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Abstract  
A data-driven technique to estimate energy requirements for a proposed vehicle trip has been developed. 
Based on over 700,000 miles of driving data, the technique has been applied to generate a model that 
estimates trip energy requirements. The model uses a novel binning approach to categorize driving by 
road type, traffic conditions, and driving profile. The trip-level energy estimates can easily be aggregated 
to any higher-level transportation system network desired. The model has been tested and validated on a 
vehicle driving data set from Austin, Texas. Ground-truth energy consumption for the data set was 
obtained from Future Automotive Systems Technology Simulator (FASTSim) vehicle simulation results. 
The energy estimation model has demonstrated 12.1% normalized total absolute error. The energy 
estimation from the model can be used to inform control strategies in routing tools, such as change in 
departure time, alternate routing, and alternate destinations, to reduce energy consumption. The model 
can also be used to determine more accurate energy consumption of regional or national transportation 
networks if trip origin and destinations are known. Additionally, this method allows the estimation tool to 
be tuned to a specific driver or vehicle type.  

KEYWORDS:  
Energy estimation, drive cycles, green routing 

Introduction 
The transportation sector accounts for 28.5% of total energy consumption in the United States [1]. To 
increase the energy efficiency of such a large sector, it is critical to accurately predict the energy required 
for individual trips and trip segments. Estimation of proposed trip routes has direct application in the green 
routing and mobility planning areas. Accurate trip energy estimation can also be applied to regional- or 
national-level transportation energy analysis where trips (i.e., origin – destination pairs) are known, but 
real-world driving data are unavailable. 

Previous work 
There has been a wide range of activity in this area in recent years. The activity most pertinent to the 
present work has been on estimating the energy impact of various road and driving attributes, and 
previously-developed energy estimation models [2]. Exploration into road and driving attributes such as 
road grade, vehicle driving speed, and congestion [3] has shown the energy and emissions sensitivities of 
various drive trains to these features [4-8]. With some understanding of the sensitivities to these road and 
driving features, researchers have developed models to estimate energy consumption for various 
applications [9,10]. One such application is in fully electric vehicles. The range and battery state-of-charge 
for electric vehicles are critical values to accurately design electric vehicles and model their use. To obtain 
accurate range and state-of-charge values, an accurate energy estimation is necessary [11]. Such models 
typically take the form of a regression or analytical expression that requires assumptions about the exact 
driving conditions. Additionally, there is a need to estimate energy regardless of fuel source or drivetrain 
technology for green routing applications to select the least energy-consuming route from a set of 
proposed routes. This need is the inspiration for the present work. 

mailto:jacob.holden@nrel.gov
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Contributions of present work 
Accurate estimation of trip and sub-trip energy requirements without a known speed trajectory is a need 
that exists for a wide range of applications in the transportation sector [12]. Making these estimates 
without a set driving trajectory on the proposed route requires large amounts of previously logged data in 
a variety of driving conditions to inform a prediction model [13]. Metropia, Inc. has created an advanced 
mobility platform that allows drivers to take full advantage of road network capacity and alternative 
commute modes [14]. This platform is used to provide real-world driving data to inform the estimation 
model development. 

The data-driven model approach provides valuable qualitative and quantitative results. The most 
important fuel economy determinants for a personal vehicle trip were identified as a first step in this model 
development. Simply recognizing these determinants establishes principles for minimizing the energy 
requirements of vehicle travel by choosing less energy-intense routes. However, more thorough validation 
of the model accuracy makes it a powerful tool for more rigorous transportation system optimization.  

The target application for the proposed energy estimation method is trip routing. The navigation and 
routing sector [15,16] has a direct need to estimate energy requirements before a trip is driven to 
calculate the optimal route, based on time, distance, and energy consumption priorities. The model will be 
integrated into Metropia’s previously mentioned mobility platform, to inform control mechanisms in a route 
energy consumption optimization tool. The objective of these control mechanisms is to minimize energy 
consumption for a proposed trip and subsequently, an entire mobility region. The estimation tool will be 
deployed in the mobility platform for users to test the control mechanisms on real-world driving. 

Real-world driving data 
The proposed model relies on high-resolution global positioning system (GPS) driving data from previous 
trips to accurately estimate energy costs for driving that has not yet taken place. Metropia has provided 
anonymized 1-Hz GPS data from the Austin, Texas, region for this purpose. The data span five 
consecutive months and contain over 85,000 vehicle trips covering a total distance of nearly 700,000 
miles. This amounts to roughly 100 million GPS points. In addition to the 1-Hz driving data, a routable 
road network with link-level road attributes such as speed limit and road type was provided. The road 
network contains roughly 250,000 links and is complete for the region where the driving took place. 

Figure 1 shows the GPS trajectories in blue, plotted on top of the road network links in gray. The point 
distribution shows good coverage of the city, with a high density of urban driving. Figure 1 also shows the 
distribution of road type and speed limit throughout the data set, to give an idea of the types of driving in 
this data. 

 

(a) 

 

(b) 
Figure 1 (a) The 1-Hz GPS points for 5 months of driving in Austin, Texas, are shown in blue, and the road 
network is shown in gray. (b) Distributions in the data set by fraction of total mileage and fraction of total 
time are shown for road type (1=freeway, 3=ramp/frontage road, 5=highway, 7=arterial) and speed limit in 

10-mph bins.  
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The road network is a critical component in developing an accurate model. The model is only as accurate 
as the inputs provided. To join the road network attributes to the second-by-second GPS points, raw GPS 
trajectories must be map-matched to links in the road network. This step was performed with Metropia’s 
in-house map-matching software. Road network attributes that are potentially valuable to the energy 
estimation model include the following: 

• Number of lanes 
• Free flow speed 
• Link type (freeway, arterial, highway, etc.) 
• Length 
• Speed limit 
• Orientation of start and end nodes. 

Additionally, traffic prediction data were used to incorporate congestion into the energy estimation model. 
The traffic data contain estimated travel times and vehicle volumes over the network links that experience 
some kind of routine congestion (~20% of the network). The predicted values are at 15-minute intervals 
for every day of driving in the data set. The resulting speed profiles for a link are more accurate than 
simply assuming the speed limit or free flow conditions correspond to the speed at which a vehicle will 
traverse a link. Figure 2 shows an example of the predictive traffic data. Two speed profiles are selected 
along I-35 near downtown Austin. The profiles span one day and show a slowdown in both directions that 
is worst during the evening peak, from about 4-6 p.m. 

 
Figure 2 Two road network links along I-35 in downtown Austin, with their speed profiles plotted 

as an example of the traffic prediction data 
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Energy estimation modelling process 

Overview 
The Metropia data set contains nearly 100 million spatial points from real drivers acquired at a 1 Hz 
frequency. GPS points of this high resolution can cause drive cycle profiles to be noisy, so the drive 
cycles are cleansed and filtered via National Renewable Energy Laboratory (NREL) standard processing 
[17] to make them more suitable for the powertrain simulation model. As a part of the processing, the U.S. 
Geological Survey Digital Elevation Model is used to append road grade information to the drive cycle 
data [4], and typically GPS points are matched to a road network to obtain other physical features such as 
length, lane count, etc.  

Once the raw driving data have been cleaned and filtered, the Future Automotive Systems Technology 
Simulator (FASTSim) is run for all drive cycles to determine the second-by-second fuel consumption for 
the drive cycle. The backward-/forward-calculating FASTSim model allows for rapid results generation 
and has the capability to model a range of stock vehicles and powertrain configurations [18]. For this 
work, the FASTSim fuel consumption results from a model similar to the 2012 Ford Fusion conventional 
powertrain are taken to be the ground truth for the development of the energy estimation model. 
FASTSim has been continuously updated and validated for various drivetrains, and is a trusted simulation 
tool that allows a large set of fuel consumption data to be generated for modelling efforts such as this. 
Figure 3 provides a concise summary of the workflow. This paper focuses on the last two steps in Figure 
3 since the prior steps are all well described in the literature. 

 
Figure 3 The diagram outlines the process for generating the energy estimation model 

Data Processing 
FASTSim returns fuel consumption estimates for each point along the drive cycle input data. The point-
based FASTSim fuel consumption results are then aggregated to the link level, as road network links 
represent the finest resolution that traffic and road attributes can be reliably obtained from available input 
data.   

We refer to each link-level aggregation of second-by-second FASTSim fuel consumption calculations over 
the link as a “pass.” The road network attributes are then joined to the pass by a link identification 
number. The attributes include speed, link type, road grade, link orientation, and traffic prediction data. 
Speed and link type are simply road network attributes that can be appended to the pass results; 
however, the other attributes must be calculated. The road grade is computed for each pass as a ratio of 
"rise" to "run," in which run is the horizontal distance and rise is the change in elevation over the link. The 
result is taken as a percentage. Link sequencing calculations are performed to determine what kind of 
turn was made coming into the current link and what needs to be made exiting the link. If available, traffic 
data are also joined to the pass by link ID and the nearest timestamp to the start time of the pass.  

The passes, with appended information, are used to build the fuel consumption rate estimation model. 
Passes are grouped into “bins” by the link attributes (speed limit, grade, link type, etc.) that are selected 
for a particular model. Average fuel consumption rate is calculated from the FASTSim fuel consumption 
results for each bin, which generates the estimation model. Every bin of attributes and conditions has an 
average fuel consumption rate value. The model can then be applied as a lookup table. For a given pass 
over a link in a proposed trip, the lookup table provides the appropriate bin to estimate the fuel 
consumption rate. 
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Model selections 
Selection of road attributes and driving conditions was an iterative process. The objective was to choose 
the attributes that best represent distinct vehicle fuel efficiency operating conditions along a road link. All 
attributes and characteristics must be available for a proposed vehicle trip before it is driven (i.e., while 
real GPS data were used to calculate the expected efficiency results for a given set of conditions, 
attributes such as vehicle-specific acceleration rates were excluded from the model because these are 
not known prior to the vehicle actually driving the route). Once the available attributes were designated, 
the specific selections for the model iterations were made. Too many criteria in the model can spread the 
supporting input data too thin, which leads to sample sizes that are not representative of all passes that 
may fall in that bin. Maintaining proper representation in each bin of the model is important when applying 
the model to other data sets. However, having too few criteria will also result in an inaccurate model due 
to grouping too many varied operating conditions together. Keeping these pitfalls in mind, we began the 
iterative process by first implementing the most basic potential model, simply assuming a single average 
fuel consumption rate for all driving. This single bin approach gives a useful global statistic, but results in 
high errors when a “one-size-fits-all” fuel consumption rate is used to estimate the fuel requirement for an 
individual trip. It is clear that more accurate estimates than this are needed, hence the motivation for the 
present work. 

The first attribute selected for consideration in the model is speed. Vehicle speed has a known and 
significant impact on fuel economy [5]. Since real vehicle speed cannot be known definitively prior to a 
proposed vehicle trip, a surrogate value must be used. In the initial data set, the options were free-flow 
speed and speed limit. Free-flow speed is defined as the typical speed on a link when there is no 
congestion and speed limit is the posted maximum speed. Since the free-flow speed attribute was only 
present on about half of the road network used in this project, speed limit was chosen as the initial 
surrogate for average vehicle speed over a link (it enjoyed full coverage in the available road network). 
The first model using speed as a binning attribute was a simple two bin model with bins of [0–40 mph] 
and [40 mph+]. These ranges are chosen to roughly separate “city” and “highway” driving conditions. A 
second model iteration further refined speed limits to 10 mph intervals ranging from 0 to 80+ mph. This 
model naturally does a more thorough job of separating various driving conditions, beyond just local and 
highway operation. 

The second attribute selected for inclusion in the estimation model was road grade, which is also known 
to significantly impact vehicle fuel economy [4]. Grade is considered in the FASTSim vehicle model 
calculation of road load and subsequently power required to propel the vehicle, so it is beneficial to 
consider grade in the binning of FASTSim results to more accurately predict vehicle fuel consumption. A 
third attribute is link type, which is a classification of the roadway type. The Metropia-provided network 
included five road type categorizations: freeway, ramp/frontage road, arterial, highway, and local street. 
These categories provide potentially important distinctions for energy estimation. For instance, stop/start 
driving on local streets and congested crawling of traffic on freeways may exhibit similar average speeds 
but differing fuel consumption rates.  

Road link sequencing was also considered in the model development. Particularly, sequencing was used 
to consider the orientation of links relative to each other. Figure 4 shows the orientation hypothesis 
graphically. The top scenario considers the orientation of the previous link to the current. In this situation 
where a 90-degree right-hand turn is required; the vehicle will likely be decelerating on the previous link 
and accelerating on the present link. The result is a higher rate of fuel consumption for the present link 
than if it were at cruise condition. The lower scenario is the opposite. If the following link requires a 90-
degree right-hand turn from the present link, the vehicle would be expected to decelerate on the present 
link and accelerate on the following link. This result is a lower rate of fuel consumption for the present link 
than if it were at cruise condition. The road network provides an orientation field for both nodes on each 
link in the network. These nodes allowed for calculation of the turn direction (left/right) and turn severity 
(slight/sharp) for any sequence of connected links in the road network. 
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Figure 4 The diagrams show road link sequencing. The upper scenario shows the previous link is 

skewed and requires a right-hand turn onto the current link. The lower scenario requires a 
right-hand turn onto the coming network link. 

Implementation 
The model additions mentioned above were implemented iteratively to record the incremental 
improvement of each road or driving attribute. The raw driving data from Metropia were stored in a 
PostgresSQL relational database and worked with in a Python environment. The Pandas data analysis 
package was used heavily for all in-memory analysis in model development, implementation, and results 
processing [19]. Model deployment into the Metropia platform will require reconfiguring the data input and 
output structure as the model will be handling data on a more rolling basis. The current structure for 
model generation is shown in Figure 5. The model input is the full set of FASTSim results aggregated into 
link passes. Then the model is built by labelling each pass with the appropriate categorizations. Bins are 
then created from each unique set of categories, and the passes matching those categorical sets are 
included in the bin. Finally, the output is a lookup table with average fuel consumption rate values for each 
bin, to be applied to proposed trips that can be segmented at the road network link level. In the final 
model deployment, lookup tables can be statically deployed for real-time energy estimation in the 
Metropia platform. The table values can be periodically updated as more data become available to the 
model generator.  

 
Figure 5 The flowchart illustrates the model creation process from data input to one example of 

the data output 
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Results 

Estimation accuracy 
To compare the incremental improvement of the energy estimation model iterations as more attributes are 
added and to understand the overall model accuracy, a performance metric was needed. Since the 
working unit of driving that this model will be applied to is the trip level, trips were selected to quantify 
error. The normalized total absolute error (NTAE) between estimated trip energy and ground truth trip 
energy is calculated for the full set of all trips after the model has been applied. The NTAE is simply the 
ratio of total absolute error in energy consumption from all trips to the total energy consumption of all 
trips. Equation (1) defines NTAE: 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = ∑ |(𝑓𝑓𝑖𝑖−𝑦𝑦𝑖𝑖)|𝑛𝑛
𝑖𝑖=1
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1

, ( 1 ) 

where n is the total number of trips in the data set for a given trip, i, fi is the trip estimated energy 
requirement, and yi is the ground truth trip energy. The NTAE provides a metric of accuracy relative to the 
entire set of regional data against which the energy estimation model is applied. This is a key feature of 
the metric because the intended purpose of the model is to reduce energy use at a system-wide level via 
the Metropia mobility application. 

Model performance 
Table 1 lists the final set of tested energy estimation models. Iteratively adding model features allowed 
attributes to be excluded from the next iteration of the model if they did not provide significant incremental 
NTAE improvement. The number of bins and the specific values used in binning each attribute were also 
swept to find more optimal binning schemes. 

The performance of each model in Table 1 is plotted in Figure 6. The NTAE values give an idea of which 
model additions have the greatest impact on accuracy. It is clear that the addition of road grade to the 
model provided the most significant decrease in NTAE, with a reduction of about 3%. It is anticipated that 
with further additions to this model, such as traffic prediction data, the NTAE value with continue to fall. 
For now data quality concerns with the traffic prediction data prevented out including it in this publication, 
but it is our intention to add it in the future. To provide context for the NTAE values, the dashed red line in 
Figure 6 represents a model with inputs that are more accurate indicators of vehicle energy consumption. 
These inputs are vehicle average speed, average acceleration, and road grade. While this line is not 
necessarily a theoretical minimum error, it is an acceptable target for the energy estimation model that 
does not consider actual second-by-second vehicle driving data. 

Table 1 Models generated and run in this work are tabulated with their corresponding model 
number used in later figures 

Model # Model Description 
1 10-mph Speed Bins 
2 Speed Bins + Link Type 
3 Speed Bins + Road Grade 
4 Speed Bins + Road Grade + Previous Link Orientation 
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Figure 6 NTAE values for each of the four models listed in Table 1 are plotted to show the relative 
improvement of successive model additions. Points connected by links imply that they build on 

one another. Model points are a composite of all points to their left that are connected by a 
branch. The dashed red line represents model performance when it considers “ideal” parameters: 

vehicle average speed, average acceleration, and road grade. 

The overall NTAE results from the model generation process are obviously of interest, but the impact of 
each model attribute on fuel consumption rate is also of interest. Figure 7 shows trends for four model 
attributes: speed limit, road grade, link type, and previous link orientation. A threshold of 500 miles was 
set for each of these bins to exclude outliers and non-representative bins from the plots. The speed limit 
vs. fuel consumption rate curve is encouraging because it shows the same trend as vehicle average 
speed vs. fuel consumption rate would show [7]. Note that the fuel consumption rate for the modeled 
vehicle reaches a minimum somewhere in the vicinity of 60 mph. The upper right plot in the figure shows 
road grade impacts segmented by speed limit. While some speed lines have low density due to not 
meeting the mileage threshold for each bin, the overall trend is as expected for each curve, with fuel 
consumption increasing as hill climbing demands increase. The lower left link type plot shows a significant 
difference in fuel consumption rate between freeway and non-freeway link types. This difference suggests 
that there is a difference in driving style on freeway versus non freeway links that possess similar speed 
limits. Finally, the lower right plot shows model results with previous link orientation included, which 
provided much more significant model improvement than did next link orientation. The plot shows turns off 
of the previous link binned by severity and direction. The results show that severe left turns lead to a 
higher fuel consumption rate on the present link than similar right turns. This creates the asymmetry of the 
speed lines for the plot and is attributed to a higher likelihood of idling before executing a left turn. 

1 2 

3 

4 
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Figure 7 The subplots show binned results from successive model iterations. The upper left plot 

shows link speed limit vs. fuel consumption rate. The upper right plots link average road grade vs. 
fuel consumption, disaggregated by link speed limit as well. The lower left shows link speed vs. 
fuel consumption rate disaggregated into freeway and non-freeway link types. The lower right 

plots the previous link orientation binned into severity of left or right turns vs. fuel consumption, 
disaggregated by speed limit. Turn severity is defined as: straight<10°, 10°<slight left/right<80°, 

80°<left/right<100°, 100°<hard left/right<180°. 

Benchmark comparison with MOVES 
The energy estimation model proposed in this work has been benchmarked against the U.S. 
Environmental Protection Agency’s (EPA’s) MOtor Vehicle Emission Simulator (MOVES) [20]. MOVES 
can be applied at various scales and is commonly used by state and local governments to perform energy 
and emissions inventories for the transportation sector. At the national and county scales, MOVES uses 
default distributions of drive cycles for the vehicle population and segments the cycles into average speed 
bins to estimate energy consumption. There are 16 speed bins at 5-mph increments. Each bin has an 
assigned energy rate associated with it for a particular vehicle type. The energy rates for a default 
gasoline-powered passenger car were output from MOVES2014a and used to estimate energy 
consumption for the Metropia driving data used in this work. Figure 8 shows the fuel consumption rates 
used for the two models by average speed bin. When the MOVES model was applied to the Metropia 
data set for testing the result was NTAE = 16.4%. This is about 4.3% higher than the NTAE result for the 
best energy estimation model proposed in this paper. This equates to a 26% proportional reduction in 
error over the MOVES model for this particular application. 
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Figure 8 The plot shows fuel consumption rate values for speed bins in the MOVES and NREL-

developed energy estimation models 

Discussion 
There are two main takeaways from the results of this work. First, the energy estimation model can, on 
average and at the stage of development shown here, estimate the energy requirements of a vehicle trip within 
12.1% error. Second, the model accurately accounts for the fuel economy impacts of speed, road grade, road 
type, and link orientation at the link-pass level. This suggests that even with some amount of error in 
quantifying energy requirements, the model can still accurately compare proposed trip routes and predict when 
energy savings would occur. For example, if there are two route options for a planned trip, and one has 
significantly more grade fluctuation, the model will accurately indicate that the lower grade fluctuation route has 
lower energy requirements. Clearly, more complex examples exist that involve each of the model attributes. 
The proposed model is able to incorporate these kinds of considerations for contemplated trip routes in the 
absence of high-resolution GPS data that would only become available after a driver selects and drives one of 
the routes. 

As discussed previously, planned additions to the model will further improve its overall accuracy and the range 
of considered variables that influence vehicle trip fuel efficiency. The first addition will be quality traffic 
prediction data to provide a more accurate estimate of the average speed a vehicle will experience on each 
road link. Subsequent anticipated additions include real-time weather considerations and customizing the 
model to account for individual driving behavior differences. Such further model additions will also be informed 
by initial deployment and performance in the Metropia platform.  

Conclusions 
The present work outlines the approach taken to develop a data-driven energy estimation model for proposed 
vehicle trips before they are driven. Five months of high-resolution GPS trajectories from over 800 drivers were 
processed and used to inform the energy estimation model. Promising results have been presented that 
quantify the accuracy of the current model in estimating the energy consumed by a vehicle trip. The results 
also indicate that the model is fit for its intended application—that is, informing control mechanisms in a 
mobility application to reduce vehicle energy consumption in a region by proposing the least energy 
consuming trips to users. The model has been shown to outperform EPA’s MOVES model for this application, 
and it has the capacity for further improvement with the addition of more input data as they become available. 
The demonstrated energy estimation methodology generates a computationally inexpensive model for 
applying in real-time applications and benefits from an extensible framework. Additions to the model are on-
going and will continue to be refined as initial versions are deployed to real-world drivers.  
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