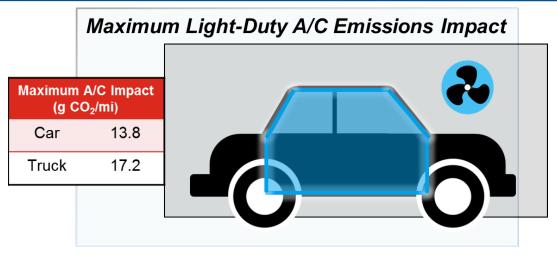
IMPACT OF ACTIVE CLIMATE CONTROL SEATS ON ENERGY USE, FUEL USE, AND CO2 EMISSIONS

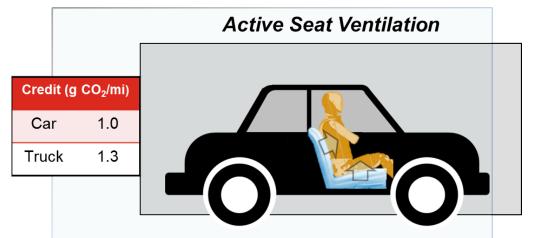
Cory Kreutzer, John P. Rugh, Gene Titov, Bidzina Kekelia National Renewable Energy Laboratory

SAE 2017 Thermal Management Systems Symposium October 10-12, 2017 Plymouth, Michigan, USA 17TMSS-0070


NREL/PR-5400-69119

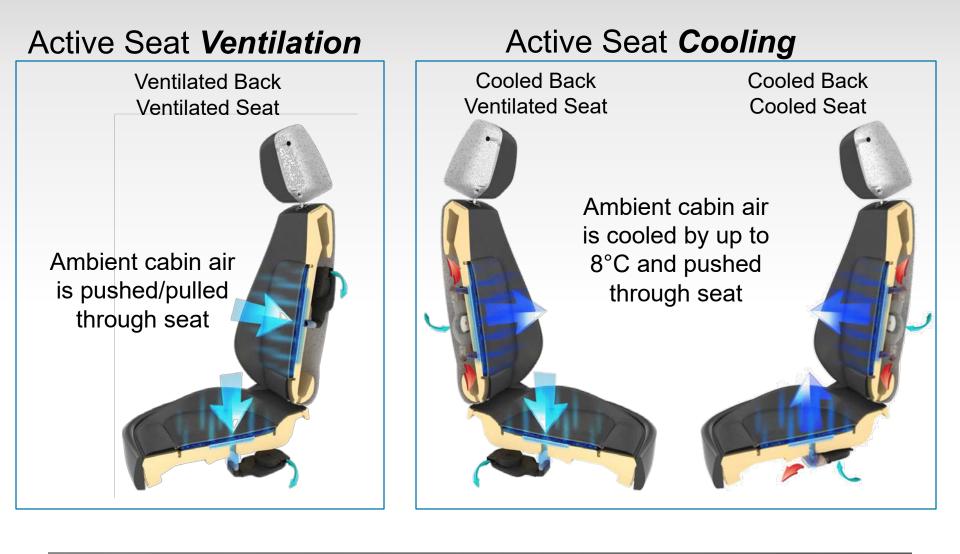
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Thermal Off Cycle Credits for MY 2017 - 2025



A/C Emissions Impact Determination

- Fixed 27°C and 60% RH Ambient
- Fixed displacement compressor
- SC03 Drive Cycle


Seat Credit Determination

- Based on active ventilated seating without sub-ambient cooling
- 7.5% A/C emissions reduction (from NREL study)
- Percentage applied to EPA A/C fuel use values

Data Source: U.S. Environmental Protection Agency and Department of Transportation. *Final Rulemaking for 2017-2025 Light-Duty Vehicle Greenhouse Gas Emissions Standards and Corporate Average Fuel Economy Standards. Available at: https://www3.epa.gov/otag/climate/documents/420r12901.pdf*, Accessed 7/2016

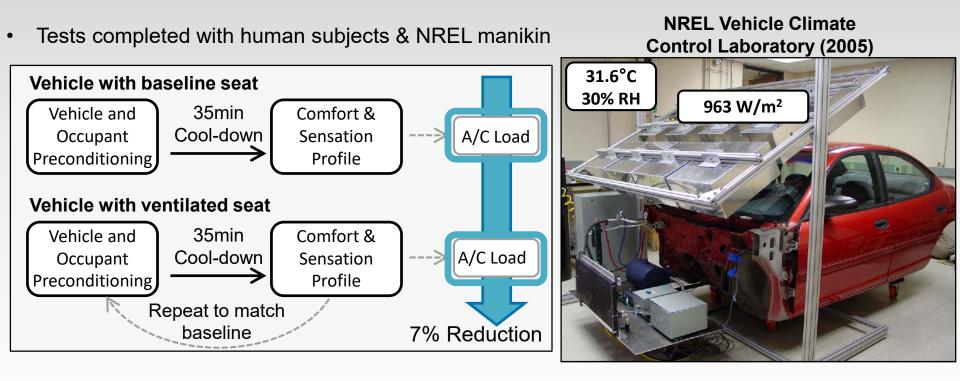
Comparison of Climate Control Seat Technologies

Performance of Actively Cooled Seating

Active seat ventilation credit established in the Final Rule

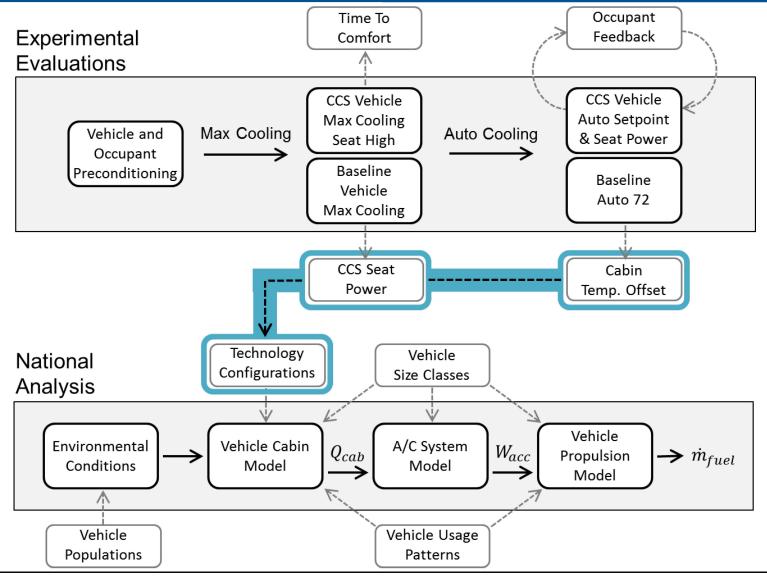
 Active seat cooling technologies meet the definition of active seat ventilation (credit eligible).

Seating performance is dependent upon a number of variables

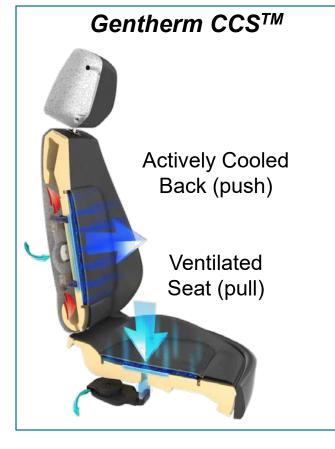

 Occupants, environmental conditions, A/C system performance, vehicle usage, drive cycle, vehicle platform

Questions driving further investigation:

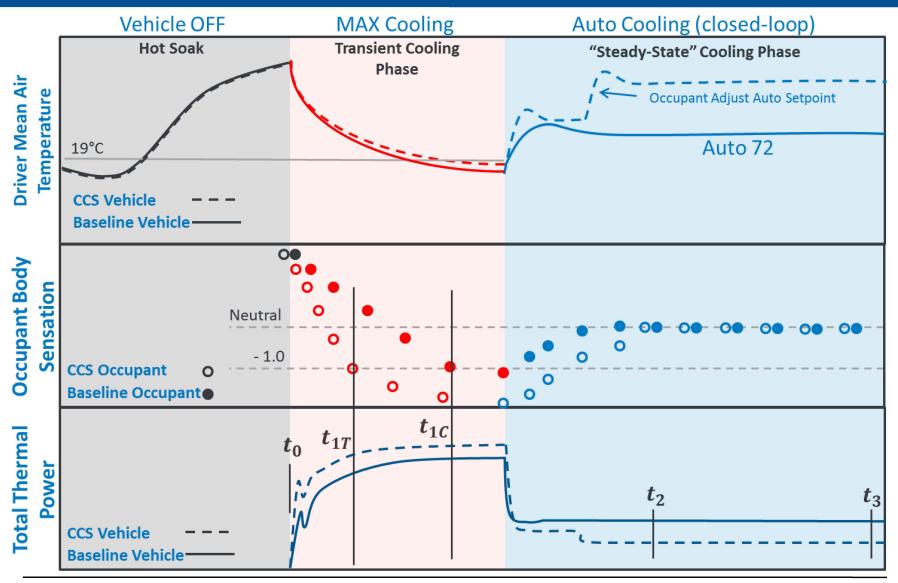
- 1. Can experimentation and/or analysis be used to estimate the performance of actively cooled seats?
- 2. Is the benefit of actively cooled seats larger than that of active seat ventilation?


Gentherm CCS™

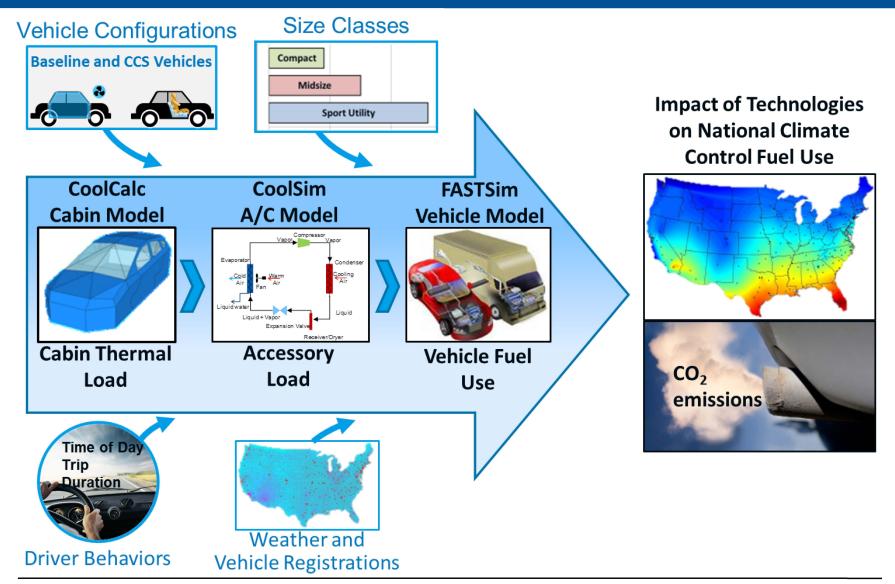
Method Used for Determination of Existing Ventilated Seat Off-Cycle Credit


- Using NREL's 2005 A/C fuel use model, 7% reduction equated to 7.5% national A/C reduction
 - Analysis used environment, mean radiant temperature, and Fanger model in place of a vehicle cabin model
- Off-cycle credit was established by the regulating authorities from NREL's published 7.5% reduction applied to their estimated A/C emissions impacts of 13.8 and 17.2 g CO2 / mi, arriving at the 1.0 and 1.3 g/mi credits for ventilated seating

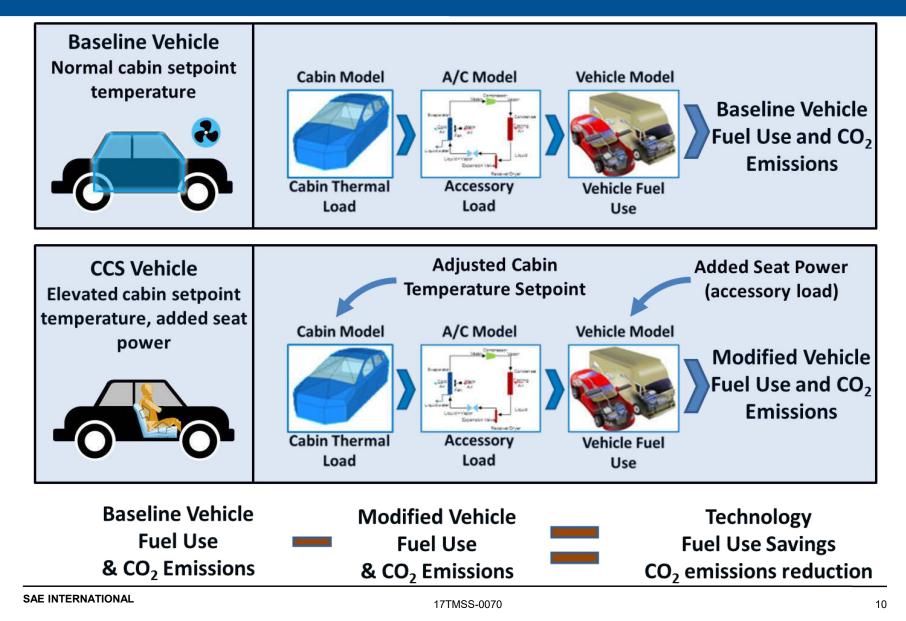
New Method Development for Evaluation of Actively Cooled Seats – Combining Experimentation and Analysis


Method Development: Experimental Evaluations

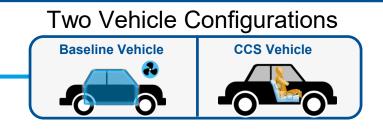
- 2012 Pre-production Ford Focus Electric vehicles were used
- Vehicles instrumented with k-type surface & air TCs, calibrated to U95 = 0.18°C
- Mean air temperature = Avg. of 4 breath & 4 footwell air temperature measurements



Method Development: Experimental Evaluations (Cartoon description of process)



Method Development: Analysis Approach



SAE INTERNATIONAL

Method Development: Analysis Approach

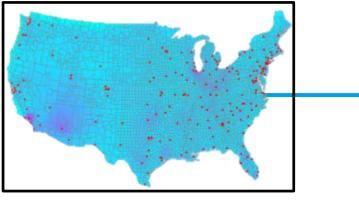
Method Development: Analysis Approach


Three Representative Drive Durations

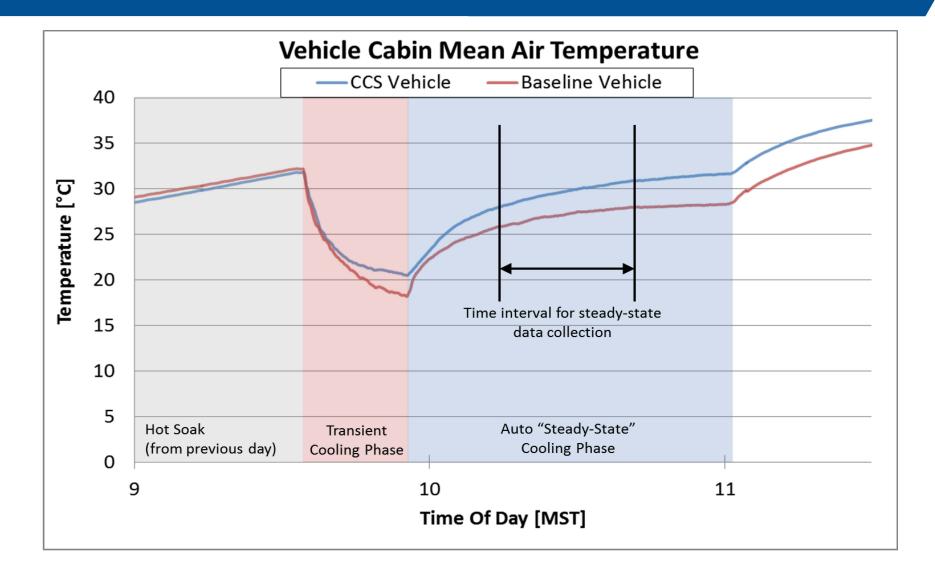
Time Range (min)	[0 – 15)	[15 – 30)	30 +
Average Time (min)	7.2	18.4	49.4
Weighting Factor	0.508	0.31	0.182

Three Representative Drive Start Times

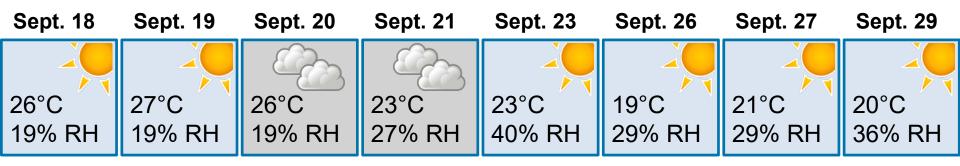
Time Range	[0:00 – 9:00)	[9:00 – 16:00)	[16:00 – 24:00)	
Average Time	7:06	12:35	18:26	
Weight Factor	18.3%	47.6%	34.1%	


Three Representative Vehicle Platforms

Two Representative Soak Conditions


Time Range (min)	[0 – 50)	[50 – end]
Average Time (min)	17.0	232 (~4 hr)
Weighting Factor	0.5	0.5

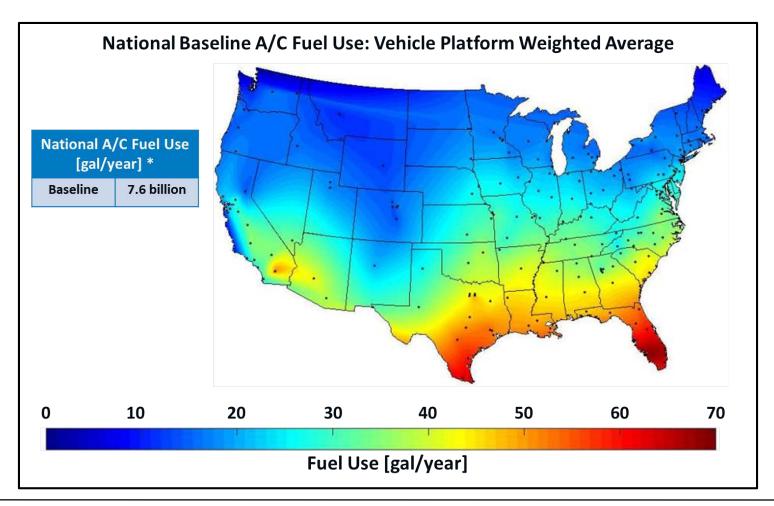
206 Representative Locations



2 configurations * 3 platforms * 3 durations * 2 soaks * 3 start times * 206 locations = 22,248 annual CoolCalc simulations

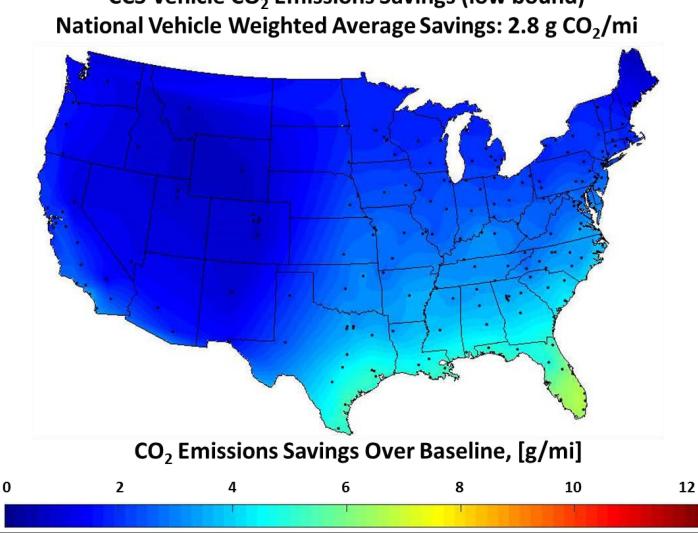
Results – Experimental Evaluations

Results – Experimental Evaluations

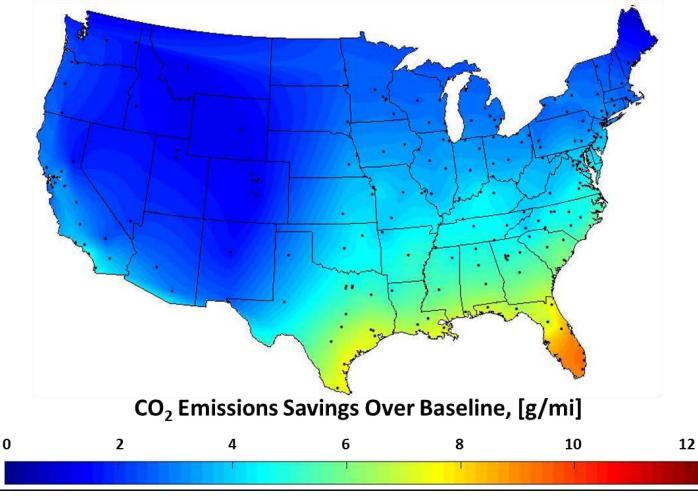


	٦	Time to target se			
	Baseli	ne Vehicle	CCS Vehicle		
Occupant	Test 1 Test 2		Test 1	Test 2	Improvement [%]
Occupant A	20.9	17.4	14.8	16.1	19.1
Occupant B	19.8	15.9	16.7	14.7	12.1
Occupant C	29.1		16.2		44.4
Occupant C: Poor Test Day		19.0-		- <u>17.8</u>	6.3
Occupant D	18.7		12.5		32.9
Occupant D: Poor Test Day	-17.6			21.0	-19.1
	23.3%				

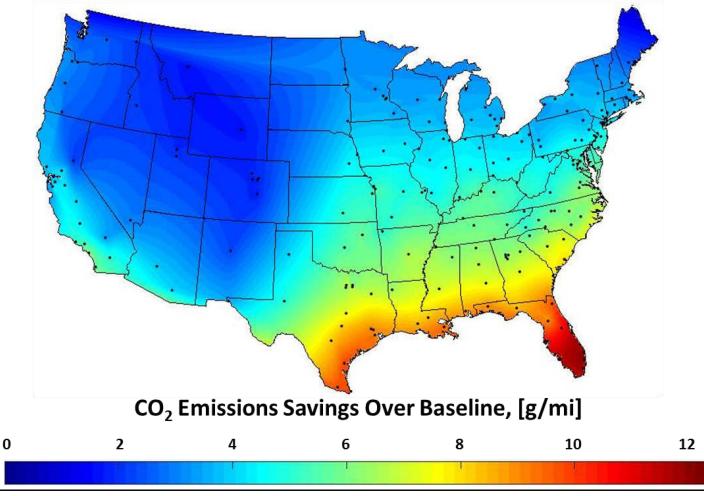
	Average Clima	ate Seat Power [W]		Vehicle Mean Air Temp. (MAT) [°C]		
Test Date	Transient	Steady-state	Baseline Vehicle	CCS Vehicle	Increase in MAT from CCS	
	Phase	Phase			[°C]	
9/18/2016	84.5	86.4 (high)	26.7	30.5	3.78	
9/19/2016	85.1	39.7 (med)	27.6	30.6	3.01	
9/20/2016	83.3	8.0 (low)	24.5	28.5	4.03	S
9/21/2016	86.2	39.1 (med)	25.0	28.3	3.33	-00
9/23/2016	85.0	39.5 (med)	27.8	29.8	1.98	
9/26/2016	87.1	84.4 (high)	27.2	29.9	2.60	
9/27/2016	86.4	39.7 (high)	28.5	31.0	2.54	
9/29/2016	87.4	54.8 (med/high)	28.7	30.4	1.72	
Good Weather Average	85.9	54.8	27.8	30.4	2.61	
Standard Dev.	1.18	23.71	0.75	0.45	0.74	
90% Confidence Low Bound	84.9	35.3	27.1	30.0	2.00	
90% Confidence High Bound	86.9	74.3	28.4	30.7	3.21	


	Average Clima	ate Seat Power [W] Vehicle Mean Air Temp. (MAT) [°C]		Increase in			
Test Date	Transient	Steady-state	Baseline Vehicle	CCS Vehicle	MAT from CCS		
	Phase	Phase			[° C]		
9/18/2016	84.5	86.4 (high)	26.7	30.5	3.78		
9/19/2016	85.1	39.7 (med)	27.6	30.6	3.01		
9/20/2016	83.3	8.0 (low)	24.5	28.5	4.03	(Chan	
9/21/2016	86.2	39.1 (med)	25.0	28.3	3.33	-00	
9/23/2016	85.0	39.5 (med)	27.8	29.8	1.98		
9/26/2016	87.1	84.4 (high)	27.2	29.9	2.60		
9/27/2016	86.4	39.7 (high)	28.5	31.0	2.54		
9/29/2016	87.4	54.8 (med/high)	28.7	30.4	1.72		
Good Weather	85.9	54.8	27.8	30.4	2.61		
Average	85.9	J4.0	54.0	27.0	50.4	2.01	
Standard Dev.	1.18	23.71	0.75	0.45	0.74		
90% Confidence	84.9	35.3	27.1	30.0	2.00		
Low Bound	04.5		2/11	30.0	2.00		
90% Confidence	86.9	74.3	28.4	30.7	3.21		
High Bound							

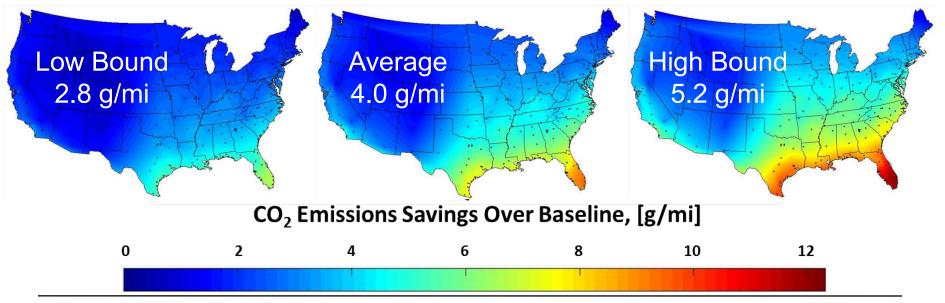
- Average Baseline A/C Fuel Use Estimated at 30.0 gal/year per vehicle
- Equivalent to 23.5 g/mi (compared to 13.8 and 17.2 for 2017 and Later Final Ruling)


Vehicle Configuration	Individual Vehicle A/C Fuel Use [Gal/year]	U.S. Light-Duty Fleet A/C Fuel Use [Gal/year] *	U.S. A/C Carbon Dioxide Emissions [Tons/year] **
National Baseline Vehicle	30.0	7. 59 billion	74.3 million
CCS Vehicle +2.0°C cabin offset (low bound confidence)	26.5		65.5 million (100% adoption)
CCS Vehicle +2.6°C cabin offset	24.9	6.29 billion	61.6 million
(average)		(100% adoption)	(100% adoption)
CCS Vehicle +3.2°C cabin offset	23.4	5.91 billion	57.9 million
(high bound confidence)		(100% adoption)	(100% adoption)
Savings With Climate Seat	3.5	0.9 billion	8.8 million
(Low bound, 90% Confidence)		(100% adoption)	(100% adoption)
Savings With Climate Seat	5.1	1.30 billion	12.7 million
(average)		(100% adoption)	(100% adoption)
Savings With Climate Seat	6.6	1.67 billion	16.4 million
(High bound, 90% Confidence)		(100% adoption)	(100% adoption)

* Based on U.S. light-duty vehicle fleet size of 252,714,871 vehicles [2], individual vehicles traveling 11346 miles/year [3] ** Based on 8887 grams of CO₂ per gallon of gasoline [4]



CCS Vehicle CO₂ Emissions Savings (low bound)



CCS Vehicle CO₂ Emissions Savings (high bound) National Vehicle Weighted Average Savings: 5.2 g CO₂/mi

17TMSS-0070

Vehicle Configuration	Individual Vehicle	Individual Vehicle CO ₂	U.S. Location with	U.S. Location with	
	A/C CO ₂	Emissions Savings	Lowest Emissions	Highest Emissions	
	Emissions [g/mi]	[g/mi]	Anchorage, AK	Honolulu, HI	
National Baseline Vehicle	23.5		3.5 g/mi	55.4 g/mi	
CCS Vehicle +2.0°C offset	20.7	2.8	0.7 g/mi savings	7.2 g/mi savings	
(low bound)	20.7	2.0	0.7 g/iii savings		
CCS Vehicle +2.6°C offset	10 5	4.0	1 1 almi covinac	10.2 g/mi covinge	
(average)	19.5	4.0	1.1 g/mi savings	10.2 g/mi savings	
CCS Vehicle +3.2°C offset	18.3	5.2	1.2 g/mi sovings	12.1 g/mi sovings	
(high bound)	16.5	5.2	1.3 g/mi savings	13.1 g/mi savings	

- 1. NREL determined registrations for Car (48%) and Truck/SUV (52%)
- 2. EPA Baseline A/C Emissions Impact = 13.8*0.48 + 17.2*0.52 = 15.6 g/mi
- 3. Split NREL results into car/truck based on EPA ratios:

Car:
$$\frac{13.8}{15.6} * 23.5 = 20.8$$
 Truck: $\frac{17.2}{15.6} * 23.5 = 26.0$

4. Scaled up existing seat ventilation credit (1.0 and 1.3 g/mi)

Car:
$$\frac{20.8}{13.8} * 1.0g/mi = 1.5g/mi$$
 Truck: $\frac{26.0}{17.2} * 1.3g/mi = 2.0$

			Car			Truck		
Vehicle Configuration	Cabin	A/C CO2	CO2 Savings	CCS Improvement	A/C CO2	CO2 Savings	CCS improvement	
	Offset (°C)	Emissions	(g/mi)	over ventilated	Emissions	(g/mi)	over ventilated	
		(g/mi)		seat (g/mi)	(g/mile)	//	seat (g/mi)	
Current Off-Cycle Ventilated			1.5			2.0		
Seat Menu Credit (Adjusted)			('			//		
National Baseline Vehicle		20.8			26.0			
CCS Vehicle: Low bound	2.0	18.3	2.5	1.0	22.9	3.1	1.1	
CCS Vehicle: Average	2.6	17.3	3.5	2.0	21.5	4.5	2.5	
CCS Vehicle: High bound	3.2	16.2	4.6	3.1	20.2	5.8	3.8	

Process

- Developed method for evaluating the performance of actively cooled seats
- Demonstrated method with Gentherm CCS[™]

<u>Results</u>

- Experimental results showed Gentherm CCS provided 2.6°C avg. elevation in cabin air temperature for equivalent comfort
- National analysis estimated actively cooled seat average savings of 4.0g CO₂/mi (3.5 g/mi car and 4.4 g/mi truck)
 - Baseline national analysis light-duty A/C emissions impact is 23.5g CO2/mi
 - Existing ventilated seat credit scaled up to allow comparison
- Actively cooled seat savings of 2.0 2.5g CO₂/mi over existing ventilated seat credit (adjusted for NREL baseline)

Acknowledgements and Contacts

For more information:

Cory Kreutzer National Renewable Energy Laboratory Cory.Kreutzer@nrel.gov 720-442-2920

Team Members: John P. Rugh, Gene Titov, Bidzina Kekelia Slide 3: Gentherm, Inc. Slide 5: Jason Lustbader, NREL Slide 7: Cory Kreutzer, NREL Slide 9: NREL Image Gallery, NREL Slide 24: Cory Kreutzer, NREL