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1 Introduction 
This analysis of regional plug-in electric vehicle (PEV) infrastructure was conducted to provide 
guidance on charging infrastructure for PEVs to regional stakeholders through the U.S. 
Department of Energy’s (DOE’s) Vehicle Technologies Office. 

1.1 Background and Study Objective 
Given the complex issues associated with PEV charging and options in deploying charging 
infrastructure, there is interest in exploring scenarios of future charging infrastructure 
deployment to provide insight and guidance to national and regional stakeholders.  

The complexity and cost of PEV charging infrastructure pose challenges to decision makers, 
including individuals, communities, and companies considering infrastructure installations. The 
value of PEVs to consumers and fleet operators can be increased with well-planned and cost-
effective deployment of charging infrastructure. This will increase the number of miles driven 
electrically and accelerate PEV market penetration, increasing the shared value of charging 
networks to an expanding consumer base. Given these complexities and challenges, the objective 
of the present study is to provide additional insight into the role of charging infrastructure in 
accelerating PEV market growth. 

To that end, existing studies on PEV infrastructure are summarized in a literature review. Next 
an analysis of current markets is conducted with a focus on correlations between PEV adoption 
and public charging availability. A forward looking case study is then conducted focused on 
supporting 300,000 PEVs by 2025 in Massachusetts. The report concludes with a discussion of 
potential methodology for estimating economic impacts of PEV infrastructure growth. 

1.2 Literature Review 
A literature review was conducted to assess state of the art techniques in the areas of estimating 
target EVSE densities for supporting PEV sales goals and siting individual charging stations to 
maximize utilization. 

The Electric Power Research Institute (EPRI, 2014) established guidelines for PEV infrastructure 
planning using their Red Line/Blue Line model. This model applies a “benefits test” to estimate 
value of secondary (non-residential) charging events. Consumer vehicle travel is modeled using 
the 2009 National Household Travel Survey (NHTS). EPRI analysis finds secondary 
infrastructure requirements to be relatively low for the majority of consumers. Estimated need 
for direct current fast charging (DCFC) is especially low, on the order of 5 stations per 1,000 
BEV100s. Multi-headed charging units are advocated as a means of increasing charger 
utilization and decreasing total infrastructure requirements. 

Xi et al. (2013) used a linear integer program to simulate the number of level 1 (L1) and level 2 
(L2) charging stations required at work and public locations, aiming to maximize either the 
number of electric vehicles (EVs) charged or the energy throughput from the chargers, assuming 
a budget constraint. Using 2010 Mid-Ohio Regional Planning Commission dataset along with an 
EV adoption probability, they predicted EV travel flows in Central Ohio as well as the number, 
type, and location of charging stations. 



2 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Zhang et al. (2013) modeled different L1 and L2 charging scenarios for both plug-in hybrid 
electric vehicles (PHEVs) and battery electric vehicles (BEVs), assuming that EV users’ 
charging behavior aims to minimize their cost. The input data were obtained from the 2009 
NHTS for California (20,295 vehicles covering 83,500 trips), while time-of-use electricity rates 
from Pacific Gas and Electric were used. They showed that for PHEVs, charging time strategies 
reduce operating cost more significantly than charging availability (location). A 60-mile-range 
BEV would achieve 88% of its trips with 3.3-kilowatt (kW) home charging only and 96% with a 
combination of home, work, and public charging in the proportions of 80%, 9%, and 11%, 
respectively. 

Dong et al. (2014) proposed an activity-based assessment for driving and charging behavior 
using genetic algorithm-based optimization. Varying budget constraints yields different 
proportions of each charger type (L1, L2, and DCFC). Their analysis of 2006 Puget Sound 
Regional Council household travel data showed that while very few trips exceed the typical BEV 
range, daily vehicle miles travelled (VMT) exceed it more often. Optimally located public 
chargers could effectively reduce range-constrained days and trips for BEV drivers. With no 
work or public charging, 10% of trips and 20% of VMT are missed. With a budget of $2,000 per 
EV to fund 150 L1 and 350 L2 chargers, missed trips are reduced to 2.5% and missed VMT to 
12%. 

Zhang et al. (2015) optimized direct current fast charging station allocation and temporal 
utilization to maximize electric VMT (eVMT) through a set-cover problem. A minimum of 290 
charging locations were estimated based on analysis of the 2000 California Household Travel 
Survey. This network is shown to provide good coverage with 98% BEV trip feasibility covering 
92% of VMT. Different charging scenarios were investigated: random and late charging will 
increase the grid demand in the afternoon, while early, cheap, and reserve strategies evenly 
distribute charging throughout the day. A charger reservation system can dramatically reduce the 
wait time and utilize all the stations more evenly. 

Ahn and Yeo (2015) derived optimal public DCFC density by minimizing the total cost (the sum 
of additional trip cost, cost of delay time, and the installation and operating cost of charging 
stations) for a given unit area. The model was applied to study EV taxis (22-kW-hour battery, 
90-mi. range) in Daejeon, South Korea, and generated a charging station density map of this 
urban area. An optimal allocation of density of 112 DCFC stations for 955 EVs was 
recommended. 

Chen et al. (2013) developed a mixed-integer optimization program considering budget 
constraints (which limit the total number of charging stations to be deployed) and avoiding 
resource clustering (by specifying minimum station spacing). The data from the 2006 Puget 
Sound Regional Council Household Activity Survey were used to identify parking location by 
traffic analysis zone. Parking duration was then regressed to zone attributes (e.g., population and 
job density, parking prices, transit access, etc.) and trip attributes (work, shopping, recreation, 
etc.). The forecasted parking demand provided input to the mixed-integer optimization program, 
which strategically locates 80 public charging stations across 900 traffic analysis zones in the 
Seattle, Washington, region. 
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Guo and Zhao (2015) applied a Fuzzy-TOPSIS-based Multi-Criteria Decision Making (MCDM) 
method to the problem of electric vehicle supply equipment (EVSE) siting in Beijing. They first 
determined environmental, economic, and social criteria pertaining to EVSE and assigned 
weights to each subcriterion based on expert opinions. Fuzzy set theory was used to build a fuzzy 
decision matrix, accounting for uncertainty and subjectivity of criterion weights. The TOPSIS 
method measured the relative performance of each alternative location, considering various 
conflicting criteria. It offers a robust decision making framework for sustainable siting of EVSE. 

Vazifeh et al. (2015) analyzed the movement patterns of individuals through cellphone data over 
a span of 4 months. Their data-driven optimization framework aimed to minimize the total 
distance travelled by drivers from the end of their intended trip to the closest available DCFC 
station. They built an energy demand model for EVs based on individual trip trajectories and an 
assumption for EV adoption rates. Two set cover algorithms, Chvatal’s greedy approach and a 
Genetic Algorithm (GA) meta-heuristic search, were employed to approximate near-optimal 
DCFC locations in the Boston, Massachusetts, metropolitan area. 

Yi and Bauer (2016) formulated an optimal energy-aware charging infrastructure placement 
framework. The population per ZIP code in South Bend, Indiana, and Chicago, Illinois, were 
used as inputs to a detailed EV energy consumption model based on their previous work. The 
route between each origin and destination was planned using Google maps accounting for 
routing, elevation, driving cycles, and environmental information. The multi-objective decision 
model located charging stations to maximize the number of reachable households under an 
energy constraint while minimizing the overall transportation energy consumption of charging 
actions. 

Maia et al. (2015) proposed a holistic, human-centered design approach to EVSE infrastructure 
planning. They applied design thinking to create a list of objectives for EVSE planning: 
visibility, convenience, branding, reliability, affordability, operating cost, initial cost, financial 
competitiveness, displacement of gas vehicles, and reduced energy use. The relative importance 
of these objectives was shown to evolve as the EV market matures. Geographic information 
system analysis was used to map candidate EVSE locations in Vancouver, British Columbia, 
Canada. The target locations were refined to best satisfy the above criteria. 

1.3 Methodology Dimensions 
While the reviewed studies investigate distinct elements of PEV charging infrastructure, often 
with specific geographic focus, the problem is generally defined along the following dimensions. 

Location and power level of chargers: While many studies focus on publically accessible 
charging stations, it is common to see a focus either on destination charging at L1/L2 stations or 
mid-trip charging at DCFC stations. 

Vehicle type and electric range: Each of the studies considers a finite combination of one or 
more vehicle types (PHEV/BEV) and electric ranges.  

Travel patterns: Light-duty consumer travel patterns are established in each study using 
household travel surveys, outputs of a travel demand model, or telematics data from mobile 
devices. 
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Geography: Most studies consider a very specific region at the city or state level. National 
studies tend to focus less on geography and more on distributions of travel distance, destination 
type, and dwell times. 

Charging behavior: Clearly the literature is most diverse in its treatment of consumer charging 
behavior. Methodologies range from simplified economic models of charging behavior at the 
individual level to complex optimization routines seeking to minimize various objective 
functions. This is likely the most fertile area for further research as validation using real-world 
data on charging behavior becomes available. 

Modeled outputs: PEV infrastructure research has focused on efficient allocation of limited 
resources for station siting and/or requirements assessment to support a given number of PEVs. 

Modeling in Section 3 of this report aims to build on existing literature by employing a 
methodology that considers all combinations of charging locations and power levels, a mix of 
PHEVs and BEVs with several electric ranges, real-world travel from survey data, and a state-
level geographic focus. Consumer charging behavior is modeled as being economically efficient 
at the household level with special attention paid to residents of multi-unit dwellings (MUDs). 
Outputs include a requirements assessment for total number of charging plugs required to 
support a given PEV market. Additional results include consumer participation rates for distinct 
combinations of charger location and power level, simulated charging load profiles, consumer 
eVMT benefits, and charging station utilization rates. 

Before discussing this study’s modeling approach in more detail, a summary of existing data on 
PEV and EVSE markets is provided in Section 2. 
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2 Current State of the Market (through 2015) 
Data used in this study were taken from the Alternative Fuels Data Center (AFDC) (DOE 2016) 
station locator and IHS Automotive (IHS) Vehicle Registration Database (previously R.L. Polk). 
EVSE and PEV counts are aggregated at the county level, resulting in 2,496 county-level 
samples used in the analysis with at least one public charging station and at least one PEV 
registration. 

2.1 Aggregate EVSE and PEV Counts 
Figure 1 shows the locations of 12,609 publically available charging stations indexed in the 
AFDC station locator database (through 2015) (DOE 2016). The average station in the database 
provides 2.5 charging plugs with 80.0% of plugs classified as providing L2 power, 10.5% are 
classified as DCFC, and 9.5% of plugs classified as L1 power. 

 
Figure 1. U.S. public charging station locations through 2015 (DOE 2016) 
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Figure 2 provides a density map of PEV registrations derived from the IHS database (rendered at 
ZIP code resolution). The IHS database shows a total of 388,427 PEVs registered with a 50/50 
split between BEVs and PHEVs through 2015. The two most prominent vehicles in the database 
are Nissan Leafs (84,369; 21.7%) and Chevrolet Volts (84,300; 21.7%). 

 
Figure 2. ZIP code density of registered PEVs through 2015 (via IHS) 
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2.2 Simplified EVSE/PEV Correlations 
PEV registration and station location data are overlaid to examine correlation (Figure 3). The 
linear trend line reveals a relatively strong correlation (R2 = 0.8365) between the number of 
EVSE plugs and PEV registrations at the county level (excluding counties with fewer than 10 
charge plugs or PEVs). The average U.S. County currently provides 43 public plugs for every 
1,000 PEVs. Note that the linear trend line is visually distorted in the log-log plot. 

 
Figure 3. Existing EVSE and PEV counts by U.S. County through 2015 
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While the average U.S. County currently provides 43 public charge points per 1,000 PEVs, it is 
important to highlight regional differences in this ratio. Figure 4 shows counties with relatively 
high and low densities of public charging stations. 

 
Figure 4. Counties with relatively high and low densities of public EVSE 

 

2.3 Normalized EVSE/PEV Correlations 
In addition to IHS and AFDC data on PEV registrations and public EVSE installations, variables 
from the American Community Survey are used to normalize the data for factors known to 
influence PEV market growth, such as income, education level, and housing type. The American 
Community Survey is a survey that provides vital information about jobs, education, 
employment, housing, daily commute to work information, and a host of other information. The 
information can be obtained at the county or at the ZIP Code Tabulation Area from the Census 
Bureau’s FactFinder (United States Census Bureau 2016). 

Two scenarios are considered for the normalized EVSE/PEV correlations. In the first scenario, 
the predictor variable is assumed to be the actual number of PEVs at the county level, whereas in 
the second scenario the predictor variable is assumed to be the number of PEVs per 10,000 
people. In each scenario, five models were run. The first model considers all of the 2,496 valid 
county-level samples for the ordinary least squares regression model. The subsequent versions 
consider only the top 500, 200, 100, and 50 counties in PEV registrations. 
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The first task involves selecting the independent variables that will adequately capture the 
variance in the dataset. Too many will lead to over fitting, and too few will provide an inaccurate 
estimate. Independent variables in this analysis include charging ports, MUD housing units, 
household income, education level, and state incentives. These variables are selected based on 
experimentation with various combinations of variables from the AFDC, IHS, and American 
Community Survey datasets. All variables are normalized to have zero mean and unit variance. 

Statewide incentives for PEVs and EVSE installations are directly included in the analysis from 
the AFDC (DOE 2016). Financial incentives for PEV purchase and EVSE installations are 
included in the model. All other incentives—such as high occupancy vehicle / high occupancy 
toll lanes exemption, parking exemptions, emission test waivers, registration tax waivers, 
vehicle-to-grid credits, and PEV-specific charging rates—are qualitatively scored and weighed 
based on their availability. While it is acknowledged that some manufactures have introduced 
new PEV models regionally in phases (as opposed to simultaneously introducing new PEV 
models nationally) no attempt is made to normalize for this effect. 

Table 1 presents the regression model results with the output variable being the total number of 
PEVs at the county level (including only the top 100 counties in terms of PEV registrations). 
Total number of charging ports in a county and percent of households classified as MUD have 
the highest significance levels in this model with quantity of public charging stations positively 
correlated with PEV registrations and MUD households negatively correlated with PEV 
registrations. Results for the other county groupings were similar in terms of coefficient signs 
and significance levels. 

Table 1. Regression Model Results:  Top 100 Counties (absolute version) 

Y= Absolute Number of PEVs Coeff. Std. t Pr(>|t|) Signif. 

Absolute Number of Ports 0.9925 0.0552 17.9710 < 2e-16 *** 

% of Housing Units that are MUDs -0.4152 0.0941 -4.4140 0.0000 *** 

Household Estimate of Mean Income 0.1257 0.0777 1.6170 0.1090 

 Population 25 to 64 years - Bachelor’s degree or higher 0.0416 0.0652 0.6390 0.5250 

 Financial Incentives for PEVs 0.1408 0.1215 1.1590 0.2490 

 Financial Incentives for EVSEs 0.0939 0.1436 0.6540 0.5150 

 Qualitative Score of Other Incentives 0.1763 0.1317 1.3380 0.1840 

 Multiple R-squared 0.9372 

    Adjusted R-squared 0.9324 

    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Table 2 summarizes the results when the output variable is assumed to be PEVs per 10,000 
people (again, including only the top 100 counties in terms of PEV registrations). The same set 
of independent variables is used. Relative to the model used to estimate absolute PEV 
registrations, the per capita model places increased significance on household income, education 
level, and financial PEV purchase incentives. Results for the other county groupings were similar 
in terms of coefficient signs and significance levels. Coefficient signs remain consistent between 
both the absolute and per capita models. 
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Table 2. Regression Model Results:  Top 100 Counties (per capita version) 

Y= Number of PEVs per Capita (10k) Coeff. Std. t Pr(>|t|) Sig 

Number of Ports per 10K 2.3957 0.2468 9.7060 0.0000 *** 

% of Housing Units that are MUDs -0.5667 0.1421 -3.9890 0.0001 *** 

Household Estimate of Mean Income 0.6036 0.1213 4.9740 0.0000 *** 

Population 25 to 64 years - Bachelor’s degree or higher 0.1237 0.0591 2.0930 0.0391 * 

Financial Incentives for PEVs 0.3327 0.1843 1.8050 0.0743 . 

Financial Incentives for EVSEs 0.2026 0.2235 0.9070 0.3669  

Qualitative Score of Other Incentives 0.2787 0.2010 1.3870 0.1688  

Multiple R-squared 0.7942     

Adjusted R-squared 0.7787     
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Figure 5 compares the R2 values for all models and scenarios. We see that the absolute model 
provides stronger correlation across all county samples (which is intuitive given the strong 
correlation previously observed between absolute EVSE and PEV counts). Correlations in both 
models become stronger as the county sample size is reduced (particularly in the per-capita 
model), likely indicating a smaller degree of variability in independent variables when zeroing in 
on the most successful PEV markets. 

 
Figure 5. Comparison of R2 values for different models 
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For visualization purposes, Figure 6 compares the model-predicted number of PEVs (from the 
absolute model) with the actual number of PEVs for the top 100 counties.  

 
Figure 6. Agreement between actual PEV registrations and model-estimated PEV registrations 
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3 Regional Requirements Analysis 
In addition to present day market data on PEV adoption and public EVSE installations, we would 
like to be able to estimate future requirements for public EVSE under various PEV adoption 
scenarios (as was previously discussed in Section 1). This section will review the National 
Renewable Energy Laboratory’s (NREL’s) development of the Electric Vehicle Infrastructure 
Projection Tool (EVI-Pro), a model to estimate future requirements for charging infrastructure. 
EVI-Pro will be applied to a case study of Massachusetts to estimate requirements for meeting 
the state’s zero emission vehicle (ZEV) goals for 2025. 

3.1 EVI-Pro Methodology 
In collaboration with the California Energy Commission, NREL is developing EVI-Pro to 
estimate regional requirements for charging infrastructure to support consumer adoption of light-
duty PEVs. EVI-Pro uses PEV market projections and real-world travel data from mass market 
consumers to estimate future requirements for home, workplace, and public charging. The goals 
of the model include: anticipating spatial/temporal consumer demand for charging while 
capturing variations with respect to residents of single-unit dwellings (SUDS) and MUDs, 
weekday/weekend travel behavior, and regional differences in travel behavior and vehicle 
adoption. A graphical representation of the model is presented in Figure 7. 

 

Figure 7. EVI-Pro model structure 
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The fundamental assumption in EVI-Pro is that consumers prefer charging scenarios that enable 
them to complete all of their existing travel while minimizing operating cost. To define which 
charging scenarios consumers will elect, individual travel days from regional household travel 
surveys are simulated in the model. An example travel day is shown in Table 3. 

Table 3. Example Single-Day Travel Profile 

Start Time Miles Destination Dwell Hours 
8:15 a.m. 4.3 Work 3.3 
12:05 p.m. 4.3 Home 1.1 
1:28 p.m. 0.6 Public 0.2 
1:48 p.m. 4.5 Work 2.8 
4:50 p.m. 13.8 Public 3.7 
9:10 p.m. 14.6 Home 10.5 

 

Each travel day is simulated multiple times for each potential combination of charging behavior 
(e.g., L1-Home, L2-Home, L1-Home plus L1-Work, etc.). A matrix of all potential charging 
options is shown in Table 4. While there is growing interest in the deployment of high power 
DCFC stations (up to 350kW), this analysis takes the conservative approach of modeling DCFC 
using the current 50kW standard. Future studies may be conducted using EVI-Pro to investigate 
effects of DCFC power level. 

Table 4. Potential Charging Options Available to Consumers in EVI-Pro 

Location Level Power Comment 
Home L1 1.4 kW  
 L2 3.6 kW BEVs simulated with higher L2 power to 

enable full overnight charge 

Work L1 1.4 kW  
 L2 6.2 kW PHEV on-board charger limits max power to 

3.6 kW in model 

Public L1 1.4 kW  
 L2 6.2 kW PHEV on-board charger limits max power to 

3.6 kW in model 

 DCFC 50 kW BEVs only 
 

For the example travel day shown in Table 3, the simulated consumer preference in a BEV100 
would be for L1-Home charging (this assumes flat electricity rates through the day and lowest 
cost electricity at the home location). Battery state of charge for this cost-optimal simulation is 
shown in Figure 8. Note that for BEVs, a range tolerance of 20 miles is implemented, meaning 
that any charging scenario where remaining range drops below 20 miles is discarded from the list 
of available options. 
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Figure 8. Simulated battery state of charge (SOC) for a BEV100 with L1-Home charging subjected 

to the example travel profile shown in Table 3 

This optimization routine is repeated for all travel days in a given survey and for all vehicle types 
under consideration (PHEV20, 40, 60 and BEV100, 200, 300 in this study). 

3.2 Massachusetts Case Study 
To illustrate EVI-Pro capabilities, the model is applied to a case study of Massachusetts. 
Massachusetts was selected based on its participation in the Multi-State ZEV Action Plan and 
it’s representation of the large vehicle market in the Northeastern U.S. 

3.2.1 Massachusetts EVSE and PEVs Counts (through 2015) 
As of 2015, IHS data show 6,535 PEVs registered in Massachusetts. Relative to the United 
States at large, we find the BEV/PHEV split preferenced towards PHEVs in Massachusetts; this 
observed preference is manifested with Massachusetts having lower registrations of Nissan Leafs 
and higher registrations of Toyota Plug-In Prius vehicles (again, relative to the national average; 
see Figure 9). 
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Figure 9. PEV market share for the United States and Massachusetts 

PEV registration densities (by ZIP code) from IHS are overlaid with public EVSE locations from 
the AFDC station locator in Figure 10 (DOE 2016). Table 5 summarizes PEV registrations and 
public EVSE installations through 2015. Relative to the national average, we find that 
Massachusetts currently exhibits a high EVSE density (152 public plugs per 1,000 PEVs in 
Massachusetts versus a national average of 43 public plugs per 1,000 PEVs). 

 
Figure 10. PEV registration density (by ZIP code) with existing public EVSE through 2015. County 

boundaries and labels are provided as reference. 
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Table 5. Summary of Massachusetts EVSE and PEV Counts by County through 2015 

County Charge Points PEVs EVSE per 
1,000 PEVs 

Barnstable County  43   181  238 

Berkshire County  22   82  268 

Bristol County  28   236  119 

Dukes County  3   60  50 

Essex County  66   657  100 

Franklin County  10   86  116 

Hampden County  34   213  160 

Hampshire County  40   267  150 

Middlesex County  300   2,366  127 

Nantucket County  10   13  769 

Norfolk County  123   759  162 

Plymouth County  53   318  167 

Suffolk County  189   665  284 

Worcester County  75   632  119 

State Total  996   6,535  152 

 

Of the 996 public charge points in Massachusetts (AFDC) through 2015, we find a similar 
distribution to the national average in terms of power levels with 5.7% L1, 87.1% L2, and 7.1% 
DCFC. 

3.2.2 2011 Massachusetts Travel Survey 
The 2011 Massachusetts Travel Survey (MTS), which was conducted by the Massachusetts 
Department of Transportation, was a single-day survey that included collecting data from 20,177 
vehicles from 12,462 households, for a total of 83,518 driving trips across all 14 Massachusetts 
counties. A density map of vehicle trip counts by ZIP code is shown in Figure 11. 
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Figure 11. 2011 MTS vehicle trip density by ZIP code 

The 2011 MTS was spatially and demographically stratified to produce a representative sample 
of household travel behavior in Massachusetts. A sample share comparison between census 
population and 2011 MTS surveyed households is shown in Figure 12. 

 

Figure 12. Massachusetts sample share: US Census (population) compared to 2011 MTS 
(surveyed households) 

Daily VMT is calculated for all vehicles in the 2011 MTS and plotted as a cumulative 
distribution in Figure 13 (with the equivalent distribution from the 2009 NHTS). The 
Massachusetts sample features a very similar daily VMT distribution to the national sample, both 
in terms of average daily VMT (MTS = 34.9 mi and NHTS = 36.7 mi) and median daily VMT 
(MTS = 23.3 mi and NHTS = 23.1 mi). Further inspection of the 2011 MTS reveals typical 
vehicle use profiles (see Figure 14 for MTS distributions of vehicle trip start times and trips per 
vehicle-day). 
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Figure 13. Daily VMT comparison of 2011 MTS and 2009 NHTS data 

 
Figure 14. 2011 MTS distributions of vehicle trip start times (left) and trips per vehicle-day (right) 

Of particular interest to the study of PEV charging is the duration of time spent dwelling at 
specific destinations. Figure 15 presents cumulative distributions of the time spent by MTS 
vehicles in each of four classifications: 1) driving, 2) parked at home, 3) parked at work, and 4) 
parked in public (public destinations defined as all non-home, non-work locations). 
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Figure 15. 2011 MTS vehicle time distributions 

From the MTS data, we see the average vehicle spent 1.4 hours driving, 15.6 hours parked at 
home, 4.1 hours parked at work (8.4 hours parked at work for those vehicles making at least one 
work trip on their survey day), and 3.0 hours parked at a public locations. While the average 
result of this analysis is intuitive, it is important to highlight the significant shares of vehicles in 
the study with atypical behavior patterns. For instance, 10% of vehicles in the survey spent more 
than 2.5 hours driving, 6% of vehicles spent less than 9 hours parked at home, and 10% of 
vehicles spent more than 8 hours at public locations. Recognizing that a large segment of the 
vehicle fleet operates with atypical travel patterns on any given day is an important step in the 
design of charging infrastructure networks robust enough to support mass market adoption of 
PEVs. 

3.2.3 EVI-Pro Simulations 
3.2.3.1 Simulated Consumer Charging Behavior 
EVI-Pro was run using data from the 2011 MTS with the assumption that consumers have access 
to home charging and prefer to do the majority of charging at their home locations. Alternate 
scenarios, including those with an absence of home EVSE for residents of MUDs, can be 
explored in future work. The resulting consumer selections for workplace and public charging 
access are shown in Tables 6 and 7.  
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Table 6. Percent of Simulated Consumers Selecting Workplace Charging as a Component of Their 
Individual Travel Day Charging Behavior (by Vehicle Type) 

 PHEV20 PHEV40 PHEV60 BEV100 BEV200 BEV300 

None 69.5% 83.0% 89.6% 91.8% 93.5% 93.7% 

Work Level 1 29.1% 15.1% 8.4% 7.2% 5.9% 5.7% 

Work Level 2 1.4% 1.9% 2.1% 1.0% 0.6% 0.5% 

 

Table 7. Percent of Simulated Consumers Selecting Public Charging as a Component of Their 
Individual Travel Day Charging Behavior (by Vehicle Type) 

 PHEV20 PHEV40 PHEV60 BEV100 BEV200 BEV300 

None 70.8% 84.5% 90.2% 93.6% 95.8% 96.2% 

Public Level 1 2.0% 1.1% 0.8% 0.4% 0.4% 0.3% 

Public Level 2 27.1% 14.4% 9.1% 5.2% 3.5% 3.4% 

Public DCFC 0.0% 0.0% 0.0% 0.8% 0.3% 0.1% 

 

Across all scenarios we see the majority of simulated consumers requesting no access to 
workplace or public EVSE and performing all charging at their home location. The average 
workplace dwell time for commuters of 8.4 hours enables L1 charging to be sufficient for most 
consumers requesting access to workplace charging. Alternatively, we find the majority of 
consumers seeking access to public charging requesting either L2 or DCFC power levels to 
enable sufficient charge transfer given the average 3.0-hour public dwell times. Across all 
scenarios, we find reliance on workplace and public charging decreases as vehicle electric range 
increases. 

These results assume that consumers can perform the majority of charging at their home location 
where electricity is presumably the cheapest. As with the sensitivity around availability of home 
charging for residents of MUDs, alternate scenarios (including access to free workplace 
charging) can be run in future studies and have the potential to dramatically impact results. 

3.2.3.2 Consumer Benefits of Workplace and Public Charging 
Figure 16 presents fleet-wide eVMT benefits enabled by increased consumer access to 
workplace and public charging. Consumer access to workplace charging can be seen to increase 
fleet-wide eVMT by 3 to 12 percentage points with public charging access providing an 
additional 5 to 12 percentage point improvement in eVMT (vehicle type specific with greatest 
benefits for the PEVs with the shortest electric range). 
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Figure 16. Fleet average percent eVMT based on EVI-Pro simulation of the 2011 MTS under 

various infrastructure scenarios 

3.2.3.3 Simulated Charging Load Profiles 
The resultant normalized, aggregate charging load profiles from EVI-Pro simulation of the 2011 
MTS are shown in Figure 17 for all vehicle types. Aggregate charging loads at home locations 
are shown to peak roughly between 4 p.m. and 10 p.m. (depending on vehicle type) coinciding 
with the end of individual household travel days. Aggregate charging loads at work locations are 
shown to peak roughly between 7 a.m. and 2 p.m. (most notably for the PHEV20), coinciding 
with the arrival of individual consumers arriving at work. Aggregate charging loads at public 
locations are relatively consistent during the day hours (8 a.m. to 8 p.m.).  
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Figure 17. Normalized, aggregate charging load profiles from EVI-Pro simulation of the 2011 MTS 

by time of day, location type, and vehicle type 

3.2.3.4 Spatial Aggregation of Simulated Charging Events 
In addition to simulation results in the temporal dimension, a wealth of detailed spatial data is 
generated from EVI-Pro simulation of the 2011 MTS. Figure 18 shows an example map from the 
Boston metropolitan area, including markers for vehicle destinations visited in the travel survey 
(green markers), destinations that coincide with simulated consumer charging events (red 
markers), and consolidated charging locations representing hypothetical public charging stations. 
Locations of simulated charging events are consolidated using 0.1-mile buffers (10-mile buffers 
for DCFC stations). After spatial consolidation, the temporal results are reviewed to determine 
the maximum number of charging plugs necessary at each station. 
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Figure 18. Example map from the Boston metropolitan area showing travel destinations overlaid 

with simulation results (satellite imagery credit: © 2009 Google, Map Data © 2009 Tele Atlas) 

 

3.2.3.5 Estimated Requirements for PEV Charging Stations 
Analysis of spatial and temporal results of simulated consumer charging behavior enables 
derivation of density requirements for public charging infrastructure (estimated public plugs per 
1,000 PEVs). A range of density values is displayed in Figure 19 to convey scenarios that are 
relatively conservative or aggressive with regard to infrastructure planning. The conservative 
scenario is sized to exactly meet consumer peak power demands (neglecting spatial coverage) 
while the aggressive scenario is sized to fully satisfy spatial/temporal simulation results (based 
on available travel data). 

Here we see the greatest requirements for public infrastructure come from public L2 stations 
with a range of 10 to 340 public plugs estimated per 1,000 PEV (dependent on vehicle type and 
level of conservativeness). Results show lesser requirements for numbers of L1 and DCFC 
stations, and reliance on publicly available infrastructure decreases as vehicle electric range 
increases. 
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Figure 19. Estimated number of public plugs per 1,000 PEVs by vehicle type and EVSE power level 

To arrive at an absolute estimate of number of plugs for Massachusetts, we revisit the multi-state 
ZEV Action Plan. The Massachusetts contribution to this plan targets 300,000 PEVs to be on the 
road by 2025. A hypothetical growth trajectory for Massachusetts to meet this goal is shown in 
Figure 20 (represents 57% annual growth in PEV sales). 
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Figure 20. Hypothetical growth trajectory for Massachusetts to meet the 2025 goal of 300,000 
PEVs 

The 2025 goal of 300,000 PEVs is distributed by county using projections from the 
Massachusetts Executive Office of Energy and Environmental Affairs and by housing type using 
vehicle stock information from the 2011 MTS (see Figure 21). This distribution results in 20% of 
PEVs being allocated to residents of MUDs and 80% to residents of SUDs. PEVs are uniformly 
distributed within each county using the six BEV and PHEV types simulated in EVI-Pro. 

 
Figure 21. Projected distribution of PEVs across Massachusetts in 2025 

EVSE density and PEV sales projections are combined to generate estimates of absolute 
requirements for workplace and public charging infrastructure in Massachusetts to support the 
2025 ZEV goal of 300,000 vehicles. The results, shown in Figure 22, indicate 37,413 to 45,270 
workplace plugs (predominantly L1 plugs) and 4,935 to 44,645 public plugs (predominantly L2). 
These results correspond to 125 to 151 workplace plugs per 1,000 PEVs and 17 to 149 public 
plugs per 1,000 PEVs. Public plug count estimates are broken out by county in Figure 23. 
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Figure 22. Estimated workplace and public plug counts required to support 300,000 PEVs in 

Massachusetts 

 

 
Figure 23. Estimated public plug counts required to support 300,000 PEVs in Massachusetts by 

county 
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It is worth noting the large bands of uncertainty placed around all station estimates in this 
analysis. Uncertainty in these estimates accounts for a number of factors, including: 

• Vehicle sales projections 
o EVSE estimates in this analysis are designed around a 300,000 PEV scenario with 

equal splits among the six available electric ranges. Future PEV infrastructure 
requirements will be sensitive to the electric ranges that end up succeeding in the 
market. 

• MUD access to home charging 
o This study makes an assumption that residents of MUDs will have reliable access 

to charging at their home location and will prefer to perform the majority of their 
charging at home. Access to EVSE at MUDs is far from a given and may require 
greater levels of workplace and public support to enable the Massachusetts sales 
goal (recall that 20% of PEVs were allocated to MUDs in this analysis). Alternate 
EVI-Pro results that do not assume reliable access to home EVSE at MUDs can 
be explored in future work. 

• PHEV demand for public charging 
o PHEVs are simulated as having the greatest reliance on workplace and public 

charging in this analysis based on their limited electric range. This neglects the 
possibility that mass market consumers may be content using gasoline as a range 
extender on a regular basis (simulated consumers in EVI-Pro are diligent at 
maximizing eVMT via frequent charging). 

• Shared use of public infrastructure 
o PEV infrastructure requirements in this analysis are based on simulation of a set 

of travel data including approximately 20,000 vehicles. Results from these 
simulations are extrapolated to a future scenario with 300,000 PEVs in 
Massachusetts. Consequently, this analysis likely underestimates the ability of 
consumers to have shared use of public EVSE in a high PEV density 
environment. The majority of hypothetical public stations in this analysis feature 
very low levels of utilization (see Section 3.2.3.6). 

• Day-to-day travel variability 

o In addition to the limited sample size of the 2011 MTS (approximately 20,000 
vehicles), the travel data only provide a single day of travel data for each 
individual vehicle. Personal travel is known to exhibit significant degrees of day-
to-day variability based on longitudinal (long-duration) travel studies. 
Unfortunately, longitudinal travel data are difficult (and expensive) to obtain at 
large scales. 

• Consumer tolerance for destination/station proximity 
o EVI-Pro makes an assumption that simulated charging events can be consolidated 

into hypothetical stations using a 0.1-mile buffer for L1 and L2 EVSE. This 
assumption implies that consumers have some proximity tolerance for the 
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distance between where they park (and charge) their vehicle and their desired 
destination. Adjusting this tolerance in the model is known to impact the resultant 
station densities. 

3.2.3.6 Simulated Utilization of Public Charging Stations 
It is important to note that not all public stations contribute equally to fleet eVMT improvements 
in EVI-Pro. Figure 24 shows simulated utilization of hypothetical public L1 and L2 stations in 
terms of unique charging sessions per day. Approximately 85% of hypothetical stations only 
provide a single charging session on the average simulated day. An additional 11% of 
hypothetical stations provide exactly two charging sessions on the average simulated day. Within 
the EVI-Pro simulation, it was relatively rare to identify public L1/L2 stations that provide more 
than two charging sessions per day. This result is driven by the relatively tight proximity 
tolerance of 0.1 mile enforced in the consolidation of simulated charging events into hypothetical 
public stations. 

 

 
Figure 24. Simulated utilization of hypothetical public L1/L2 stations 
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Conversely, hypothetical DCFC stations experienced much higher levels of simulated utilization 
in EVI-Pro. Figure 25 shows simulated utilization of hypothetical public DCFC stations in terms 
of unique charging sessions per day. Here we find over 40% of hypothetical public DCFC 
stations enabling seven or more charging sessions per day. Again, this result is driven by the 
station proximity tolerance. Recall that for public DCFC stations, a destination proximity 
tolerance of 10 miles is employed. This tolerance allows simulated consumers to make dedicated 
stops at DCFC stations within a few miles of their eventual destination for 20–30 minute 
charging sessions. 

 

 
Figure 25. Simulated utilization of hypothetical public DCFC stations 
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4 Recommendations for Future Work 
Future work in the area of regional planning for PEV charging infrastructure could be focused on 
two broad topic areas: 1) refinement/validation of EVI-Pro methodology and 2) co-simulation 
with other economic models for estimating impacts of investment in PEV charging 
infrastructure. 

Significant validation work remains in order to develop further confidence in the infrastructure 
estimates generated by EVI-Pro. Validation activities could include additional regional case 
studies and comparison between existing charging station data and modeled outputs (such as 
total number of stations and station utilization). Several topics have also been identified in the 
area of model refinement, including: 

• Incorporation of time of use rates and their effect on consumer charging behavior 
(particularly as it impacts end of day behavior at home). 

• Consideration for mid-trip corridor charging on long-distance, inter-city travel. 

• Identification of larger sample size datasets on consumer travel patterns, potentially 
including datasets from commercial mapping providers and simulated outputs of traffic 
demand models. 

• Quantifying impacts of single- vs multi-day datasets on consumer travel, potentially 
using travel distances to pair simulated consumers with PEVs of appropriate electric 
range. 

In the area of co-simulation with existing models, economic impacts and changes in jobs due to 
electric vehicle implementation can be estimated using tools such as the IMPLAN input-output 
(I-O) model. Based on the selection of vehicles and charging infrastructure, a set of expenditures 
for services and commodities such as vehicles, electricity, petroleum products, and chargers can 
be characterized. These values represent inputs into the IMPLAN model, which can be used to 
determine net changes. Net changes consider both increases and decreases in costs for items such 
as infrastructure, vehicles, petroleum, and electricity. Impacts are reported across four impact 
metrics:   

• Employment is defined as the number of employees supported by an industry. This is not 
the same as full-time equivalence, which adjusts employment figures based on the 
number of part-time employees.  

• Earnings are total compensation to workers and include all benefits such as retirement 
and health insurance.  

• Output is a measure of total economic activity. It includes all sales and purchases. At a 
company level, it may be thought of as revenue. 

• Gross domestic product is a measure of the value of production. It is an industry’s sales 
less its purchases of inputs from other businesses. It includes payments to workers, tax 
payments, and property-type income such as profits. 
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Regions can use this information to better understand how PEVs and related infrastructure could 
affect their economy. Every region is unique, with different mixes of industries, different labor 
force characteristics, and different populations. The same scenario in two different regions could 
produce different results. State-level analysis would incorporate these differences and in doing so 
increase the relevance of the report to a larger potential audience.  

This approach can be extended to multiple U.S. regions or local markets to estimate EVSE 
requirements and the resulting metrics for a given number of PEVs deployed. In addition to this 
capability, the EVI-Pro approach can also be modified to assess resulting EVSE costs, local 
electricity rates, premium required to recover upfront capital, electricity prices, electricity carbon 
intensities, and other factors. Moreover, when combined with a detailed spatial vehicle stock 
model, such as the Scenario Evaluation and Regionalization Analysis (SERA) model, the air 
quality improvements can also be included. Employing an air quality monetization tool, such as 
EPA’s BENMap, in conjunction with a time-of-day electricity dispatch model, can allow for an 
approximation of public health benefits. 
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