothermal steam turbine

For scenario 3, we selected a manufacturing volume of up to 5 units per year based on annual demand for geothermal steam turbines and the manufacturing capacities. The MSP of a single custom design 20 MWe geothermal steam turbine is found to be 361 \$/kW, whereas the MSP of a standard-design 20 MWe steam turbine is calculated as 135 \$/kW at an annual production rate of 5 unit/year (Figure 11).



**Figure 11** Calculated MSP and manufacturing cost breakdown for a 20 MWe geothermal steam turbine in different volumes of manufacturing in the United States. Data is taken from an ongoing CEMAC

### 4.4 Sensitivity Analysis

We conducted a sensitivity analysis to determine which cost factors have the greatest impact on the results of the manufacturing cost model. We iteratively varied one input parameter of the cost model while keeping the others constant to determine the impact of each input on the calculated MSP. Each cost factor in the overall cost model has a different weight based on the relative importance, and as such a change in one input variable would have proportional effects relative to the weight on the manufactured cost. For the sensitivity analyses, we evaluated two cases: 1) custom design (1 unit) versus a standard design (10 units per year) for a 5 MWe ORC turboexpander; and 2) custom design (1 unit) versus a standard design (at 5 units per year) for a 20 MWe steam turbine.

The results of the MSP sensitivity analysis for a 5 MWe turboexpander showed that D&E is the most important cost factor for a custom design unit due to time spent on tailor made design for each custom unit (Figure 12). D&E is assumed to take 9 months and 2 full time employees (FTE). Manufacturing labor is the second most important factor at a custom design unit due to setup times. Labor includes set up time, which is 51% of total machining cost for a custom design unit. SG&A, capital (equipment and facilities), and materials are the other important factors which have a moderate effect on manufacturing cost for a custom design unit. When we assume standard design turboexpanders at volume of 10 units, materials and labor become dominant with shares of 46% and 31% respectively, while D&E and SG&A costs become less important. The cost drops by cost factor are also presented on cost waterfall charts (Figure 13).

The results of the MSP sensitivity analysis for a 20 MWe steam turbine showed that labor is the most important factor at a custom design unit due to setup times and high labor requirements during assembly (Figure 14). Labor includes set up time, which is 49% of total machining cost for a custom design single unit. Capital is the second most important cost factor at a custom design. D&E is assumed to take 12 months and 4 FTEs due to time spent on tailor made parts for each unit. Steam turbines need more detailed design than turboexpanders since they are in direct contact with saturated steam, non-condensable gases (NCG) like H<sub>2</sub>S, and CO<sub>2</sub> and have multiple pressure stages. SG&A, capital (equipment and facilities), and materials are the other important factors that have a moderate effect on manufacturing cost for a custom design unit. When we have one-off-design turbines at a volume of 5 units, while impact factor of labor and material stays almost the same, D&E and SG&A cost become less important. The cost drops by cost factor are also presented on cost waterfall charts (Figure 15).



Figure 12 Sensitivity analysis for 5 MWe turboexpander based on A) Manufacturing volume of 1 unit/year (Custom Design) and B) Manufacturing volume of 10 units per year (Standard Design) in the United States (Data is from an ongoing CEMAC cost analysis).



Figure 13 Manufacturing cost drop by cost factor for a standard design (10 units) 5 MWe ORC turboexpander (Data: ongoing CEMAC cost analysis)



Figure 14 Sensitivity analysis for 20 MWe turboexpander based on A) Manufacturing volume of 1 unit per year (Custom Design) and B) Manufacturing volume of 5 units per year (Standard Design) in the United States (Data is from an ongoing CEMAC cost analysis).





A comparison of MSP analysis for all three cases can be found in Table 4. The manufacturing cost of custom design 5 MW ORC turboexpander is only \$187,000 more than a custom design 1 MW ORC turboexpander. This shows that the size of the turbine does not have a significant effect on the total cost of turbine/turboexpander. However, if we look at the unit cost per MW for both custom and standard design cases, we see that the manufacturing cost savings are significant (667 \$/kW for 1 MW turboexpander and 150 \$/kW for 5 MW turboexpander).

| MSP                    | Custom Design<br>Single Unit |           | Standard Design<br>Volume of 5 Units |           | Standard Design<br>Volume of 50 Units |          |
|------------------------|------------------------------|-----------|--------------------------------------|-----------|---------------------------------------|----------|
| 1 MW<br>Turboexpander  | \$893,000                    | 893 \$/kW | 226,000 \$                           | 226 \$/kW | \$74,000                              | 74 \$/kW |
| 5 MW<br>Turboexpander  | \$1,080,000                  | 216 \$/kW | 332,000 \$                           | 66 \$/kW  | \$152,000                             | 30 \$/kW |
| 20 MW Steam<br>Turbine | \$6,350,000                  | 361 \$/kW | 2,790,000 \$                         | 135 \$/kW | N/A                                   | N/A      |

#### Table 4 Comparison of MSPs for standard and custom design turbines

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

## **5** Power Plant Design and Performance Analysis

The purpose of the turbine performance analysis is to determine the commercially favorable operating range of a standard ORC compared to custom-designed ORC equipment. We created a process flow model for an ORC Geothermal Power Plant at a given design point of the standard size (5 MW) turbine by using IPSEpro software (Figure 16). Balance of plant (BOP) is optimized to maximize power generation. In other words, the BOP, including Heat Exchanger (HX), air cooled condenser (ACC), pumps, and piping, can be designed to optimize turbine output. The design assumptions for the optimized system include; 1) the pinch point temperature difference in heat exchanger, 2) vapor quality into the turbine and 3) turbine efficiency.

We selected the design point at 175°C inlet brine temperature and 80 kg/s brine mass flow rate for the standard turbine. Then, we ran an optimization algorithm to optimize BOP and operating conditions by adjusting the pressure before and after turbine for maximum turbine output at given geothermal inputs. The performance of the standard turbine is compared to a custom design turbine by running off-design models for varying geothermal resource temperatures (between 160°C and 190°C), and brine flow rates (between 40 kg/s and 120 kg/s). A turbine off-design efficiency curve<sup>1</sup> provided by a reliable manufacturer as a function of mass flow rate of the working fluid is used to evaluate the impact on power generation of the standard versus custom design (Figure 17). The design point isentropic efficiency is selected as 80%.

One important parameter that we use in the plant performance analysis is the Brine Effectiveness (BE). Simply, BE is the amount of energy that you can extract per pound of geothermal brine or steam, which is defined as net plant output divided by the brine flow rate (w-hr/lb). The use of BE to describe plant performance comes from the Geothermal Technology Evaluation Model (GETEM, 2016) on which the SAM geothermal module is based.

<sup>&</sup>lt;sup>1</sup> Due to the proprietary nature of turbine performance curves, we could not obtain a full set of turbine performance curves. The turbine efficiency curve we used shows relative efficiency as a function of relative working fluid mass flow rate at a constant isentropic enthalpy drop across the turbine. The curve does not account for changes in isentropic enthalpy drop. in the IPSEpro modeling, both the working fluid mass flow rate and isentropic enthalpy drop across the turbine vary. However, the turbine model only considers working fluid mass flow rate when adjusting turbine isentropic efficiency. The resulting efficiency curve is likely not representative of actual turbine performance and is used only for illustrative purposes in this report. Turbine manufacturers and project developers have access to actual turbine performance curves and can use the methodology in this report to assess potential benefits of a standard turbine design.



Figure 16 Process Flow Diagram of Standard Size ORC Power Plant

In SAM, BE is set by adjusting the plant efficiency input. According to IPSEpro modeling results, the BE of binary plants studied varies between 3.3 and 7.5 w-hr/lb (Figure 18). This value is 5.9 w-hr/lb for the standard turbine at its design point in IPSEpro. The BE value determines the more conventional thermal to electric conversion efficiency (TE) of the plant. TE varies as a function of inlet geothermal brine temperature and mass flow rate (Figure 19). TE is calculated as 10.83% at the design point for the base case IPSEpro model.



Figure 17 Off-Design Turbine Efficiency Curve



Figure 18 Actual Plant Brine Effectiveness



Figure 19 Thermal to electric conversion efficiency for 5 MWe ORC turbine

## 6 Economic Analysis

We focused on monetizing the processes developed in power plant performance modeling for our economic analysis, which helped us to convert performance calculations and power output into a DCF analysis of plant operations and financing, thereby creating representative technoeconomic models of a total geothermal power plant. We used SAM and performed DCF analysis of standard and custom design turbines using results from IPSEpro over the range of geothermal resource temperatures and flow rates of interest. We applied the base case inputs for geothermal resource to SAM inputs and established a base case model (Table 5). A single owner PPA financial model was selected for financial analysis.

| Parameter                             | Unit  | Value |
|---------------------------------------|-------|-------|
| Resource Temperature                  | С     | 175   |
| Reservoir pressure change per 1000 lb | psi-h | 0.35  |
| Reservoir Depth                       | m     | 2000  |
| Temperature Decline Rate              | %/yr. | 0.3   |
| Number of Production Wells            | -     | 1     |
| Production Well Flow Rate             | kg/s  | 80    |
| Number of Injection Wells             | -     | 1     |

Table 5 Base Case Geothermal Resource Characterization for SAM financial Model

To compare projects and results on a common basis, the "exact number of wells" option is chosen in SAM and the number of production wells is set at one. For the base case, this results in a gross turbine output power capacity (nameplate capacity) of ~5 MW, so that the power plant cost values from the MSP analysis can be used.

SAM allows the user to set "Plant Efficiency (%)", which sets the plant BE as a percentage of the Maximum Brine Effectiveness (limit from GETEM). Setting Plant Efficiency to 100% gives plant with BE equal to the maximum brine effectiveness. Setting Plant Efficiency to 50% gives a plant with brine effectiveness equal to 50% of max BE. Using this data, we back-calculated the Plant Efficiency needed to match BE values from IPSEpro runs. We set the binary plant efficiency to 65.1% to match to IPSEpro BE results in w-hr/lb for the base case.

We developed system cost scenarios for custom design and standard design turbines. The SAM version of GETEM does not currently include the ability to automatically estimate plant cost, but the Excel version of GETEM does. Therefore, we used GETEM to estimate the plant costs and imported those values in SAM. For the custom design scenarios, the plant size and efficiency results from the IPSEpro model were used as inputs to GETEM to estimate the plant

costs. Plant costs in GETEM are determined by estimating the individual costs for the major plant components (turbine, heat exchangers, condenser and working fluid pump) and using a direct-cost multiplier to account for piping, instrumentation, etc. and construction costs. This value was then used as the input for the "Specified Plant Cost" in SAM. For the standard design scenarios, the same individual component costs and direct cost multiplier were used, but the turbine cost was decreased by \$150/kW to reflect the cost savings from using a standard turbine design (see Table 4). Results from IPSEpro were used as the BE (plant efficiency) inputs in SAM for the custom and standard scenarios to account for the reduced efficiency of the standard turbine (compared to the custom turbine) when it operates at off-design conditions.

For the DCF analysis, we developed a business model with standard financial assumptions for all scenarios (Table 6). Changes in financial parameters would affect the NPV of costs. The simplest business model is a 100% equity model in which the developer pays cash for the project at the time of start of operations. In this case, the standard turbine is not competitive compared to a custom turbine. Realistically, the more you defer costs to the future (debt) or offset costs in the future (depreciation, tax advantages), the more the custom turbine design would be favored. In our model, we selected 60% debt ratio to optimize NPV calculations.

| Parameter                              | Unit  | Value  |
|----------------------------------------|-------|--------|
| PPA price                              | ¢/kWh | 10.00  |
| Annual escalation rate                 | %     | 1.00   |
| IRR Target                             | years | 20.00  |
| Project debt ratio                     | %     | 60.00  |
| Real discount rate                     | %/yr  | 5.5    |
| Inflation rate                         | %     | 2.5    |
| Nominal Discount Rate                  | %/yr  | 8.15   |
| Annual interest rate                   | %     | 7.00   |
| Incentives (PTC/ITC)                   | \$    | 0.00   |
| Depreciation Structure (5 Years MACRS) | %     | 100.00 |

#### Table 6 Financial parameters for SAM Model

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
#### 6.1 Decision Criteria used in SAM Financial Model

The decision criteria of the SAM financial model are functions of:

- Electricity generated
- PPA price
- Analysis period
- Project equity investment amount
- Annual project costs
- Discount rate

PPA price is the bid price in a power purchase agreement (PPA) and is the price that the project receives for each unit of electricity that the system generates. Levelized PPA uses the discount rate to determine the present value of the project's PPA revenue over its lifetime. For the PPA models, SAM assumes that the project sells all the electricity generated by the system at a price negotiated through a power purchase agreement (PPA). A financially viable project is likely to have a levelized cost that is equal to or less than the levelized PPA price to cover project costs and meet internal rate of return (IRR) requirements.

The internal rate of return (IRR) is a measure of the project's profitability and is defined as the nominal discount rate that corresponds to a net present value of zero (Mendelsohn et al, 1995; Short et al, 2012). Using "Specify IRR Target" makes SAM uses a search algorithm to find the PPA price required to meet the target IRR. SAM reports IRRs and NPVs for the project.

The NPV is the present value of the after-tax cash flow discounted to year one using the nominal discount rate. PPA price determines annual revenue. Net capital cost is the sum of the total installed cost and debt, other financing fees, and reserve funding from the Financial Parameters page, less investment-based and capacity-based incentives. SAM also allows the user to specify parameters for up to five construction loans to approximate interest during construction (IDC) that SAM considers to be a cost to the project. The Project Term Debt input variables determine the size of debt or amount borrowed and debt-related costs. Real Discount Rate is a measure of the time value of money expressed as an annual percentage. SAM's financial model results are very sensitive to the real discount rate input (Mendelsohn et al, 1995; Short et al, 2012).

The levelized cost of Electricity (LCOE) calculator uses a simple method to calculate the project's LCOE. The user provides the installation cost, operating costs, and a fixed charge rate as input, and the model calculates the LCOE based on the annual energy generated by the system. The calculator can also calculate the fixed charge rate when you provide basic financial parameters. The list of financial parameters which are required to calculate financial outputs can be found in Table 7.

|               | PPA<br>(revenue) | Discount<br>Rate | Project<br>Costs | Expenditures | Electricity<br>Generation | IRR<br>Target<br>Year | Analysis<br>Period |
|---------------|------------------|------------------|------------------|--------------|---------------------------|-----------------------|--------------------|
| IRR           | Х                |                  | Х                | Х            |                           | Х                     |                    |
| NPV           | Х                | Х                | Х                | Х            |                           |                       | Х                  |
| LCOE          | Х                | Х                | Х                | Х            | Х                         |                       | Х                  |
| Levelized PPA | Х                | Х                |                  |              | Х                         |                       | Х                  |

Table 7 Summary of financial parameters used to calculate financial outputs

### 6.2 SAM Model Results and Discussions

To start with, we ran the SAM model for the custom design and standard design turbine for the base case (175 °C temperature and 80 kg/s mass flow rate), where it is assumed that the standard and custom turbine designs have identical performance. Net electricity generation capacity is used to calculate annual revenue from electricity sales. The results showed that the standard design turbines provide savings at the net capital cost and result in a higher NPV and IRR for the project at the given base case conditions (Table 8). While the net capital cost saving may reach up to +\$2,312,300, the difference between the NPV of standard design and custom design turbines could reach up to +\$1,440,410.

| Metric                        |       | Custom Design (Base Case) | Standard Design (Base Case) |
|-------------------------------|-------|---------------------------|-----------------------------|
| Levelized COE (nominal)       | ¢/kWh | 10.49                     | 9.82                        |
| Levelized COE (real)          | ¢/kWh | 8.13                      | 7.61                        |
| Net present value (NPV)       | \$    | \$1,346,430               | \$2.786.840                 |
| Internal rate of return (IRR) | %     | 7.20%                     | 11.99%                      |
| Year IRR is achieved          | year  | 20                        | 20                          |
| IRR at end of project         | %     | 10.03%                    | 13.66%                      |
| Net capital cost (NCC)        | \$    | \$24,456,800              | \$22,144,500                |
| Equity                        | \$    | \$9,782,720               | \$8,857,800                 |
| Size of debt                  | \$    | \$14,674,080              | \$13,286,700                |
| NCC Difference                | \$    |                           | +\$2,312,300                |
| NPV Difference                | \$    |                           | +\$1,440,410                |

Table 8 Comparison of SAM financial model results for custom and standard design scenarios

Then, we extended the financial analysis over 63 off-design cases by changing inlet geothermal brine temperature (between 160 °C and 190 °C) and inlet mass flow rate (between 40 kg/s and 120 kg/s). The standard turbine's power generation capacity is taken as 5 MW with off design power outputs ranging between 1.4 MW and 6.9 MW gross. The results for standard turbines operating at off-design conditions showed that:

- Net capital cost in \$/kW significantly decreases with respect to increasing geothermal brine temperature and mass flow rate (Figure 20).
- The standard turbines are competitive over a wide range of temperatures and flow rates and give positive NPV for cases near the design point (Figure 21)
- Standard turbines are more cost effective than custom turbines near the design point, and less cost effective away from it. Because the standard turbine cannot perform at higher isentropic efficiency than the custom turbine. It can only be equal or less.
- The NPV difference between standard and custom design scenarios show 45 of 63 test cases that resulted in positive values where standard design turbines are favorable (Figure 22).



Figure 20 Net capital cost per kW for different off-Design cases of the standard turbine

Using a standard turbine design results in an NPV that is higher than using a custom turbine design over a large range of geothermal brine temperatures and flow rates, as shown in Figure 22. The highest relative NPV results tend to be at elevated geothermal brine temperatures and flow rates. The figure does not consider practical limitations on the power output from the standard turbine. The actual output from the model can be much larger than the design output of 5,000 kW as shown in Figure 23. In practice, a turbine would not be able to operate at this high an output above its design point. We do not have the technical information to estimate exactly what the cut off output would be for the standard design, but we can conclude that a large portion of the upper right part of Figure 22 is not in the practical operating range of the

standard turbine design. Turbine manufacturers and project developers should keep these limitations in mind when evaluating the results of this study.



Figure 21 NPV after tax for different off-design cases of the standard turbine



**NPV Difference Between Standard and Custom Design Scenarios** 

**Figure 22** NPV difference between custom and standard design scenarios for given resource conditions. Green colored areas with positive values represent cases where standard design turbines are favorable. Black solid line represents the economic boundary of standard turbines where NPV difference is zero.



**Figure 23** Standard turbine design gross turbine output in kW as a function of geothermal brine temperature and flow rate. Standard turbine design output (nameplate capacity) is 5,000 kW.

#### 6.2.1 Sensitivity Analysis

As described in Section 5, we did not have access to a full turbine performance curve for this analysis. Therefore, the results above are only illustrative of the relative costs and performance of standard and custom turbine designs. Although we did not have the data to accurately model off-design turbine performance, we did have the information necessary to determine the relative efficiency at which a standard turbine design is cost competitive with a custom turbine design. We conducted a sensitivity analysis on the impact of turbine performance on the NPV of the power plant. We iteratively varied geothermal brine temperature and flow rate to calculate the isentropic turbine efficiency at the break-even NPV point (Figure 23). In other words, we set the relative isentropic efficiency of the turbine to achieve the NPV of the custom plant equal the NPV of the plant with a standard turbine. This is the economic boundary between the standard design and custom design turbines.

For the sensitivity analysis, 63 test case scenarios are taken, and 1008 observation points are generated for different relative isentropic efficiencies with respect to the design point ranging between 85% and 100%. The results for select cases (minimum, design, and maximum geothermal brine temperature and flow rates) are shown in Figure 24 and for all cases in Figure 25. In these figures, the standard turbine design is cost competitive at a given relative isentropic efficiency if the NPV difference (standard design NPV minus custom design NPV) is

positive. There is a large range of relative isentropic efficiencies over which the standard turbine design is cost competitive for the maximum and design geothermal brine temperatures and flow rates (Figure 24). For the lowest geothermal brine flow rate and temperature, the standard design is not competitive, even at 100% relative efficiency.



Figure 24. Sensitivity analysis for NPV difference with respect to relative isentropic efficiencies for select cases

The correlation between the NPV difference vs. relative efficiency is linear (Figure 25). By fitting a linear curve to each case and calculating the relative efficiency where the NPV is zero, we determined the breakeven isentropic efficiency for each case, or the relative isentropic efficiency of the standard turbine necessary to make the project cost competitive with a custom turbine design.

The results of this analysis are shown in Figure 26. The results showed that the NPV of the project is sensitive to turbine isentropic efficiency. This also implies that a detailed turbine efficiency analysis is needed for more precise economic analysis.



Figure 25 Sensitivity analysis for NPV difference with respect to relative isentropic efficiencies for all cases (Green, yellow and red dashed lines represent the lower limit, median and upper limit respectively.)



Figure 26 The required isentropic efficiency of the standard turbine relative to a custom turbine to get a break-even NPV.

Figure 26 shows that for lower temperature and flow rates, a standard turbine requires an isentropic efficiency greater than zero to be cost competitive. The reason for this is illustrated by Figure 27, which shows the total plant cost savings from using a standard turbine design vs. a custom turbine design for each case. The standard turbine cost is fixed for each case, while the custom turbine cost depends on its size and efficiency. At low geothermal brine temperatures and flow rates, where the plant power output is lower, the plant cost for the custom turbine is lower than for the standard turbine because of the small turbine size. To compensate, the standard turbine would have to operate at a higher efficiency and generate more electricity than the custom turbine to be cost competitive. This illustrates that at some point, building a smaller custom turbine at a higher \$/kW cost offsets the cost savings from a standard (but oversized) turbine. This is the type of information that a manufacturer would need to consider when deciding on what sizes or design power generation capacity to choose for a series of standard turbine designs.



Figure 27 Plant cost savings (standard minus custom) as a function of geothermal brine temperature and flow rate

## 7 Discussions and Conclusions

Currently, the geothermal turbine market is driven by developer demand for plant efficiency and consists of custom turbines designed specifically for the varying conditions encountered at different geothermal fields. Some degree of custom design may always be required. For example, geothermal steam turbines often require custom materials due to corrosion issues at different sites. However, the MSP analysis in this study showed that even applying a standard design to a relatively small number of units, as few as five, can have significant cost savings. The MSP calculations and sensitivity analysis for 1 MWe and 5 MWe turboexpanders and a 20 MWe steam turbine showed that MSP could highly vary between 893 \$/kW and 30 \$/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number manufactured in a single run. As an example, the unit price of a 5 MW standard design turbine could be 150 \$/W cheaper than the custom design. Sensitivity analysis showed that the main costs are associated with labor and D&E for a custom designed unit. Manufacturing costs decrease significantly with volume due to shorter machine set up time, and D&E is spread among multiple units. There is a significant opportunity for turbine manufacturers to realize manufacturing cost savings due to labor and D&E by switching from custom to standard design at larger volumes. If manufacturers at all steps of the supply chain can successfully operate their facilities similar to the presented manufacturing model, it could result in up to 60% manufacturing cost savings. While the manufacturing cost model developed in this study is limited to the turbine component of a geothermal power plant, it can also be applied to other important components such as heat exchangers and air-cooled condensers.

In practice, a standard turbine design would likely operate at off-design conditions, resulting in lower efficiencies, less electricity generation, and less revenue than a custom turbine design. The second half of the study focused on determining whether and under what conditions the upfront capital cost savings from a standard turbine design could offset future revenue losses. To compare the economics of standard and custom turbine designs, we developed a model of a 5 MW geothermal power plant project using a standard turbine design optimized to maximize power generation for a 175 °C, 80 kg/s geothermal resource. Then, we varied the geothermal resource over a range of temperatures and flow rates and compared power generation of the standard turbine operating at off-design conditions to a custom turbine operating a constant isentropic efficiency. We used these performance calculations and power output results in a DCF analysis of plant operations, costs and financing. The results of off-design performance analysis and financial calculations showed that NPV for lower efficiencies and decreased electricity generation from a standard turbine operating at off-design conditions could be higher than the NPV for a standard unit size to be undersized for a given resource versus a custom designed turbine. The results showed that the net capital cost savings from a standard design vs. a custom design turbine at the standard turbine design point for the modeled 5 MW case study may reach up to \$2.3 million, while the difference in NPV could reach up to \$1.4 million. For this study, we did not have an accurate turbine performance curve to assess offdesign turbine performance. Instead, we used information relating turbine efficiency to working fluid flow rate to approximate off-design performance. The trends from that analysis

show that standard turbine designs could be competitive over a wide range of temperatures and flow rates. A calculation of the standard turbine efficiencies at off-design conditions that give the same NPV as a project using a custom turbine showed that the range of off-design efficiencies support this conclusion.

The study shows that developing and using standard turbine designs may be an effective strategy for lowering geothermal power project costs. Ideally, these turbines would be designed to be flexible and operate over a wide range of conditions with minimal decreases in efficiency. The strategy requires that multiple turbines be built at once and then warehoused until sold. The study did not take into account the cost of financing and storing turbines until they are purchased for a project. A significant barrier to implementing this strategy is the demand for these technologies at high volumes. However, as the global geothermal market continues to grow, opportunities in new markets will continue to increase. The emerging geothermal markets discussed above show that there may be an opportunity for using standardized turbines to reduce plant capital costs.

## References

Bertani, R. (2016). "Geothermal Power Generation in the World 2010–2014 Update Report," Geothermics (60); pp. 31–43 <u>https://doi.org/10.1016/j.geothermics.2015.11.003</u>

BNEF, (2013), Q2 2013 Geothermal Market Outlook Report, Bloomberg New Energy Finance

BNEF, (2014), H2 2014 Geothermal Market Outlook Report, Bloomberg New Energy Finance

BNEF, (2015), H1 2015 Geothermal Market Outlook Report, Bloomberg New Energy Finance

BNEF, (2016), Geothermal Market Outlook Report, Bloomberg New Energy Finance

CEMAC, (2017), '*Minimum Sustainable Price: Understanding Sustainable Business Practices in Clean Energy Technology.*" Accessed May 5, 2017, <u>http://www.manufacturingcleanenergy.org/blog-20160510.html</u>

Dewhurst B. Inc., (2016), DFA: Product Simplification and DFM: Concurrent Costing, http://www.dfma.com/software/dfma.htm, accessed 17th May 2017

Enerji Atlasi, (2018), Country Update for Turkey, http://www.enerjiatlasi.com/jeotermal/

Ellis P. F., Conover M. F., (1981), *Material Selection Guidelines for Geothermal Energy Utilization Systems*, Technical Report, DOE/RA/27026-1

Frost & Sullivan, (2014), Global Gas and Steam Turbine Markets: Conventional Thermal Power Expansion Driven by Emerging Markets and Rising Natural Gas Availability. June 2014. M96C-14

Fuji Electric, 2012, CalEnergy Company, USA, Salton Sea Unit 5 Geothermal Power Plant Catalog

GEA, (2015), Annual U.S. & Global Geothermal Power Production Report, Geothermal Energy Agency

GEA, (2016), Annual U.S. & Global Geothermal Power Production Report, Geothermal Energy Agency

GETEM, (2016), *Geothermal Electricity Technology Evaluation Model*, https://www.energy.gov/eere/geothermal/geothermal-electricity-technology-evaluation-model

Goodrich, A., Hacke P., Wang Q., Sopori B., Margolis R., James T. L., and Woodhouse M., (2013), *A Wafer-Based Monocrystalline Silicon Photovoltaics Road Map: Utilizing Known Technology Improvement Opportunities for Further Reductions in Manufacturing Costs*, Solar Energy Materials and Solar Cells, (vol. 114), pp.110–35. <u>https://doi.org/10.1016/j.solmat.2013.01.030</u>

Kaya T., Hoshan P., (2005), *Corrosion and Material Selection for Geothermal Systems*, Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24-29 April 2005

Klocke F., Klink A., Veselovac D., Aspinwall D. K., Soo S. L., Schmidt M., Schilp J., Levy G., Kruth J., (2014), *Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes*, CIRP Annals - Manufacturing Technology, (vol.63), pp. 706-728, <a href="http://dx.doi.org/10.1016/j.cirp.2014.05.004">http://dx.doi.org/10.1016/j.cirp.2014.05.004</a>

Mendelsohn, M.; Kreycik, C.; Bird, L.; Schwabe, P.; Cory, K. (2012) The Impact of Financial Structure on the Cost of Solar Energy. National Renewable Energy Laboratory. <u>NREL/TP-6A20-53086</u>.

REN21, (2016), Renewables 2016 Global Status Report, http://www.ren21.net/status-of-renewables/global-status-report/

Poernomo A., Satar S., Effendi P., Kusuma A., Azimudin T., Sudarwo S., (2015), *An Overview of Indonesia Geothermal Development, Current Status and Its Challenges*, Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015

Ross S.A., Westerfield R., Jordan B.D., (2009), *Fundamentals of Corporate Finance*, McGraw-Hill, Irwin, New York, NY.

Sandor D., Chung D., Keyser D., Mann M., Engel-Cox J., (2017), <u>Benchmarks of Global Clean Energy</u> <u>Manufacturing, Clean Energy Manufacturing Analysis Center (CEMAC), (NREL/TP-6A50-65619)</u> <u>http://www.nrel.gov/docs/fy17osti/65619-ES.pdf</u>

Short, W., Packey, D., Holt, T. (1995) A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies. National Renewable Energy Laboratory. <u>NREL/TP-462-5173.</u>

Tartière T., (2016), ORC Market: A World Overview, http://orc-world-map.org/index.html

TGE, (2017), Global Installed Geothermal Power Plants Update, Think GeoEnergy Research, <a href="http://www.thinkgeoenergy.com/">http://www.thinkgeoenergy.com/</a>

IEA, (2011), *Turkish Renewable Energy Law 2010*, Ministry of Energy and Natural Resources, https://www.iea.org/policiesandmeasures/pams/turkey/name-24961-en.php

Wall, A., Young, K., (2016), *Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis* (NREL/TP - 6A20 - 64925), National Renewable Energy Laboratory, Golden, CO <u>http://www.nrel.gov/docs/fy16osti/64925.pdf</u>

# **Appendix: List of Global Geothermal Power Plants**

| Country | Plant Name                     | Year | Capacity | Туре         | Project Developer/Owner/Operator                             | Turbine Manufacturer    | Manufacturing<br>Location |
|---------|--------------------------------|------|----------|--------------|--------------------------------------------------------------|-------------------------|---------------------------|
| Germany | Traunereut                     | 2015 | 5.5      | Binary       | Geothermischen Kraftwerksgesellschaft Traunreut mbH<br>(GKT) | Turboden                | Italy                     |
| Japan   | Oguni Matsuya                  | 2015 | 0.06     | Binary       | N/A                                                          | Toshiba                 | Japan                     |
| Japan   | Tsuchiyu onsen                 | 2015 | 0.4      | Binary       | Tsuchiyu Onsen Energy Co.                                    | ORMAT                   | Israel                    |
| Japan   | Sugawara Binary Cycle          | 2015 | 5.5      | Binary       | Kyushu Electric Power                                        | Turboden                | Italy                     |
| Turkey  | Alasehir 1-2                   | 2015 | 45       | Single Flash | ZORLU                                                        | Toshiba                 | Japan                     |
| Turkey  | Tosunlar                       | 2015 | 3.81     | Binary       | Akca Holding                                                 | EXERGY                  | Italy                     |
| Turkey  | Umurlu 1-2                     | 2015 | 12       | Binary       | Karadeniz Holding                                            | EXERGY                  | Italy & Turkey            |
| Turkey  | Pamukoren-2                    | 2015 | 22.5     | Binary       | Çelikler Jeotermal Elektrik                                  | Atlas Copco, EXERGY     | USA                       |
| Turkey  | Efe-2                          | 2015 | 22.5     | Binary       | GURIS                                                        | ORMAT                   | Israel                    |
| Turkey  | Efe-3                          | 2015 | 22.5     | Binary       | GURIS                                                        | ORMAT                   | Israel                    |
| Turkey  | Efe-4                          | 2015 | 22.5     | Binary       | GURIS                                                        | ORMAT                   | Israel                    |
| Turkey  | Babadere                       | 2015 | 8        | Binary       | MTN Enerji                                                   | ORMAT                   | Israel                    |
| USA     | Don A. Campbell (Wild Rose) II | 2015 | 22.5     | Binary       | ORMAT                                                        | ORMAT                   | Israel                    |
| USA     | McGinness Expansion            | 2015 | 48       | Binary       | ORMAT                                                        | ORMAT                   | Israel                    |
| Kenya   | Olkaria GEG (OW 914)           | 2015 | 27.8     | Single Flash | Green Energy Group (GEG)                                     | Hindustan Turbomacinery | India                     |
| Kenya   | Olkaria GEG (OW43)             | 2015 | 12.8     | Single Flash | KenGen                                                       | Hindustan Turbomacinery | India                     |
| Japan   | Tsuchiyu onsen                 | 2015 | 0.4      | Binary       | Tsuchiyu onsen energy Co.                                    | ORMAT                   | Israel                    |
| Mexico  | Los Azufres III - 1            | 2015 | 53       | Single Flash | Comision Federal de Electricidad                             | Mitsubishi              | Japan                     |

| Country | Plant Namo                         | Voor | Capacity | Tuno         | Broject Developer (Owner (Operator                                                  | Turbino Monufacturor     | Manufacturing |
|---------|------------------------------------|------|----------|--------------|-------------------------------------------------------------------------------------|--------------------------|---------------|
| country |                                    | Tear | capacity | туре         | rioject Developer/Owner/Operator                                                    |                          | Location      |
| USA     | Paisley                            | 2014 | 2        | Binary       | Surprise Valley Electric Co.                                                        | TAS                      | USA           |
| USA     | OIT-2                              | 2014 | 1.5      | Binary       | OIT                                                                                 | Pratt & Whitney          | USA           |
| Kenya   | Olkaria I unit-4                   | 2014 | 70       | Single Flash | KenGen                                                                              | Toyota Tsusho            | Japan         |
| Kenya   | Olkaria I unit-5                   | 2014 | 70       | Single Flash | KenGen                                                                              | Toyota Tsusho            | Japan         |
| Kenya   | Olkaria III                        | 2014 | 40       | Binary       | ORMAT                                                                               | ORMAT                    | Israel        |
| Kenya   | Olkaria IV                         | 2014 | 70       | Single Flash | KenGen                                                                              | Toyota Tsusho            | Japan         |
| Kenya   | Olkaria IV                         | 2014 | 70       | Single Flash | KenGen                                                                              | Toyota Tsusho            | Japan         |
| Turkey  | Yilmazkoy (Ken Kipas)              | 2014 | 24       | Binary       | KIPAS                                                                               | EXERGY                   | Italy         |
| Turkey  | Alasehir                           | 2014 | 24       | Binary       | Turkeler                                                                            | ORMAT                    | Israel        |
| Turkey  | Kerem                              | 2014 | 24       | Binary       | MAREN                                                                               | ORMAT                    | Israel        |
| Kenya   | Olkaria3-Plant3                    | 2014 | 24       | Binary       | ORMAT                                                                               | ORMAT                    | Israel        |
| Turkey  | Kizildere-2 Binary                 | 2014 | 20       | Binary       | ZORLU                                                                               | TAS                      | USA           |
| Turkey  | Dora3-U2                           | 2014 | 17       | Binary       | MENDERES                                                                            | ORMAT                    | Israel        |
| Turkey  | Gumuskoy-2                         | 2014 | 6.6      | Binary       | BM                                                                                  | TAS (repowerd by ORMAT)  | USA           |
| Germany | Oberhaching-Laufzorn /<br>Grünwald | 2014 | 4.3      | Binary       | Daldrup & Sohne AG (EGS)                                                            | Atlas Copco/Energas, GMK | Germany       |
| Japan   | Hagenoyu                           | 2014 | 2        | Binary       | Keiyo Plant Engineering Co, Waita Geothermal Power<br>Plant, Chuo Electric Power Co | Toshiba                  | Japan         |
| Japan   | Ibusuki                            | 2014 | 1.5      | Binary       | Geonext Co.                                                                         | ORMAT                    | Israel        |
| Japan   | Beppu Spring                       | 2014 | 0.5      | Binary       | N/A                                                                                 | Toshiba                  | Japan         |

|             |                          |      |          |              |                                  |                          | Manufacturing |
|-------------|--------------------------|------|----------|--------------|----------------------------------|--------------------------|---------------|
| Country     | Plant Name               | Year | Capacity | Туре         | Project Developer/Owner/Operator | Turbine Manufacturer     | Location      |
| lanan       | Goto-en                  | 2014 | 0.09     | Binany       | N/A                              | Toshiha                  | lanan         |
| заран       | 0010-611                 | 2014 | 0.05     | binary       |                                  |                          | заран         |
| Japan       | Yumura Spring            | 2014 | 0.03     | Binary       | N/A                              | Kawasaki                 | Japan         |
| Japan       | Shichimi Spring          | 2014 | 0.02     | Binary       | N/A                              | Kawasaki                 | Japan         |
| Kenya       | Olkaria III              | 2014 | 18       | Binary       | N/A                              | ORMAT                    | Israel        |
| Kenya       | Olkaria GEG (OW37)       | 2014 | 5        | Single Flash | N/A                              | Hindustan Turbomacinery  | India         |
| Germany     | Taufkirchen/ Oberhaching | 2014 | 4        | Binary       | N/A                              | Atlas Copco/Energas, GMK | Germany       |
| Germany     | Sauerlach                | 2014 | 5        | Binary       | N/A                              | Turboden                 | Italy         |
| Turkey      | Gümüsköy-1               | 2014 | 6.6      | Binary       | BM                               | TAS (Repowerd by ORMAT)  | USA           |
| Indonesia   | Cibuni                   | 2014 | 2        | Single Flash | PLN                              | Elliot TurboMachinery    | USA           |
| Indonesia   | Ndunga                   | 2014 | 5        | Single Flash | PLN                              | Elliot TurboMachinery    | USA           |
| Indonesia   | Ulumbu                   | 2014 | 10       | Single Flash | PLN                              | Elliot TurboMachinery    | USA           |
| Indonesia   | Patuha Unit 1            | 2014 | 55       | Single Flash | PT. Geo Dipa Energy              | Toshiba                  | Japan         |
| Italy       | Bagnore 4                | 2014 | 40       | Single Flash | Enel Green Power                 | Ansaldo/Tosi             | Italy         |
| Philippines | Nasulo                   | 2014 | 49.4     | Single Flash | Energy Development Corporation   | Fuji                     | Japan         |
| USA         | Patua                    | 2013 | 48       | Binary       | Gradient Resources               | TAS                      | USA           |
| USA         | Lightening Dock          | 2013 | 4.4      | Binary       | Cyrq Energy                      | Kaishan                  | China         |
| USA         | Don A. Campbell          | 2013 | 22.5     | Binary       | N/A                              | ORMAT                    | Israel        |
| USA         | Cove Fort 1-2            | 2013 | 25       | Binary       | N/A                              | ORMAT                    | Israel        |
| Nicaragua   | San Jacinto-Tizate       | 2013 | 36       | Single Flash | N/A                              | Fuji                     | Japan         |

|             |                        |      |          |              |                                                                               |                       | Manufacturing |
|-------------|------------------------|------|----------|--------------|-------------------------------------------------------------------------------|-----------------------|---------------|
| Country     | Plant Name             | Year | Capacity | Туре         | Project Developer/Owner/Operator                                              | Turbine Manufacturer  | Location      |
| Turkey      | Efe-1                  | 2013 | 47.4     | Double Flash | N/A                                                                           | Mitsubishi            | Japan         |
| Turkey      | Kizildere-2            | 2013 | 60       | Double Flash | N/A                                                                           | Fuji                  | Japan         |
| Germany     | Durrhaar               | 2013 | 7        | Binary       | N/A                                                                           | Turboden              | Italy         |
| Turkey      | Pamukören-1            | 2013 | 67.5     | Binary       | Çelikler Jeotermal Elektrik                                                   | Atlas Copco, EXERGY   | USA           |
| Turkey      | Dora3-U1               | 2013 | 17       | Binary       | MENDERES                                                                      | ORMAT                 | Israel        |
| USA         | Desert Peak (EGS)      | 2013 | 1.7      | Binary       | N/A                                                                           | ORMAT                 | Israel        |
| Germany     | Kirchstockach          | 2013 | 7        | Binary       | N/A                                                                           | Turboden              | Italy         |
| USA         | Chena-2                | 2013 | 0.4      | Binary       | N/A                                                                           | Turboden              | Italy         |
| Australia   | Habanero-EGS           | 2013 | 1        | Binary       | N/A                                                                           | Siemens               | Germany       |
| Japan       | Abo-tunnel             | 2013 | 0.003    | Binary       | N/A                                                                           | Kawasaki              | Japan         |
|             | Mammoth Complex        |      |          |              |                                                                               |                       |               |
| USA         | Repowering             | 2013 | 7.5      | Binary       | ORMAT                                                                         | ORMAT                 | Israel        |
| Indonesia   | Mataloko               | 2013 | 2.5      | Single Flash | PLN                                                                           | Elliot TurboMachinery | USA           |
| Mexico      | Los Humeros II Phase 2 | 2013 | 26.7     | Single Flash | Comision Federal de Electricidad                                              | Alstom                | Mexico        |
| New Zealand | Ngatamariki            | 2013 | 82       | Binary       | Mighty River Power                                                            | ORMAT                 | Israel        |
| New Zealand | Te Mihi                | 2013 | 166      | Double Flash | Contact Energy                                                                | Toshiba               | Japan         |
| New Zealand | TOPP1                  | 2013 | 25       | Binary       | Nagati Tuwharetoa Geothermal                                                  | ORMAT                 | Israel        |
| Philippines | Maibarara              | 2013 | 20       | Single Flash | Maibarara Geothermal (JV PetroEnergy, Trans-Asia Oil,<br>and PNOC Renewables) | Fuji                  | Japan         |
| Nicaragua   | San Jacinto-Tizate     | 2012 | 36       | Single Flash | Ram Power                                                                     | Fuji                  | Japan         |

|           |                     |      |          |               |                                  |                               | Manufacturing |
|-----------|---------------------|------|----------|---------------|----------------------------------|-------------------------------|---------------|
| Country   | Plant Name          | Year | Capacity | Туре          | Project Developer/Owner/Operator | Turbine Manufacturer          | Location      |
|           |                     |      | = -      |               |                                  | <b>_</b>                      |               |
| USA       | Hudson Ranch I      | 2012 | 50       | Triple Flash  | EnergySource                     | Fuji                          | Japan         |
| Germany   | Dürrnhaar           | 2012 | 5.5      | Binary        | Municipality Germany             | Turboden                      | Italy         |
| Germany   | Insheim             | 2012 | 4.3      | Binary        | Municipality Germany             | Turboden                      | Italy         |
| USA       | McGinness Hill      | 2012 | 48       | Binary        | ORMAT                            | ORMAT                         | Israel        |
| USA       | Tuscarora           | 2012 | 24       | Binary        | ORMAT                            | ORMAT                         | Israel        |
| Turkey    | DENIZ               | 2012 | 24       | Binary        | MAREN                            | ORMAT                         | Israel        |
| Turkey    | SINEM               | 2012 | 24       | Binary        | MAREN                            | ORMAT                         | Israel        |
| USA       | Neal Hot Springs    | 2012 | 33       | Binary        | US Geothermal                    | TAS                           | USA           |
| USA       | San Emidio          | 2012 | 12       | Binary        | US Geothermal                    | TAS                           | USA           |
| Germany   | Sauerlach           | 2012 | 5        | Binary        | Municipality Germany             | Turboden                      | Italy         |
| Japan     | Niigata             | 2012 | 2        | Binary        | Wasabi                           | EcoGen                        | USA           |
| USA       | Florida Canyon Mine | 2012 | 0.1      | Co-Production | Electratherm                     | Electratherm                  | USA           |
| Romania   | Oradea              | 2012 | 0.5      | Binary        | Electratherm                     | Electratherm                  | USA           |
| Taiwan    | Qingshui            | 2012 | 0.1      | Binary        | SSNE (Kalina Cycle)              | Energent Turbine              | USA           |
| China     | YangYi-2            | 2012 | 0.4      | Binary        | Jiangxi HuanDian Electric Co.    | Jiangxi HuanDian Electric Co. | China         |
| Indonesia | Ulumbu              | 2012 | 2.5      | Single Flash  | Pertamina Geothermal Energy      | Elliot TurboMachinery         | USA           |
| Indonesia | Ulumbu              | 2012 | 2.5      | Single Flash  | Pertamina Geothermal Energy      | Elliot TurboMachinery         | USA           |
| Indonesia | Ulubelu Unit 1      | 2012 | 55       | Dry Steam     | PLN                              | Fuji                          | Japan         |
| Indonesia | Ulubelu Unit 2      | 2012 | 55       | Dry Steam     | PLN                              | Fuji                          | Japan         |

|            |                     |      |          |              |                                  |                                 | Manufacturing |
|------------|---------------------|------|----------|--------------|----------------------------------|---------------------------------|---------------|
| Country    | Plant Name          | Year | Capacity | Туре         | Project Developer/Owner/Operator | Turbine Manufacturer            | Location      |
| Italy      | Bagnore 3 Binary    | 2012 | 1        | Binary       | Enel Green Power                 | Exergy                          | Italy         |
| Italy      | Rancia 2            | 2012 | 20       | Dry Steam    | Enel Green Power                 | Ansaldo/Tosi                    | Italy         |
| USA        | Dixie Valley Binary | 2012 | 6.2      | Binary       | Terra Gen                        | TAS                             | USA           |
| Mexico     | Los Humeros         | 2012 | 26.7     | Single Flash | Comision Federal de Electricidad | Alstom                          | Mexico        |
| China      | Yangyi              | 2011 | 0.9      | Single Flash | Jiangxi Huadian Electric         | Jiangxi HuanDian Electric Co.   | China         |
| Kenya      | Eburru              | 2011 | 2.5      | Single Flash | KenGen                           | Elliot Turbomachinery           | USA           |
| Costa Rica | Las Pailas          | 2011 | 21       | Binary       | Instituto Costarricense de       | ORMAT                           | Israel        |
| Costa Rica | Las Pailas          | 2011 | 21       | Binary       | Instituto Costarricense de       | ORMAT                           | Israel        |
| Turkey     | IREM                | 2011 | 20       | Binary       | MAREN                            | ORMAT                           | Israel        |
| USA        | Puna Expansion      | 2011 | 12       | Binary       | ORMAT                            | ORMAT                           | Israel        |
| USA        | Beowave-2           | 2011 | 3.6      | Binary       | Beowawe Power Terra Gen          | TAS                             | USA           |
| China      | YangYi-1            | 2011 | 0.5      | Binary       | Jiangxi HuanDian Electric Co.    | Jiangxi HuanDian Electric Co.   | China         |
| Indonesia  | Lahendong Unit 4    | 2011 | 20       | Single Flash | Pertamina Geothermal Energy      | Fuji                            | Japan         |
| Iceland    | Hellisheidi 5       | 2011 | 45       | Single Flash | Orkuveita Reykjavikur            | Mitsubishi                      | Japan         |
| Iceland    | Hellisheidi 5       | 2011 | 45       | Single Flash | Orkuveita Reykjavikur            | Mitsubishi                      | Japan         |
| Italy      | Chiusdino 2         | 2011 | 20       | Dry Steam    | Enel Green Power                 | Ansaldo/Tosi                    | Italy         |
| Italy      | Nuova Radicondoli   | 2011 | 20       | Dry Steam    | Enel Green Power                 | General Electric- Nuovo Pignone | Italy         |
| Kenya      | Olkaria II          | 2010 | 35       | Single Flash | KenGen                           | Mitsubishi                      | Japan         |
| USA        | Jersey Valley       | 2010 | 22.5     | Binary       | ORMAT                            | ORMAT                           | Israel        |

|             |                          |      |          |              |                                  |                           | Manufacturing |
|-------------|--------------------------|------|----------|--------------|----------------------------------|---------------------------|---------------|
| Country     | Plant Name               | Year | Capacity | Туре         | Project Developer/Owner/Operator | Turbine Manufacturer      | Location      |
| Turkov      | Dara 2                   | 2010 | 0.5      | Dinom        | MENDEDEC                         | ODMAT                     | laraal        |
| Тигкеу      | Dora-2                   | 2010 | 9.5      | ыпагу        | MENDERES                         | URIVIAT                   | Israel        |
| Turkey      | Tuzla                    | 2010 | 7.5      | Binary       | Dardanel                         | ORMAT                     | Israel        |
| China       |                          | 2010 | 1        | Pinany       |                                  |                           | China         |
| Clilla      | Longyuan                 | 2010 | 1        | Dillary      |                                  | Longyuan Co               | China         |
| China       | North Oil Field (Huabei) | 2010 | 0.4      | Binary       | Jiujiang Power                   | Jiujiang Power            | China         |
| Italv       | Chiusdino 1              | 2010 | 20       | Drv Steam    | Enel Green Power                 | Ansaldo/Tosi              | Italv         |
|             |                          |      |          | ,            |                                  |                           |               |
| Italy       | Radicondoli 2            | 2010 | 20       | Dry Steam    | Enel Green Power                 | Ansaldo/Tosi              | Italy         |
| Kenya       | Olkaria II               | 2010 | 35       | Single Flash | KenGen                           | Mitsubishi                | Japan         |
|             |                          |      |          |              |                                  |                           |               |
| New Zealand | Nga Awa Purua            | 2010 | 139      | Triple Flash | Mighty River Power               | Fuji                      | Japan         |
| New Zealand | Te Huka                  | 2010 | 23       | Binary       | Top Energy                       | ORMAT                     | Israel        |
| Kenya       | Olkaria III              | 2009 | 52       | Binary       | ORMAT (upgraded)                 | ORMAT                     | Israel        |
| Turkey      | Germencik (Galip Hoca)   | 2009 | 47.4     | Double Flash | GURMAT                           | Mitsubishi                | Japan         |
| ,           |                          |      |          |              |                                  |                           |               |
| USA         | OIT-1                    | 2009 | 0.3      | Binary       | OIT                              | Pratt & Whitney           | USA           |
| USA         | Faulkner                 | 2009 | 63.9     | Binary       | Nevada Geothermal                | ORMAT                     | Israel        |
| USA         | Stillwater               | 2009 | 47.3     | Binary       | Enel Green Power                 | Atlas Copco / Mafi-Trench | USA           |
|             |                          |      |          |              |                                  |                           |               |
| USA         | Salt Wells               | 2009 | 18.1     | Binary       | Enel Green Power                 | Atlas Copco / Mafi-Trench | USA           |
| USA         | Thermo Hot Spring        | 2009 | 14       | Binary       | Raser Technologies               | Turboden                  | Italy         |
| Germany     | Unterhaching             | 2009 | 3.4      | Binary       | Municipality (Kalina Cycle)      | Siemens                   | Germany       |
|             |                          |      |          |              |                                  |                           |               |
| Germany     | Bruchsal                 | 2009 | 0.55     | Binary       | Municipality (Kalina Cycle)      | Energent Turbine          | USA           |
| Indonesia   | Lahendong Unit 3         | 2009 | 20       | Single Flash | PLN                              | Fuji                      | Japan         |

|                     |                            |      |          |               |                                  |                                 | Manufacturing |
|---------------------|----------------------------|------|----------|---------------|----------------------------------|---------------------------------|---------------|
| Country             | Plant Name                 | Year | Capacity | Туре          | Project Developer/Owner/Operator | Turbine Manufacturer            | Location      |
| Indonesia           | Wayang Windu Unit 2        | 2009 | 117      | Single Flash  | Star Energy Ltd                  | Fuji                            | Japan         |
| Italy               | Nuova Lagoni Rossi         | 2009 | 20       | Dry Steam     | Enel Green Power                 | General Electric- Nuovo Pignone | Italy         |
| Italy               | Sasso 2                    | 2009 | 20       | Dry Steam     | Enel Green Power                 | General Electric- Nuovo Pignone | Italy         |
| USA                 | North Brawley              | 2008 | 50       | Binary        | ORMAT                            | ORMAT                           | Israel        |
| USA                 | Galena III                 | 2008 | 30       | Binary        | ORMAT                            | ORMAT                           | Israel        |
| USA                 | Raft River                 | 2008 | 18       | Binary        | US Geot hermal                   | ORMAT                           | Israel        |
| El Salvador         | Berlin                     | 2008 | 9.4      | Binary        | LaGeo/Enel Green Power           | Enex-GE-Rotoflow                | USA           |
| Turkey              | Kizildere Binary (Bereket) | 2008 | 6.8      | Binary        | BEREKET                          | ORMAT                           | Israel        |
| France              | Soultz-sous-Forêts         | 2008 | 1.5      | Binary        | European EGS Interest            | Turboden                        | Italy         |
| USA                 | Heber South                | 2008 | 16       | Binary        | ORMAT                            | ORMAT                           | Israel        |
| Indonesia           | Darajat                    | 2008 | 110      | Dry Steam     | Chevron                          | Mitsubishi                      | Japan         |
| Indonesia           | Lahendong Unit 2           | 2008 | 20       | Single Flash  | PLN                              | Fuji                            | Japan         |
| Iceland             | Hellisheidi 3              | 2008 | 45       | Single Flash  | Orkuveita Reykjavikur            | Mitsubishi                      | Japan         |
| Iceland             | Hellisheidi 3              | 2008 | 45       | Single Flash  | Orkuveita Reykjavikur            | Mitsubishi                      | Japan         |
| New Zealand         | Kawerau                    | 2008 | 95.72    | Double Flash  | Mighty River Power               | Fuji                            | Japan         |
| New Zealand         | KA24                       | 2008 | 8.3      | Binary        | Savage Papakainga Trust          | ORMAT                           | Israel        |
| New Zealand         | Ngawha 2                   | 2008 | 15       | Binary        | Top Energy                       | ORMAT                           | Israel        |
| Papua New<br>Guinea | Lihir                      | 2007 | 20       | Single Flash  | Lihir Gold Ltd mine              | General Electric                | USA           |
| Nicaragua           | San Jacinto-Tizate         | 2007 | 10       | Back Pressure | Polaris                          | Alstom                          | France        |

|             |                                |      |          |               |                                  |                       | Manufacturing |
|-------------|--------------------------------|------|----------|---------------|----------------------------------|-----------------------|---------------|
| Country     | Plant Name                     | Year | Capacity | Туре          | Project Developer/Owner/Operator | Turbine Manufacturer  | Location      |
| Commonly    | Lender                         | 2007 | 2        | Dimensi       | Musicipality                     | ODMAT                 | Java al       |
| Germany     | Landau                         | 2007 | 3        | віпагу        | Municipality                     | ORIVIAT               | Israel        |
| Guatemala   | Amatitlán                      | 2007 | 24       | Binary        | ORMAT                            | ORMAT                 | Israel        |
|             |                                |      |          |               |                                  |                       |               |
| USA         | Galena II                      | 2007 | 13.5     | Binary        | ORMAT                            | ORMAT                 | Israel        |
| USA         | Blundell-2                     | 2007 | 12       | Binary        | Pacific Corporation              | ORMAT                 | Israel        |
|             |                                | 2007 |          |               | 001117                           | 000447                |               |
| USA         | GEM Bottoming Cycle            | 2007 | 9        | Binary        | ORMAT                            | ORMAT                 | Israel        |
| Kenya       | Oserian                        | 2007 | 2        | Binary        | Oserian Flower co                | Elliot Turbomachinery | USA           |
|             |                                |      |          |               |                                  |                       |               |
| USA         | Steamboat Hills                | 2007 | 5.5      | Binary        | ORMAT                            | ORMAT                 | Israel        |
| USA         | Ormesa II (Upgrade)            | 2007 | 4.3      | Binary        | ORMAT                            | ORMAT                 | Israel        |
|             |                                |      |          |               |                                  |                       |               |
| Indonesia   | Kamojang Unit 4                | 2007 | 60       | Dry Steam     | PLN                              | Fuji                  | Japan         |
| Indonesia   | Sibayak                        | 2007 | 5.65     | Single Flash  | Dizamatra Powerindo              | Harbin                | China         |
|             |                                | 2007 |          |               |                                  |                       |               |
| Indonesia   | Sibayak                        | 2007 | 5.65     | Single Flash  | Dizamatra Powerindo              | Harbin                | China         |
| Iceland     | Hellisheidi 2b                 | 2007 | 33       | Single Flash  | Orkuveita Reykjavikur            | Toshiba               | Japan         |
|             |                                |      |          |               |                                  |                       |               |
| Mexico      | Los Humeros                    | 2007 | 5        | Back Pressure | Comision Federal de Electricidad | Mitsubishi            | Japan         |
| New Zealand | Mokai 3                        | 2007 | 17       | Binary        | Tuaropaki Power Co.              | ORMAT                 | Israel        |
|             |                                |      |          |               |                                  |                       |               |
| Russia      | Mendeleevskaya                 | 2007 | 1.8      | Single Flash  | SC Geotherm                      | Kaluga Turbine        | Russia        |
| Russia      | Okeanskaya                     | 2007 | 1.8      | Single Flash  | SC Geotherm                      | Kaluga Turbine        | Russia        |
|             |                                |      |          |               |                                  |                       |               |
| Russia      | Okeanskaya                     | 2007 | 1.8      | Single Flash  | SC Geotherm                      | Kaluga Turbine        | Russia        |
| El Salvador | Berlin                         | 2006 | 44       | Single Flash  | LaGeo/Enel Green Power           | General Electric      | USA           |
|             |                                |      |          |               |                                  |                       |               |
| USA         | Desert Peak II (Brady Complex) | 2006 | 26       | Binary        | ORMAT                            | ORMAT                 | Israel        |
|             | 1                              | I    | 1        |               |                                  |                       |               |

|                     |                            |      |          |              |                                  |                                 | Manufacturing |
|---------------------|----------------------------|------|----------|--------------|----------------------------------|---------------------------------|---------------|
| Country             | Plant Name                 | Year | Capacity | Туре         | Project Developer/Owner/Operator | Turbine Manufacturer            | Location      |
| Portugal            | Pico Vermelho              | 2006 | 13.5     | Binary       | Electricidade dos Açores         | ORMAT                           | Israel        |
| USA                 | Goulds-1                   | 2006 | 10.5     | Binary       | ORMAT                            | ORMAT                           | Israel        |
| Turkey              | Dora-1                     | 2006 | 7.9      | Binary       | MENDERES                         | ORMAT                           | Israel        |
| Japan               | Hatchobaru                 | 2006 | 2        | Binary       | Kyushu Electric Power            | ORMAT                           | Israel        |
| USA                 | Chena-1                    | 2006 | 0.7      | Binary       | Chena Hot Springs                | Turboden                        | Italy         |
| Iceland             | Hellisheidi 1              | 2006 | 45       | Single Flash | Orkuveita Reykjavikur            | Mitsubishi                      | Japan         |
| Iceland             | Hellisheidi 2a             | 2006 | 45       | Single Flash | Orkuveita Reykjavikur            | Mitsubishi                      | Japan         |
| Iceland             | Reykjanes Unit 2           | 2006 | 50       | Single Flash | Hitaveita Sudurnesja & HS Orka   | Fuji                            | Japan         |
| Japan               | Kirishima Geotherm         | 2006 | 0.22     | Binary       | Fuji                             | Fuji                            | Japan         |
| Japan               | Suginoi                    | 2006 | 1.9      | Single Flash | Suginoi Hotel                    | Fuji                            | Japan         |
| Papua New<br>Guinea | Lihir                      | 2005 | 30       | Single Flash | Lihir Gold Ltd mine              | General Electric                | USA           |
| USA                 | Goulds-2                   | 2005 | 16       | Binary       | ORMAT                            | ORMAT                           | Israel        |
| USA                 | Galena I (Richard Burdett) | 2005 | 30       | Binary       | ORMAT                            | ORMAT                           | Israel        |
| Guadalope           | Bouillante 2               | 2005 | 11       | Single Flash | ORMAT                            | Alstom                          | France        |
| Iceland             | Nesjavellir                | 2005 | 30       | Single Flash | Orkuveita Reykjavikur            | Mitsubishi                      | Japan         |
| Iceland             | Reykjanes Unit 1           | 2005 | 50       | Single Flash | Geothermie Bouilante             | Fuji                            | Japan         |
| Iceland             | Svartsengi Unit 6          | 2005 | 33       | Dry Steam    | Hitaveita Sudurnesja & HS Orka   | Fuji                            | Japan         |
| Italy               | Nuova Larderello           | 2005 | 20       | Dry Steam    | Enel Green Power                 | Ansaldo/Tosi                    | Italy         |
| Italy               | Nuova San Martino          | 2005 | 40       | Dry Steam    | Enel Green Power                 | General Electric- Nuovo Pignone | Italy         |

|             |                           |      |          |               |                                         |                       | Manufacturing |
|-------------|---------------------------|------|----------|---------------|-----------------------------------------|-----------------------|---------------|
| Country     | Plant Name                | Year | Capacity | Туре          | Project Developer/Owner/Operator        | Turbine Manufacturer  | Location      |
| Now Zooland | Makai 2                   | 2005 | 10       | Diport        | Tuaranaki Dawar Ca                      | ODMAT                 | Israel        |
| New Zealanu |                           | 2005 | 19       | ыпату         | Tuaropaki Power Co.                     | URIVIAT               | ISTAEL        |
| New Zealand | Mokai 2                   | 2005 | 5        | Binary        | Tuaropaki Power Co.                     | ORMAT                 | Israel        |
| New Zealand | Mokai 2                   | 2005 | 5        | Binary        | Tuaropaki Power Co.                     | ORMAT                 | Israel        |
| New Zealand | Mokai 2                   | 2005 | 5        | Binary        | Tuaropaki Power Co.                     | ORMAT                 | Israel        |
| New Zealand | Mokai 2                   | 2005 | 5        | Binary        | Tuaropaki Power Co.                     | ORMAT                 | Israel        |
| New Zealand | Wairakei Binary           | 2005 | 14.4     | Binary        | Contact Energy                          | ORMAT                 | Israel        |
| USA         | Brady (Brady Complex)     | 2004 | 5.3      | Binary        | ORMAT                                   | Ormat                 | Israel        |
| Kenya       | Oserian                   | 2004 | 2        | Binary        | Oserian Flower co                       | ORMAT                 | Israel        |
| New Zealand | Tasman BP                 | 2004 | 8        | Back Pressure | Norske Skog Tasman                      | Elliot TurboMachinery | USA           |
| Russia      | Goryachii Plyazh          | 2004 | 2.6      | Single Flash  | SC Geotherm                             | Kaluga Turbine        | Russia        |
| Russia      | Mutnovskaya               | 2004 | 50       | Single Flash  | SC Geotherm                             | Kaluga Turbine        | Russia        |
| Kenya       | Olkaria II                | 2003 | 35       | Single Flash  | KenGen                                  | Mitsubishi            | Japan         |
| USA         | Ormesa I (Ormesa Complex) | 2003 | 26.2     | Binary        | ORMAT                                   | Ormat                 | Israel        |
| Costa Rica  | Miravalles 5              | 2003 | 17       | Binary        | Instituto Costarricence de Electricidad | ORMAT                 | Israel        |
| Mexico      | Los Azufres               | 2003 | 26.5     | Single Flash  | Comision Federal de Electricidad        | Alstom                | France        |
| Mexico      | Los Azufres               | 2003 | 26.5     | Single Flash  | Comision Federal de Electricidad        | Alstom                | France        |
| Mexico      | Los Azufres               | 2003 | 26.5     | Single Flash  | Comision Federal de Electricidad        | Alstom                | France        |
| Mexico      | Los Azufres               | 2003 | 26.5     | Single Flash  | Comision Federal de Electricidad        | Alstom                | France        |
| Mexico      | Los Humeros               | 2003 | 5        | Back Pressure | Comision Federal de Electricidad        | Ansaldo/Tosi          | Italy         |

| Country             | Plant Name         | Voor | Conocity | Turno        | Brainst Developer/Owner/Operator | Turbing Manufacturor            | Manufacturing |
|---------------------|--------------------|------|----------|--------------|----------------------------------|---------------------------------|---------------|
| country             |                    | Tear | capacity | туре         | rioject Developer/Owner/Operator |                                 | Location      |
| New Zealand         | Rotokawa           | 2003 | 6        | Binary       | Mighty River Power               | ORMAT                           | Israel        |
| Indonesia           | Lahendong Unit 1   | 2002 | 20       | Single Flash | PLN                              | Alstom                          | France        |
| Austria             | Altheim            | 2002 | 1        | Binary       | Marktgemeinde Altheim GmbH       | Turboden                        | Italy         |
| Italy               | Nuova Gabbro       | 2002 | 20       | Dry Steam    | Enel Green Power                 | General Electric- Nuovo Pignone | Italy         |
| Italy               | Nuova Lago         | 2002 | 10       | Dry Steam    | Enel Green Power                 | General Electric- Nuovo Pignone | Italy         |
| Italy               | Nuova Molinetto    | 2002 | 20       | Dry Steam    | Enel Green Power                 | General Electric- Nuovo Pignone | Italy         |
| Italy               | Nuova Monterotondo | 2002 | 10       | Dry Steam    | Enel Green Power                 | General Electric- Nuovo Pignone | Italy         |
| Italy               | Nuova Radicondoli  | 2002 | 40       | Dry Steam    | Enel Green Power                 | General Electric- Nuovo Pignone | Italy         |
| Italy               | Nuova Serrazzano   | 2002 | 60       | Dry Steam    | Enel Green Power                 | Ansaldo/Tosi                    | Italy         |
| Italy               | Sesta              | 2002 | 20       | Dry Steam    | Enel Green Power                 | Ansaldo/Tosi                    | Italy         |
| Italy               | Travale 4          | 2002 | 40       | Dry Steam    | Enel Green Power                 | Ansaldo/Tosi                    | Italy         |
| Mexico              | Las Tres Virgenes  | 2002 | 5        | Single Flash | Comision Federal de Electricidad | Alstom                          | France        |
| Mexico              | Las Tres Virgenes  | 2002 | 5        | Single Flash | Comision Federal de Electricidad | Alstom                          | France        |
| Mexico              | Las Tres Virgenes  | 2002 | 2        | Binary       | Comision Federal de Electricidad | ORMAT                           | Israel        |
| Austria             | Blumau             | 2001 | 0.2      | Binary       | Municipality                     | Ormat                           | Israel        |
| Iceland             | Nesjavellir        | 2001 | 30       | Single Flash | Orkuveita Reykjavikur            | Mitsubishi                      | Japan         |
| Papua New<br>Guinea | Lihir              | 2001 | 6        | Single Flash | Lihir Gold Ltd mine              | General Electric                | USA           |
| USA                 | CE Turbo           | 2000 | 11.5     | Single Flash | CalEnergy Generation             | Fuji                            | Japan         |
| USA                 | Salton Sea V       | 2000 | 58.32    | Double Flash | CalEnergy Generation             | Fuji                            | Japan         |

|             |                     |      |          |              |                                         |                      | Manufacturing |
|-------------|---------------------|------|----------|--------------|-----------------------------------------|----------------------|---------------|
| Country     | Plant Name          | Year | Capacity | Туре         | Project Developer/Owner/Operator        | Turbine Manufacturer | Location      |
| Indonesia   | Wayang Windu Unit 1 | 2000 | 110      | Single Flash | Star Energy Ltd                         | Fuji                 | Japan         |
| Costa Rica  | Miravalles 3        | 2000 | 29.5     | Single Flash | Instituto Costarricence de Electricidad | Mitsubishi           | Japan         |
| Iceland     | Husavik Kalina      | 2000 | 2        | Binary       | Orkuveita Husavikur                     | Enex-GE-Rotoflow     | USA           |
| Italy       | Nuova Castelnuovo   | 2000 | 14.5     | Dry Steam    | Enel Green Power                        | Ansaldo/Tosi         | Italy         |
| Italy       | Travale 3           | 2000 | 20       | Dry Steam    | Enel Green Power                        | Ansaldo/Tosi         | Italy         |
| Japan       | Kuju                | 2000 | 0.99     | Single Flash | Kuju Kanko Hotel                        | Kawasaki             | Japan         |
| Mexico      | Cerro Prieto 4      | 2000 | 25       | Single Flash | Comision Federal de Electricidad        | Mitsubishi           | Japan         |
| Mexico      | Cerro Prieto 4      | 2000 | 25       | Single Flash | Comision Federal de Electricidad        | Mitsubishi           | Japan         |
| Mexico      | Cerro Prieto 4      | 2000 | 25       | Single Flash | Comision Federal de Electricidad        | Mitsubishi           | Japan         |
| Mexico      | Cerro Prieto 4      | 2000 | 25       | Single Flash | Comision Federal de Electricidad        | Mitsubishi           | Japan         |
| Russia      | Pauzhetskaya        | 2000 | 11       | Single Flash | SC Geotherm                             | Kaluga Turbine       | Russia        |
| Russia      | Verkhne-Mutnovskaya | 2000 | 4        | Single Flash | SC Geotherm                             | Kaluga Turbine       | Russia        |
| Indonesia   | Darajat             | 1999 | 95       | Dry Steam    | Chevron                                 | Mitsubishi           | Japan         |
| El Salvador | Berlin I Unit 1     | 1999 | 28.12    | Single Flash | LaGeo                                   | Fuji                 | Japan         |
| El Salvador | Berlin I Unit 2     | 1999 | 28.12    | Single Flash | LaGeo                                   | Fuji                 | Japan         |
| Ethiophia   | Aluto-Langano 1-2   | 1999 | 7.5      | Binary       | Ethiopian Electric Power Corporation    | ORMAT                | Israel        |
| Guatemala   | Zunil               | 1999 | 24       | Binary       | ORMAT                                   | ORMAT                | Israel        |
| Guadalope   | Bouillante 1        | 1999 | 4        | Double Flash | ORMAT                                   | Alstom               | France        |
| Iceland     | Svartsengi Unit 5   | 1999 | 30       | Single Flash | Hitaveita Sudurnesja & HS Orka          | Fuji                 | Japan         |

|             |                     |      |          |              |                                         |                      | Manufacturing |
|-------------|---------------------|------|----------|--------------|-----------------------------------------|----------------------|---------------|
| Country     | Plant Name          | Year | Capacity | Туре         | Project Developer/Owner/Operator        | Turbine Manufacturer | Location      |
|             |                     | 1000 |          |              |                                         |                      |               |
| Japan       | Hachijojima         | 1999 | 3.3      | Single Flash | Tokyo Electric Power                    | Fuji                 | Japan         |
| New Zealand | Mokai 1             | 1999 | 5        | Binary       | Tuaropaki Power Co.                     | ORMAT                | Israel        |
|             |                     |      |          |              |                                         |                      |               |
| New Zealand | Mokai 1             | 1999 | 5        | Binary       | Tuaropaki Power Co.                     | ORMAT                | Israel        |
| New Zealand | Mokai 1             | 1999 | 5        | Binary       | Tuaropaki Power Co.                     | ORMAT                | Israel        |
| No. Zealand | Na-1-14             | 1000 |          | D'           | T                                       | 000447               | 1             |
| New Zealand | мокаї 1             | 1999 | 5        | Binary       | Tuaropaki Power Co.                     | URMAT                | Israel        |
| New Zealand | Mokai 1             | 1999 | 5        | Binary       | Tuaropaki Power Co.                     | ORMAT                | Israel        |
| No. Zeeleed | No.1 -: A           | 1000 | 20       | Charle Flack | T                                       | 000447               | 1             |
| New Zealand | мокаї 1             | 1999 | 30       | Single Flash | Tuaropaki Power Co.                     | URMAT                | Israel        |
| Nicaragua   | Momotombo           | 1999 | 22       | Single Flash | Momotombo Power Group                   | Ansaldo/Tosi         | Italy         |
| Philippines | Mindanao 2          | 1999 | 52.4     | Double Flash | FDC Misamis                             | Mitsubishi           | Japan         |
|             |                     |      |          |              |                                         |                      |               |
| Russia      | Verkhne-Mutnovskaya | 1999 | 4        | Single Flash | SC Geotherm                             | Kaluga Turbine       | Russia        |
| Indonesia   | Dieng               | 1998 | 60       | Single Flash | PT. Geo Dipa Energy                     | Ansaldo/Tosi         | Italy         |
|             |                     |      |          |              |                                         |                      |               |
| Costa Rica  | Miravalles 2        | 1998 | 55       | Single Flash | Instituto Costarricence de Electricidad | Ansaldo/Tosi         | Italy         |
| Iceland     | Nesjavellir         | 1998 | 30       | Single Flash | Orkuveita Reykjavikur                   | Mitsubishi           | Japan         |
|             |                     |      |          |              |                                         |                      |               |
| Iceland     | Nesjavellir         | 1998 | 30       | Single Flash | Orkuveita Reykjavikur                   | Mitsubishi           | Japan         |
| Italy       | Bagnore 3           | 1998 | 20       | Single Flash | Enel Green Power                        | Ansaldo/Tosi         | Italy         |
|             |                     |      |          |              |                                         |                      |               |
| Italy       | Carboli 1           | 1998 | 20       | Dry Steam    | Enel Green Power                        | Ansaldo/Tosi         | Italy         |
| New Zealand | Ngawha              | 1998 | 5        | Binary       | Top Energy                              | ORMAT                | Israel        |
|             |                     |      |          |              |                                         |                      |               |
| New Zealand | Ngawha              | 1998 | 5        | Binary       | Top Energy                              | ORMAT                | Israel        |
| Philippines | Bacman LowLoad      | 1998 | 1.5      | Single Flash | National Power Corporation              | Mitsubishi           | Japan         |
|             |                     |      |          |              |                                         |                      |               |

|             |                              |      |          |              |                                  |                      | Manufacturing |
|-------------|------------------------------|------|----------|--------------|----------------------------------|----------------------|---------------|
| Country     | Plant Name                   | Year | Capacity | Туре         | Project Developer/Owner/Operator | Turbine Manufacturer | Location      |
| Bussie      | Varkhna Mutnauskava          | 1009 | 1        | Single Flach | SC Coathorm                      | Kaluga Turkina       | Duccio        |
| Russia      | Verknine-iviutnovskaya       | 1998 | 4        | Single Flash | SC Geotherm                      | Kaluga Turbine       | Russia        |
| Indonesia   | Gunung Salak                 | 1997 | 60       | Single Flash | PLN                              | Fuji                 | Japan         |
| Indonesia   | Gunung Salak-IPP Unit 4      | 1997 | 55       | Single Flash | Chevron                          | Fuji                 | Japan         |
| Indonesia   | Gunung Salak-IPP Unit 5      | 1997 | 55       | Single Flash | Chevron                          | Fuji                 | Japan         |
| Indonesia   | Gunung Salak-IPP Unit 6      | 1997 | 55       | Single Flash | Chevron                          | Fuji                 | Japan         |
| Iceland     | Krafla                       | 1997 | 30       | Double Flash | Geothermie Bouilante             | Mitsubishi           | Japan         |
| Italy       | Carboli 2                    | 1997 | 20       | Dry Steam    | Enel Green Power                 | Ansaldo/Tosi         | Italy         |
| Italy       | Monteverdi 1                 | 1997 | 20       | Dry Steam    | Enel Green Power                 | Ansaldo/Tosi         | Italy         |
| Italy       | Monteverdi 2                 | 1997 | 20       | Dry Steam    | Enel Green Power                 | Ansaldo/Tosi         | Italy         |
| Italy       | Selva                        | 1997 | 20       | Dry Steam    | Enel Green Power                 | Ansaldo/Tosi         | Italy         |
| New Zealand | Rotokawa                     | 1997 | 14       | Single Flash | Mighty River Power               | General Electric     | USA           |
| Philippines | Mahanagdong A-Binary         | 1997 | 6.5      | Binary       | Energy Development Corporation   | Ormat                | Israel        |
| Philippines | Mahanagdong A-Binary         | 1997 | 6.5      | Binary       | Energy Development Corporation   | Ormat                | Israel        |
| Philippines | Mahanagdong B-Binary         | 1997 | 6.5      | Binary       | Energy Development Corporation   | Ormat                | Israel        |
| Philippines | Mahanagdong B-Binary         | 1997 | 6.5      | Binary       | Energy Development Corporation   | Ormat                | Israel        |
| Philippines | Malitbong \ Bottoming Binary | 1997 | 16.7     | Binary       | Energy Development Corporation   | ORMAT                | Israel        |
| Philippines | Tongonan 1 - Binary          | 1997 | 6.5      | Binary       | Energy Development Corporation   | Ormat                | Israel        |
| Philippines | Tongonan 1 - Binary          | 1997 | 6.5      | Binary       | Energy Development Corporation   | Ormat                | Israel        |
| Philippines | Tongonan 1 - Binary          | 1997 | 6.5      | Binary       | Energy Development Corporation   | Ormat                | Israel        |

|             |                     |      |          |               |                                  |                      | Manufacturing |
|-------------|---------------------|------|----------|---------------|----------------------------------|----------------------|---------------|
| Country     | Plant Name          | Year | Capacity | Туре          | Project Developer/Owner/Operator | Turbine Manufacturer | Location      |
|             |                     |      |          |               |                                  |                      |               |
| Philippines | Mahanagdong A       | 1997 | 60       | Single Flash  | Energy Development Corporation   | Toshiba              | Japan         |
| Philippines | Mahanagdong A       | 1997 | 60       | Single Flash  | Energy Development Corporation   | Toshiba              | Japan         |
| Philippines | Mahanagdong B       | 1997 | 60       | Single Flash  | Energy Development Corporation   | Toshiba              | Japan         |
| Philippines | Malitbong Unit 1    | 1997 | 77.5     | Single Flash  | Energy Development Corporation   | Fuji                 | Japan         |
| Philippines | Malitbong Unit 2    | 1997 | 77.5     | Single Flash  | Energy Development Corporation   | Fuji                 | Japan         |
| Philippines | Malitbong Unit 3    | 1997 | 77.5     | Single Flash  | Energy Development Corporation   | Fuji                 | Japan         |
| Indonesia   | Sibayak             | 1996 | 2        | Back Pressure | Pertamina Geothermal Energy      | Kawasaki             | Japan         |
| Italy       | Le Prata            | 1996 | 20       | Dry Steam     | Enel Green Power                 | Ansaldo/Tosi         | Italy         |
| Italy       | Nuova Sasso         | 1996 | 20       | Dry Steam     | Enel Green Power                 | Ansaldo/Tosi         | Italy         |
| Japan       | Takigami            | 1996 | 27.5     | Single Flash  | Kyushu Electric Power            | Mitsubishi           | Japan         |
| Japan       | Kakkonda            | 1996 | 30       | Single Flash  | Tohoku Electric Power            | Toshiba              | Japan         |
| Japan       | Ogiri               | 1996 | 30       | Single Flash  | Kyushu Electric Power            | Mitsubishi           | Japan         |
| USA         | Salton Sea IV       | 1996 | 51       | Double Flash  | CalEnergy Generation             | General Electric     | USA           |
| New Zealand | Poihipi             | 1996 | 55       | Dry Steam     | Contact Energy                   | Fuji                 | Japan         |
| Philippines | Upper Mahiao-1      | 1996 | 34.12    | Binary        | Energy Development Corporation   | Ormat                | Israel        |
| Philippines | Upper Mahiao-2      | 1996 | 34.12    | Binary        | Energy Development Corporation   | Ormat                | Israel        |
| Philippines | Upper Mahiao-3      | 1996 | 34.12    | Binary        | Energy Development Corporation   | Ormat                | Israel        |
| Philippines | Upper Mahiao-4      | 1996 | 34.12    | Binary        | Energy Development Corporation   | Ormat                | Israel        |
| Philippines | Upper Mahiao Binary | 1996 | 5.5      | Binary        | Energy Development Corporation   | Ormat                | Israel        |

|             |                           |      |          |               |                                         |                      | Manufacturing |
|-------------|---------------------------|------|----------|---------------|-----------------------------------------|----------------------|---------------|
| Country     | Plant Name                | Year | Capacity | Туре          | Project Developer/Owner/Operator        | Turbine Manufacturer | Location      |
| Costa Rica  | Miravallos Roca do pozo   | 1005 | 5        | Single Elech  | Instituto Costarrisonso do Electricidad | Mitsubishi           | Japan         |
| Costa Nica  | will availes boca de pozo | 1995 | J        | Single Liash  |                                         | WICSUDISTI           | Jahan         |
| Italy       | Farinello                 | 1995 | 60       | Dry Steam     | Enel Green Power                        | Ansaldo/Tosi         | Italy         |
| Japan       | Yamakawa                  | 1995 | 30       | Single Flash  | Kyushu Electric Power                   | Mitsubishi           | Japan         |
| Japan       | Sumikawa                  | 1995 | 50       | Single Flash  | Tohoku Electric Power                   | Mitsubishi           | Japan         |
| Japan       | Yanaizu-Nishiyama         | 1995 | 65       | Single Flash  | Tohoku Electric Power                   | Toshiba              | Japan         |
| Philippines | Mak-Ban D                 | 1995 | 20       | Single Flash  | Aboitiz Power Corp                      | Mitsubishi           | Japan         |
| Philippines | Mak-Ban D                 | 1995 | 20       | Single Flash  | Aboitiz Power Corp                      | Mitsubishi           | Japan         |
| Philippines | Mak-Ban E                 | 1995 | 20       | Single Flash  | Aboitiz Power Corp                      | Mitsubishi           | Japan         |
| Philippines | Mak-Ban E                 | 1995 | 20       | Single Flash  | Aboitiz Power Corp                      | Mitsubishi           | Japan         |
| Philippines | Mindanao 1                | 1995 | 52.4     | Single Flash  | FDC Misamis                             | Mitsubishi           | Japan         |
| Indonesia   | Darajat                   | 1994 | 55       | Dry Steam     | Chevron                                 | Mitsubishi           | Japan         |
| Indonesia   | Gunung Salak              | 1994 | 60       | Single Flash  | PLN                                     | Ansaldo/Tosi         | Italy         |
| Indonesia   | Gunung Salak              | 1994 | 60       | Single Flash  | PLN                                     | Ansaldo/Tosi         | Italy         |
| Costa Rica  | Miravalles 1              | 1994 | 55       | Single Flash  | Instituto Costarricence de Electricidad | Toshiba              | Japan         |
| Italy       | Cornia 2                  | 1994 | 20       | Dry Steam     | Enel Green Power                        | Ansaldo/Tosi         | Italy         |
| Italy       | Piancastagnaio 5          | 1994 | 20       | Dry Steam     | Enel Green Power                        | Ansaldo/Tosi         | Italy         |
| Japan       | Uenotai                   | 1994 | 28.8     | Single Flash  | Tohoku Electric Power                   | Toshiba              | Japan         |
| Mexico      | Los Humeros               | 1994 | 5        | Back Pressure | Comision Federal de Electricidad        | Ansaldo/Tosi         | Italy         |
| Philippines | Mak-Ban Binary1           | 1994 | 3        | Binary        | Aboitiz Power Corp                      | Ormat                | Israel        |

|             |                                             |      |          |              |                                  |                      | Manufacturing |
|-------------|---------------------------------------------|------|----------|--------------|----------------------------------|----------------------|---------------|
| Country     | Plant Name                                  | Year | Capacity | Туре         | Project Developer/Owner/Operator | Turbine Manufacturer | Location      |
| Philippines | Mak-Ban Binary1                             | 1994 | 3        | Binary       | Aboitiz Power Corp               | Ormat                | Israel        |
| Philippines | Mak-Ban Binary2                             | 1994 | 3        | Binary       | Aboitiz Power Corp               | Ormat                | Israel        |
| Philippines | Mak-Ban Binary2                             | 1994 | 3        | Binary       | Aboitiz Power Corp               | Ormat                | Israel        |
| Philippines | Mak-Ban Binary3                             | 1994 | 3        | Binary       | Aboitiz Power Corp               | Ormat                | Israel        |
| Philippines | Mak-Ban Binary3                             | 1994 | 0.75     | Binary       | Aboitiz Power Corp               | Ormat                | Israel        |
| Philippines | Bacman 2 (Cawayan)                          | 1994 | 20       | Single Flash | National Power Corporation       | Mitsubishi           | Japan         |
| Philippines | Palimpinon 2 (Sogongon)                     | 1994 | 20       | Single Flash | National Power Corporation       | Fuji                 | Japan         |
| Philippines | Palimpinon 2 (Sogongon)                     | 1994 | 20       | Single Flash | National Power Corporation       | Fuji                 | Japan         |
| Philippines | Palimpinon 2 Unit 2 (Nasuji)                | 1994 | 20       | Single Flash | National Power Corporation       | Fuji                 | Japan         |
| Portugal    | Ribeira Grande                              | 1994 | 15       | Binary       | Electricidade dos Açores         | ORMAT                | Israel        |
| USA         | Heber II (Heber Complex)<br>Second Imperial | 1993 | 48       | Binary       | Ormat                            | Ormat                | Israel        |
| Philippines | Bacman 1                                    | 1993 | 60       | Single Flash | National Power Corporation       | Ansaldo/Tosi         | Italy         |
| Philippines | Bacman 1                                    | 1993 | 60       | Single Flash | National Power Corporation       | Ansaldo/Tosi         | Italy         |
| Philippines | Palimpinon 2 Unit 1 (Okoy)                  | 1993 | 20       | Single Flash | National Power Corporation       | Fuji                 | Japan         |
| China       | Yangbajian North Unit-4                     | 1992 | 3        | Double Flash | Electric Power Tibet             | Qingdao Jieneng      | China         |
|             | Brady Hot Spring (Brady                     |      |          |              |                                  |                      |               |
| USA         | Complex)                                    | 1992 | 26.1     | Double Flash | Ormat                            | ORMAT                | Israel        |
| USA         | Puna                                        | 1992 | 35       | Binary       | Ormat                            | Ormat                | Israel        |
| USA         | Steamboat 2 (Steamboat<br>Complex)          | 1992 | 18.2     | Binary       | Ormat                            | Ben Holt             | USA           |

| Country | Plant Name                         | Year | Capacity | Туре          | Project Developer/Owner/Operator | Turbine Manufacturer | Manufacturing<br>Location |
|---------|------------------------------------|------|----------|---------------|----------------------------------|----------------------|---------------------------|
| USA     | Steamboat 3 (Steamboat<br>Complex) | 1992 | 18.2     | Binary        | Ormat                            | Ben Holt             | USA                       |
| Mexico  | Los Azufres                        | 1992 | 5        | Back Pressure | Comision Federal de Electricidad | Ansaldo/Makrotek     | Italy                     |
| Mexico  | Los Humeros                        | 1992 | 5        | Back Pressure | Comision Federal de Electricidad | Ansaldo/Tosi         | Italy                     |
| China   | Yangbajian North Unit-3            | 1991 | 3        | Double Flash  | Electric Power Tibet             | Qingdao Jieneng      | China                     |
| Italy   | Piancastagnaio 4                   | 1991 | 20       | Dry Steam     | Enel Green Power                 | Ansaldo/Tosi         | Italy                     |
| Italy   | Valle Secolo                       | 1991 | 60       | Dry Steam     | Enel Green Power                 | Ansaldo/Tosi         | Italy                     |
| Italy   | Valle Secolo                       | 1991 | 60       | Dry Steam     | Enel Green Power                 | Ansaldo/Tosi         | Italy                     |
| USA     | Soda Lake 2                        | 1991 | 18       | Binary        | Cyrq Energy                      | Ormat                | Israel                    |
| Mexico  | Los Humeros                        | 1991 | 5        | Back Pressure | Comision Federal de Electricidad | Ansaldo/Tosi         | Italy                     |
| Mexico  | Los Humeros                        | 1991 | 5        | Back Pressure | Comision Federal de Electricidad | Ansaldo/Tosi         | Italy                     |
| Italy   | Piancastagnaio 3                   | 1990 | 20       | Dry Steam     | Enel Green Power                 | Ansaldo/Tosi         | Italy                     |
| Japan   | Hatchobaru Unit 2                  | 1990 | 55       | Double Flash  | Kyushu Electric Power            | Mitsubishi           | Japan                     |
| USA     | Mammoth II (Mammoth<br>Complex)    | 1990 | 40       | Binary        | Ormat                            | Ben Holt             | USA                       |
| USA     | Leathers                           | 1990 | 35.8     | Double Flash  | CalEnergy Generation             | Fuji                 | Japan                     |
| USA     | Salton Sea II                      | 1990 | 20       | Double Flash  | CalEnergy Generation             | Mitsubishi           | Japan                     |
| Mexico  | Los Azufres                        | 1990 | 5        | Back Pressure | Comision Federal de Electricidad | Ansaldo/Tosi         | Japan                     |
| Mexico  | Los Humeros                        | 1990 | 5        | Back Pressure | Comision Federal de Electricidad | Ansaldo/Tosi         | Italy                     |
| Mexico  | Los Humeros                        | 1990 | 5        | Back Pressure | Comision Federal de Electricidad | Ansaldo/Tosi         | Italy                     |

|         |                           |      |          |              |                                  |                      | Manufacturing |
|---------|---------------------------|------|----------|--------------|----------------------------------|----------------------|---------------|
| Country | Plant Name                | Year | Capacity | Туре         | Project Developer/Owner/Operator | Turbine Manufacturer | Location      |
| China   | Vanghajian North Unit-2   | 1080 | 3        | Double Flash | Electric Power Tibet             | Oingdao lieneng      | China         |
| China   |                           | 1505 | 5        | Double Hash  |                                  | Qinguao heneng       | China         |
| Iceland | Svartsengi Binary         | 1989 | 1.2      | Binary       | Hitaveita Sudurnesja & HS Orka   | ORMAT                | Israel        |
| Iceland | Svartsengi Binary         | 1989 | 1.2      | Binary       | Hitaveita Sudurnesja & HS Orka   | ORMAT                | Israel        |
| Iceland | Svartsengi Binary         | 1989 | 1.2      | Binary       | Hitaveita Sudurnesja & HS Orka   | ORMAT                | Israel        |
| Iceland | Svartsengi Binary         | 1989 | 1.2      | Binary       | Hitaveita Sudurnesja & HS Orka   | ORMAT                | Israel        |
| Iceland | Svartsengi Binary         | 1989 | 1.2      | Binary       | Hitaveita Sudurnesja & HS Orka   | ORMAT                | Israel        |
| Iceland | Svartsengi Binary         | 1989 | 1.2      | Binary       | Hitaveita Sudurnesja & HS Orka   | ORMAT                | Israel        |
| Iceland | Svartsengi Binary         | 1989 | 1.2      | Binary       | Hitaveita Sudurnesja & HS Orka   | ORMAT                | Israel        |
| Japan   | Takenaka Corp.            | 1989 | 0.045    | Single Flash | Takenaka Corp.                   | Fuji                 | Japan         |
| USA     | Aidlin Unit 1             | 1989 | 12.5     | Dry Steam    | Calpine                          | Fuji                 | Japan         |
| USA     | Aidlin Unit 2             | 1989 | 12.5     | Dry Steam    | Calpine                          | Fuji                 | Japan         |
| USA     | Honey Lake                | 1989 | 1.5      | Binary       | HL Power Company                 | General Electric     | USA           |
| USA     | Del Ranch (Hoch)          | 1989 | 35.8     | Double Flash | CalEnergy Generation             | Fuji                 | Japan         |
| USA     | Elmore                    | 1989 | 35.8     | Double Flash | CalEnergy Generation             | Fuji                 | Japan         |
| USA     | GEM II (Ormesia Complex)  | 1989 | 21.6     | Double Flash | Ormat                            | Mitsubishi           | Japan         |
| USA     | GEM III (Ormesia Complex) | 1989 | 21.6     | Double Flash | Ormat                            | Mitsubishi           | Japan         |
| USA     | Navy II Unit 1            | 1989 | 30       | Double Flash | Terra Gen                        | Fuji                 | Japan         |
| USA     | Navy II Unit 2            | 1989 | 30       | Double Flash | Terra Gen                        | Fuji                 | Japan         |
| USA     | Navy II Unit 3            | 1989 | 30       | Double Flash | Terra Gen                        | Fuji                 | Japan         |

|             |                                     |      |          |               |                                              |                      | Manufacturing |
|-------------|-------------------------------------|------|----------|---------------|----------------------------------------------|----------------------|---------------|
| Country     | Plant Name                          | Year | Capacity | Туре          | Project Developer/Owner/Operator             | Turbine Manufacturer | Location      |
| USA         | Salton Sea III                      | 1989 | 54       | Double Flash  | CalEnergy Generation                         | Mitsubishi           | Japan         |
| New Zealand | Ohaaki                              | 1989 | 46       | Single Flash  | Contact Energy                               | Mitsubishi           | Japan         |
| New Zealand | Ohaaki                              | 1989 | 11.2     | Back Pressure | Contact Energy                               | Mitsubishi           | Japan         |
| New Zealand | Ohaaki                              | 1989 | 11.2     | Back Pressure | Contact Energy                               | General Electric     | USA           |
| Thailand    | Fang                                | 1989 | 0.3      | Binary        | Electricity Generating Authority of Thailand | ORMAT                | Israel        |
| China       | Yangbajian North Unit-1             | 1988 | 3        | Double Flash  | Electric Power Tibet                         | Qingdao Jieneng      | China         |
| USA         | Amedee (Wendel)                     | 1988 | 3        | Binary        | Amedee Geothermal Venture (Oski Energy)      | Barber Nichols       | USA           |
| USA         | Ormesa IH (Ormesa Complex)          | 1988 | 8.8      | Binary        | Ormat                                        | Ormat                | Israel        |
| USA         | Steamboat IA (Steamboat<br>Complex) | 1988 | 2        | Binary        | Ormat                                        | Ormat                | Israel        |
| USA         | Bear Canyon                         | 1988 | 24.4     | Dry Steam     | Calpine                                      | Mitsubishi           | Japan         |
| USA         | BLM Unit 1                          | 1988 | 30       | Double Flash  | Terra Gen                                    | Fuji                 | Japan         |
| USA         | BLM Unit 2                          | 1988 | 30       | Double Flash  | Terra Gen                                    | Fuji                 | Japan         |
| USA         | BLM Unit 3                          | 1988 | 30       | Double Flash  | Terra Gen                                    | Fuji                 | Japan         |
| USA         | Dixie Valley                        | 1988 | 60.5     | Double Flash  | Terra Gen                                    | Fuji                 | Japan         |
| USA         | Steamboat Hills                     | 1988 | 14.6     | Single Flash  | Ormat                                        | ORMAT                | Israel        |
| USA         | West Ford Flat                      | 1988 | 38       | Dry Steam     | Calpine                                      | Mitsubishi           | Japan         |
| Mexico      | Los Azufres                         | 1988 | 50       | Single Flash  | Comision Federal de Electricidad             | General Electric     | Japan         |
| New Zealand | Ohaaki                              | 1988 | 46       | Single Flash  | Contact Energy                               | Mitsubishi           | Japan         |
| Indonesia   | Kamojang                            | 1987 | 55       | Dry Steam     | PLN                                          | Mitsubishi           | Japan         |

|           |                            |      |          |               |                                  |                      | Manufacturing |
|-----------|----------------------------|------|----------|---------------|----------------------------------|----------------------|---------------|
| Country   | Plant Name                 | Year | Capacity | Туре          | Project Developer/Owner/Operator | Turbine Manufacturer | Location      |
| Indonesia | Kamaiang                   | 1097 | FF       | Dry Steem     |                                  | Mitaubichi           | lanan         |
| Indonesia | Kamojang                   | 1987 | 55       | Dry Steam     |                                  | WITSUDISHI           | Japan         |
| Italy     | Pianacce                   | 1987 | 20       | Dry Steam     | Enel Green Power                 | Ansaldo/Tosi         | Italy         |
| USA       | Soda Lake 1                | 1987 | 5.1      | Binary        | Cyrq Energy                      | Ormat                | Israel        |
| USA       | Wabuska II                 | 1987 | 1.6      | Binary        | Home Stretch Geothermal          | Ormat                | Israel        |
| USA       | Navy I                     | 1987 | 102.4    | Double Flash  | Terra Gen                        | Fuji                 | Japan         |
| USA       | Ormesa II (Ormesa Complex) | 1987 | 24       | Double Flash  | Ormat                            | Mitsubishi           | Japan         |
| Mexico    | Cerro Prieto 2             | 1987 | 110      | Double Flash  | Comision Federal de Electricidad | Toshiba              | Japan         |
| China     | Yangbajian North Unit-5    | 1986 | 3.18     | Double Flash  | Electric Power Tibet             | Fuji                 | Japan         |
| USA       | Steamboat I                | 1986 | 2.4      | Binary        | Ormat                            | Ormat                | Israel        |
| USA       | Vulcan                     | 1986 | 40       | Double Flash  | CalEnergy Generation             | Mitsubishi           | Japan         |
| Mexico    | Cerro Prieto 2             | 1986 | 110      | Double Flash  | Comision Federal de Electricidad | Toshiba              | Japan         |
| Mexico    | Cerro Prieto 3             | 1986 | 110      | Double Flash  | Comision Federal de Electricidad | Toshiba              | Japan         |
| Mexico    | Cerro Prieto 3             | 1986 | 110      | Double Flash  | Comision Federal de Electricidad | Toshiba              | Japan         |
| Mexico    | Los Azufres                | 1986 | 5        | Back Pressure | Comision Federal de Electricidad | Toshiba              | Japan         |
| Kenya     | Olkaria I                  | 1985 | 15       | Single Flash  | KenGen                           | Mitsubishi           | Japan         |
| China     | Yangbajian South Unit-3    | 1985 | 3        | Double Flash  | Electric Power Tibet             | Qingdao Jieneng      | China         |
| USA       | Wineagle                   | 1985 | 0.7      | Binary        | Wineagle Development             | Barber Nichols       | USA           |
| USA       | Beowawe                    | 1985 | 17       | Double Flash  | Terra Gen                        | Mitsubishi           | Japan         |
| USA       | Bottle Rock                | 1985 | 55       | Dry Steam     | AltaRock Energy Inc              | Fuji                 | Japan         |

|             |                         |      |          |              |                                                                        |                      | Manufacturing |
|-------------|-------------------------|------|----------|--------------|------------------------------------------------------------------------|----------------------|---------------|
| Country     | Plant Name              | Year | Capacity | Туре         | Project Developer/Owner/Operator                                       | Turbine Manufacturer | Location      |
| USA         | Grant                   | 1985 | 118      | Dry Steam    | Calpine                                                                | Toshiba              | Japan         |
| USA         | Heber I (Heber Complex) | 1985 | 52       | Double Flash | Ormat                                                                  | Mitsubishi           | Japan         |
| USA         | NCPA II                 | 1985 | 110      | Dry Steam    | Northern California Power Agency                                       | Toshiba              | Japan         |
| USA         | Quicksilver             | 1985 | 118      | Dry Steam    | Calpine                                                                | Toshiba              | Japan         |
| Turkey      | Kizildere-1             | 1984 | 15       | Double Flash | ZORLU                                                                  | Ansaldo/Tosi         | Italy         |
| USA         | Wabuska I               | 1984 | 1.6      | Binary       | Home Stretch Geothermal                                                | Ormat                | Israel        |
| USA         | Blundell 1              | 1984 | 26.1     | Single Flash | Pacific Corporation                                                    | General Electric     | USA           |
| USA         | Calistoga               | 1984 | 110      | Dry Steam    | Calpine                                                                | Toshiba              | Japan         |
| Philippines | Mak-Ban C               | 1984 | 55       | Single Flash | Aboitiz Power Corp                                                     | Mitsubishi           | Japan         |
| Philippines | Mak-Ban C               | 1984 | 55       | Single Flash | Aboitiz Power Corp                                                     | Mitsubishi           | Japan         |
| USA         | NCPA I No. 2            | 1983 | 110      | Dry Steam    | Northern California Power Agency                                       | Fuji                 | Japan         |
| USA         | Socrates                | 1983 | 118      | Dry Steam    | Calpine                                                                | Toshiba              | Japan         |
| USA         | Sonoma                  | 1983 | 78       | Dry Steam    | Calpine                                                                | Mitsubishi           | Japan         |
| Indonesia   | Kamojang                | 1983 | 30       | Dry Steam    | PLN                                                                    | Mitsubishi           | Japan         |
| Japan       | Kirishima International | 1983 | 0.1      | Single Flash | Kirishima International                                                | Fuji                 | Japan         |
| Philippines | Palimpinon I Unit 1     | 1983 | 37.5     | Single Flash | National Power Corporation                                             | Fuji                 | Japan         |
| Philippines | Palimpinon I Unit 2     | 1983 | 37.5     | Single Flash | National Power Corporation                                             | Fuji                 | Japan         |
| Philippines | Palimpinon I Unit 3     | 1983 | 37.5     | Single Flash | National Power Corporation                                             | Fuji                 | Japan         |
| Philippines | Tongonan 1              | 1983 | 37.5     | Double Flash | Unified Leyte Geothermal Energy, Inc. (ULGEI) (turned over from PSALM) | Mitsubishi           | Japan         |
|             |                         |      |          |               |                                                                      |                      | Manufacturing |
|-------------|-------------------------|------|----------|---------------|----------------------------------------------------------------------|----------------------|---------------|
| Country     | Plant Name              | Year | Capacity | Туре          | Project Developer/Owner/Operator                                     | Turbine Manufacturer | Location      |
| Philippines | Tongonan 1              | 1983 | 37.5     | Double Flash  | Trans-Asia Oil and Energy Development Corp. (turned over from PSALM) | Mitsubishi           | Japan         |
| Philippines | Tongonan 1              | 1983 | 37.5     | Double Flash  | Aboitiz Energy Solutions (turned over from PSALM)                    | Mitsubishi           | Japan         |
| USA         | Lake View               | 1982 | 118      | Dry Steam     | Calpine                                                              | Toshiba              | Japan         |
| USA         | Salton Sea I            | 1982 | 10       | Single Flash  | CalEnergy Generation                                                 | Fuji                 | Japan         |
| Kenya       | Olkaria I               | 1982 | 15       | Single Flash  | KenGen                                                               | Mitsubishi           | Japan         |
| China       | Yangbajian South Unit-2 | 1982 | 3        | Double Flash  | Electric Power Tibet                                                 | Qingdao Jieneng      | China         |
| Japan       | Mori                    | 1982 | 25       | Double Flash  | Hokkaido Electric Power                                              | Toshiba              | Japan         |
| Mexico      | Cerro Prieto 1          | 1982 | 30       | Double Flash  | Comision Federal de Electricidad                                     | Mitsubishi           | Japan         |
| Mexico      | Los Azufres             | 1982 | 5        | Back Pressure | Comision Federal de Electricidad                                     | Mitsubishi           | Japan         |
| Mexico      | Los Azufres             | 1982 | 5        | Back Pressure | Comision Federal de Electricidad                                     | Mitsubishi           | Japan         |
| Mexico      | Los Azufres             | 1982 | 5        | Back Pressure | Comision Federal de Electricidad                                     | Mitsubishi           | Japan         |
| Mexico      | Los Azufres             | 1982 | 5        | Back Pressure | Comision Federal de Electricidad                                     | Mitsubishi           | Japan         |
| Philippines | Tiwi C                  | 1982 | 57       | Single Flash  | AP Renewables Inc                                                    | Toshiba              | Japan         |
| Philippines | Tiwi C                  | 1982 | 57       | Single Flash  | AP Renewables Inc                                                    | Toshiba              | Japan         |
| Kenya       | Olkaria I               | 1981 | 15       | Single Flash  | KenGen                                                               | Mitsubishi           | Japan         |
| China       | Yangbajian South Unit-1 | 1981 | 3        | Double Flash  | Electric Power Tibet                                                 | Qingdao Jieneng      | China         |
| El Salvador | Ahuachapan No. 3        | 1981 | 35       | Double Flash  | LaGeo                                                                | Fuji                 | Japan         |
| Iceland     | Svartsengi BP           | 1981 | 6        | Single Flash  | Hitaveita Sudurnesja & HS Orka                                       | Fuji                 | Japan         |
| USA         | Sulfur Springs          | 1980 | 113      | Dry Steam     | Calpine                                                              | Toshiba              | Japan         |

|             |                  |      |          |              |                                  |                      | Manufacturing |
|-------------|------------------|------|----------|--------------|----------------------------------|----------------------|---------------|
| Country     | Plant Name       | Year | Capacity | Туре         | Project Developer/Owner/Operator | Turbine Manufacturer | Location      |
| USA         | Big Geyser       | 1980 | 97       | Dry Steam    | Calpine                          | General Electric     | USA           |
| Philippines | Mak-Ban B        | 1980 | 63.2     | Double Flash | Aboitiz Power Corp               | Mitsubishi           | Japan         |
| Philippines | Mak-Ban B        | 1980 | 63.2     | Double Flash | Aboitiz Power Corp               | Mitsubishi           | Japan         |
| Russia      | Pauzhetskaya     | 1980 | 11       | Single Flash | SC Geotherm                      | Kaluga Turbine       | Russia        |
| USA         | Cobb Creak       | 1979 | 110      | Dry Steam    | Calpine                          | Toshiba              | Japan         |
| Mexico      | Cerro Prieto 1   | 1979 | 37.5     | Single Flash | Comision Federal de Electricidad | Toshiba              | Japan         |
| Mexico      | Cerro Prieto 1   | 1979 | 37.5     | Single Flash | Comision Federal de Electricidad | Toshiba              | Japan         |
| Philippines | Mak-Ban A        | 1979 | 63.2     | Double Flash | Aboitiz Power Corp               | Mitsubishi           | Japan         |
| Philippines | Mak-Ban A        | 1979 | 63.2     | Double Flash | Aboitiz Power Corp               | Mitsubishi           | Japan         |
| Philippines | Tiwi A           | 1979 | 60       | Single Flash | AP Renewables Inc                | Toshiba              | Japan         |
| Philippines | Tiwi A           | 1979 | 60       | Single Flash | AP Renewables Inc                | Toshiba              | Japan         |
| Iceland     | Krafla           | 1978 | 30       | Double Flash | Landsvirkjun                     | Mitsubishi           | Japan         |
| Japan       | Kakkonda         | 1978 | 50       | Single Flash | Tohoku Electric Power            | Toshiba              | Japan         |
| Japan       | Hatchobaru       | 1977 | 55       | Double Flash | Kyushu Electric Power            | Mitsubishi           | Japan         |
| El Salvador | Ahuachapan No. 2 | 1976 | 30       | Single Flash | LaGeo                            | Mitsubishi           | Japan         |
| USA         | Eagle Rock       | 1975 | 110      | Dry Steam    | Calpine                          | Toshiba              | Japan         |
| El Salvador | Ahuachapan No. 1 | 1975 | 30       | Single Flash | LaGeo                            | Mitsubishi           | Japan         |
| Japan       | Onikobe          | 1975 | 15       | Single Flash | J-Power                          | Kawasaki             | Japan         |
| Japan       | Onuma            | 1974 | 9.5      | Single Flash | Mitsubishi Material              | Mitsubishi           | Japan         |

| Country     | Plant Name     | Year | Capacity | Туре         | Project Developer/Owner/Operator        | Turbine Manufacturer | Manufacturing<br>Location |
|-------------|----------------|------|----------|--------------|-----------------------------------------|----------------------|---------------------------|
|             |                |      |          |              |                                         |                      |                           |
| Mexico      | Cerro Prieto 1 | 1973 | 37.5     | Single Flash | Comision Federal de Electricidad        | Toshiba              | Japan                     |
| Mexico      | Cerro Prieto 1 | 1973 | 37.5     | Single Flash | Comision Federal de Electricidad        | Toshiba              | Japan                     |
| USA         | Ridgeline      | 1972 | 110      | Dry Steam    | Calpine                                 | Toshiba              | Japan                     |
| USA         | McCabe         | 1971 | 110      | Dry Steam    | Calpine                                 | Toshiba              | Japan                     |
| Iceland     | Bjarnarflag    | 1969 | 3        | Single Flash |                                         | Mitsubishi           | Japan                     |
| Japan       | Otake          | 1967 | 12.5     | Single Flash | Kyushu Electric Power                   | Mitsubishi           | Japan                     |
| Japan       | Matsukawa      | 1966 | 23.5     | Dry Steam    | Tohoku Hydropower and Geothermal Energy | Toshiba              | Japan                     |
| Russia      | Pauzhetskaya   | 1966 | 5        | Single Flash | SC Geotherm                             | Kaluga Turbine       | Russia                    |
| New Zealand | Wairakei       | 1958 | 117      | Single Flash | Contact Energy                          | General Electric     | USA                       |

## NOTICE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Geothermal Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S. Government.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at <u>www.nrel.gov/publications</u>.

U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov.

Cover Photos: (left to right) iStock 2225189; iStock 16687273; Oak Ridge National Laboratory; iStock 24304597; iStock 26005993; iStock 2069560

NREL prints on paper that contains recycled content.