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Executive Summar y  

As the capacity of high performance computing (HPC) systems continues to grow, small changes in energy man­
agement have the potential to produce significant energy savings. In this paper, we employ an extensive informatics 
system for aggregating and analyzing real-time performance and power use data to evaluate energy footprints of jobs 
running in an HPC data center. We look at the effects of algorithmic choices for a given job on the resulting energy 
footprints, and analyze application-specific power consumption, and summarize average power use in the aggregate. 
All of these views reveal meaningful power variance between classes of applications as well as chosen methods for a 
given job. 

Using these data, we discuss energy-aware cost-saving strategies based on reordering the HPC job schedule. Using 
historical job and power data, we present a hypothetical job schedule reordering that: (1) reduces the facility’s peak 
power draw and (2) manages power in conjunction with a large-scale photovoltaic array. Lastly, we leverage this data 
to understand the practical limits on predicting key power use metrics at the time of submission. 

Our key findings include the following observations. 

• We observe substantial variance in the median, maximum, and spread of power use of jobs that run on the
system. For a substantial fraction of jobs (more than 40%), power use appears to have periodic structure.
For those jobs with large amplitude periodicities (1-2%), accidental alignments may result in constructive
interference creating power spikes.

• Alternative power-aware scheduling approaches that combine information from PV generation, campus loads,
and submitted job requirements show promise for reducing campus power use overall, and particularly during
peak load events. In this way, the HPC data center can play an integral role in the control and optimization of
power use for an entire integrated campus power system.

• Detailed application energy footprints obtained using the Intel Running Average Power Limit (RAPL) in­
terface reveal that algorithmic choices effect overall energy use and that it may be possible to reduce the
combined energy footprint of applications by optimizing algorithmic approaches for power use. Moreover,
by understanding the power profile of various algorithmic choices, static analysis may be used to identify
power-reducing code changes during development.

• Approaches to predicting key job power metrics at the time of submission using limited available information
may prove fruitful for power-aware schedulers that attempt to leverage this information in a priori schedul­
ing decisions. Multiple regression and multiple adaptive regression splines are able to predict median and
maximum power use to within 40W, even using very little information about the job to be run.

We believe that the path to power-efficient high performance computing requires careful consideration of compu­
tational workloads paired with systems-level optimizations. Power-aware scheduling appears to show meaningful 
promise as a way to smooth power loads, respond to peak power events, and enforce power constraints. Further 
work is needed to understand how job alignment, algorithmic optimization, and real-time power monitoring can be 
leveraged to produce intelligent power-aware schedules. This report demonstrates the value of power-constrained job 
reordering and data-driven approaches to optimization of power use in HPC systems and data centers. 
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1  Introduction  

Future high performance compute (HPC) systems will be po        wer-limited, and the o   verwhelming consensus is that     

energy-efficiency will be a leading design f      actor for these systems [1].      Since the adv  ent of HPC, peak system-le    vel  
performance has consistently increased in accordance with Moore’       s la w; ho wever, the ener  gy ef ficiency of these    

systems has not impro   ved correspondingly .  Multiple studies, for e   xample [2], [3], and [4], ha     ve concluded that the     

current trajectory w  ould lead to an e    xaFLOP machines dra  wing nearly one hundred me    gawatts of po  wer.  Requiring  
leadership-class HPC systems to ha    ve dedicated po  wer plants is clearly not a sustainable path.         As a consequence, the     

DOE has strongly encouraged a 20MW po      wer threshold for e   xaFLOP computing en  vironments.  Because tomorro w’s  
HPC systems will be po    wer-limited, ho w we program and operate those systems will be k         ey to meeting ener   gy  
budgets.  Figure 1 sho  ws the top 25 supercomputers (in FLOPS) along with their po          wer dra w.  

The Ener gy Systems Inte  gration F acility (ESIF) at the National Rene     wable Ener gy Laboratory (NREL) in Golden,      

Colorado houses one of the most ef      ficient HPC data centers in the w      orld through an inno   vative inte gration of the    

HPC system with the b    uilding and campus infrastructure.     This inte grated en vironment of fers a testbed to e    xplore  
trade-offs with respect to po    wer and ener  gy constraints that we belie    ve will typify future data centers.       This paper   

evaluates opportunities to impro   ve the o  verall utility cost through the operation and management of the HPC system.             

Specifically, we consider a rescheduling of jobs and in        vestigate algorithmic choices to run in concert with the de­          

mands of NREL  ’s campus.   We describe strate  gies focused on monitoring all of the jobs at a high le           vel as well at an      

application scale for managing po    wer consumption from a job scheduling or resource management perspecti         ve. 
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Figure 1. The current trajectory of FLOPS versus power of the top 25 super­
computers according to the Top 500 rankings. The top five are listed by name. 
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1.1  Related w ork  

Given that U.S. data center electrical ener      gy consumption reached 91 billion kWh in 2013 and is e          xpected to gro  w  
to 140 billion kWh by 2020 [5] and that the mark          et for data-center construction is projected to re       gister an annual    

compound gro wth rate of 22% [6], studying ener      gy and po  wer consumption is becoming increasingly common.       

Several ener gy sa ving runtime techniques ha   ve been proposed and implemented on small scales, see for e          xample [7],   

[8], [9], and [10]. Power measurement studies tend to focus on the rack or system-level or at the individual compo­
nents themselves, see [11] and references therein. Lower-level system manipulations have shown that controlling 
CPU frequency on a large-scale Cray XT class system can achieve significant energy savings with little or no impact 
on run-time performance, [12] and [13]. This work performed quantitative, temporal analysis of a significant portion 
of the NNSA/ASC application portfolio that revealed wide variation among individual applications for energy saving 
potential. Larger scale efforts at Sandia National Laboratories (SNL) include specifications for a system-wide Power 
API that focuses on managing power in the entire HPC ecosystem, [14]. 

Several research groups are considering power- or energy-aware scheduling in data centers including HPC environ­
ments. This body of research is quite diverse and ranges in scope from scheduling with dynamic electricity pricing 
in mind [15], [16] to the integration of renewable energy sources into scheduling considerations [17], [18], [19], and 
[20]. 

There are two primary differences between the work presented here and the studies cited in this section. First, we 
focus on the energy consumption of actual scientific applications running on a production system, Peregrine [21]. 
Second, we present the implications of a hypothetical rearrangement of these jobs (power-aware scheduler) on the 
system by considering our campus’ actual photovoltaic (PV) generation for the same time period under study. It is 
important to note that although we did not develop an actual scheduler for this study, our rearrangement (1) does 
take into account the system specifications (i.e. we did not oversubscribe the system) and (2) does not jeopardize the 
amount of computational work being done in the time period under study. 

1.2  Informatics and Data Capture     

The principal HPC machine in the ESIF data center is           Peregrine , a He  wlett-Packard system composed of 1440      

standard Intel Xeon nodes, 288 of which are accelerated by Xeon MIC Phi co-processors.               The resulting peak perfor   ­ 

mance is 1.19 PetaFLOPs:     

• 88 SandyBridge nodes 

– 2 8-core Intel SandyBridge processors (16 cores) 

– 32 GB DDR3 1600MHz memory 

– 36.8 Gflops/core, 883.2 Gflops/node 

• 56 Large Memory SandyBridge nodes 

– 2 8-core Intel SandyBridge processors (16 cores) 

– 256 GB DDR3 1600 MHz memory 

– 20.8 Gflops/core, 332.8 Gflops/node 

• 720 IvyBridge nodes 

– 2 12-core Intel IvyBridge processors (24 cores) 

– 32 GB DDR3 1600 MHz memory 

– 19.2 Gflops/core, 460.8 Gflops/node 

• 288 Large Memory IvyBridge nodes 

2 
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Figure 2.   The inf ormatics and data capture system collects real time inf        ormation  
about jobs, po  wer, and perf  ormance data.   Archived data are stored and accesed       

for later anal  ysis using a combination of relational database and custom time se­           

ries c luster.  Canonical access is pr   ovided b y a load balanced JSON REST     -ful API.   

– 2 12-core Intel IvyBridge processors (24 cores) 

– 64 GB DDR3 1600 MHz memory 

– 19.2 Gflops/core, 460.8 Gflops/node 

• 288 Accelerated SandyBridge nodes 

– 2 8-core SandyBridge processors (16 cores) 

– 2 Intel Xeon Phi coprocessors (4592 cores) 

– 32 GB DDR3 1600 MHz memory 

– 2.3 Tflops/node 

The system is currently being increased with 1,100 additional Haswell nodes to 2.1 PetaFlops. In this work, only 
data from the 1,440 non-Haswell nodes has been analyzed. Although we have taken care to treat data from the 
accelerated nodes separately, we have not separately analyzed the IvyBridge (24 cores) and SandyBridge (16 core) 
architectures. In future work, we expect to further analyze how differences in hardware may impact the observed 
variability in power use. 

The system uses a Torque resource manager and Adaptive Computing Moab scheduler for monitoring and schedul­
ing all jobs. Peregrine is designed at a Power Usage Effectiveness (PUE) of 1.06. The Peregrine compute nodes are 
instrumented with HP’s integrated Lights-out (iLO) out-of-band system [22], which node-level power and thermal 
data routed through an external server. 

A custom informatics system we developed captures and stores detailed data about how the system is used and the 
jobs that run on it, including per-node power use and detailed system performance data. Data pertaining to jobs is 
captured by parsing the Moab and Torque logs every 15 minutes and storing any available details in a PostgreSQL 
database [23]. Node performance data are captured using NWPerf [24]. NWPerf stores a small amount of recent 
data in a relational database. For long-term data mining and analyses, we archive a set of 54 metrics at a 30 second 
resolution in a custom database cluster solution using the ElasticSearch system [25]. Node power usage is collected 
by polling each node in the system every 10 seconds and storing this information in the same time series cluster. 
Time-series data can be extracted for any job using an internal load-balanced API. Figure 2 gives a schematic of the 
complete informatics pipeline. 

Using this data resource, we have correlated the job schedule data with the iLO power data and observed a significant 
power variance among the different types of HPC applications. For example, VASP [26] and WRF [27] are two com­
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monly used applications on this system with average power draw of less than 100W/node to more than 200W/node, 
respectively. Many jobs exhibit periodic structure in their power use, which creates opportunities for reduced peak 
power use via job alignment. Figure 3 shows the aggregate power use for all 1440 nodes for one day on the Peregrine 
system. The dark blue line gives the aggregate power and the light grey lines overlay the combined power use of 
every node. There is substantial variance at both the node and system level. Through the combination of their usage, 
spikes in excess of 5-10 kW are not uncommon. The wide power variance seen in a typical job schedule presents the 
opportunity to schedule the system with power in mind in order to optimize its impact on the overall campus energy 
budget, without affecting the overall utilization of the system. 

The next section leverages the informatics infrastructure to take a deeper look at the scale and dynamics of typical 
job power use on the system. 
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2  Characterization of Job P   ower Use   

To understand ho  w po wer use v  aries amongst jobs, we analyze a random sample of 10,000 jobs from one year of                

continuous data collection (1.13 million jobs total).        Each job’ s ra w data is e   xtracted from the time series database.       

Because a job may in    volve an y number of nodes in the system, these 10,000 jobs generate 18,510 unique time series                

with between 1 and 155 nodes and ha       ving runtimes between 9 seconds and 327 hours.         

2.1  Data Scrubbing and Outlier Detection      

As with an  y data from a lar    ge comple x system, there is an una     voidable portion of noisy data which must be identified          

and isolated in analysis.     Among the 1,440 iLO chips, some fraction habitually record zero v          alues or out of range      

estimates.  Any time-series with zero v    ariance (constant readings) are e    xcluded  a priori .   Those nodes with Intel     

Phi processors may realistically consume 700 W of po        wer at peak load while non-Phi nodes are lik        ely to consume    

as much as 300 W    . F or both node types, idle po     wer consumption is at or abo     ve 90W . As a first pass, we mark an       y  
measurements outside of these bounds as potential outliers.         Figure 4 sho  ws a histogram of jobs cate     gorized by the    

fraction of outlier measurements.     The bimodal nature of this plot allo      ws for easy filtering:     any time series with     

greater than 50% measurements in the outlier range is e         xcluded from analysis.    

In order to dif   ferentiate those jobs which may ha     ve run erroneously or been prematurely terminated with those that           

ran to completion, we sort jobs by their return codes.           In a number of scenarios the T      orque and Moab components of      

the Adapti ve Computing scheduler may disagree about the final return code of a job            .  By con vention, ne gative return   

codes generally suggest a f    ailure in the scheduler itself or on one of the nodes.            Error codes abo  ve 128 correspond    

to codes returned by terminated jobs.       In this scenario, it is not generally possible to tell whether a runtime error               

caused the scheduled softw   are to terminate on its o     wn, or due to user or scheduler interv       ention.  Other e xit codes may    

correspond to specific error (or success) statuses of the softw         are being run.    For the sak  e of consistenc  y in analysis,    

we assume that a job whose return code from both T          orque and Moab is zero, finished successfully      .  Any other set of     

return codes, we consider as a potential error state.          Unless otherwise specified, our analysis here considers jobs with          

successful termination.   

2.2  Application P ower Use   

In this section we ask whether po      wer use dif  fers meaningfully from application to application.       Classifying jobs by    

application is itself a nontri    vial task which in   volves careful analysis of scripts being run.        At NREL, a member of      

the operations team maintains a list of custom re        gular e xpressions to match ag   ainst submitted scripts.    While this   

system w orks for the b   ulk of non interacti   ve jobs, it becomes stale quickly with time.         To augment this system, we      

use a Naïv  e Bayes machine learning system trained ag      ainst those labels pro   vided by the e   xpert system (see [28]).     In  
this w ay, the machine learning system is able to classify up to 99.9% of applications in the system, man                 y of which    

are a high probability match to trained classifiers for hand-labeled jobs b           ut w ould be missed with the original re      gular  
expression because the e   xact te xt of the script may ha     ve been changed while o    verarching patterns and k   eywords  
remain.  Jobs that cannot be classified, either because the       y were submitted interacti   vely without a script or w     ould be   

a lo w probability match ag   ainst e xisting classifications, are labeled “Unkno    wn”.  Figure 5 sho  ws the distrib  ution of   

jobs by type classified with this combination classifier       .  Descriptions for the most pre    valent jobs are gi   ven in T  able 1.   

Median po wer use across all jobs in the random sample ranges from 115 W to nearly 300 W depending on the job                    .  
Figure 6 pro  vides per -app statistics for those apps with more than ten observ         ations in the sample.     Those jobs with    

“Unknown” applications appear to ha    ve the least po   wer use, presumably because man    y of them (44%) are interacti     ve  
jobs which ha  ve idle time between interactions with the user       .  CHARMM his the highest po    wer use job, with nearly      

291W a verage median po  wer, while man  y other jobs ha   ve a median po   wer use of between 150 and 250W      .  

Total ener gy use is dri   ven by the length of job runtime.        Amber jobs appear to ha    ve the longest runtimes (on a     verage  
50 hours), while the W    indPlantSolver has the shortest runtimes (1.5 minutes).        VASP jobs f  all some where in the    
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Figure 5. Proportion of jobs in sample data set with each application. 
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VASP The Vienna Ab initio Simulation Package (VASP) is a computer program for atomic scale 
materials modelling, e.g. electronic structure calculations and quantum-mechanical molecu­
lar dynamics, from first principles. 

Gaussian Gaussian 09 is the latest in the Gaussian series of programs for calculating molecular 
electronic structure and reactivity. 

WRF The Weather Research and Forecasting Model is a next-generation mesoscale numerical 
weather prediction model designed to serve both operational forecasting and atmospheric 
research needs. WRF is suitable for a broad spectrum of applications across scales ranging 
from meters to thousands of kilometers. 

Amber The Amber package (Assisted Model Building with Energy Refinement) is both a set of 
molecular mechanical force fields for the simulation of biomolecules, and a package of 
molecular simulation programs which includes source code and demos. 

fluent ANSYS Fluent software enables modeling, simulation, and visualization of flow, turbu­
lence, heat transfer and reactions for industrial applications ranging from air flow over 
an aircraft wing to combustion in a furnace. Advanced solver technology provides fast, 
accurate CFD results, flexible moving and deforming meshes and superior parallel scala­
bility. User-defined functions allow the implementation of new user models and extensive 
customization of existing models. 

OpenFOAM OpenFOAM is an open source CFD package that has an extensive range of features to 
solve anything from complex fluid flows involving chemical reactions, turbulence and heat 
transfer to solid dynamics and electromagnetics. 

CHARMM CHARMM is a parallelized molecular dynamics package developed by investigators 
across the globe, including some at NREL. The package offers many accelerated dynamics 
schemes and analysis tools. 

Table 1. Principle applications run on the Peregrine system. Defini­
tions from http://hpc/nrel.gov/users/software/applications. 
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middle with an a   verage runtime of 51 minutes.      Because of their long runtime, Amber jobs use the most ener          gy (11.2   

kWh on a  verage).  The dif ference between the minimum and peak po      wer, referred to here as      power r ange , also v  aries  
substantially by application.    Gaussian jobs ha  ve the lar  gest range (157 W), follo    wed by V  ASP (140 W) and Python      

(136 W).   

2.3  Frequency Domain Anal  ysis  

We observ e that man  y jobs’ po  wer use has a periodic structure which re       veals compute and I/O c    ycles.  We e xpect  
that it may be possible to identify      , and e  ventually predict, periodicities which may allo     w for fine-grained scheduling     

decisions.  To algorithmically identify the principle harmonics in each job’        s time series, we transform the series        

into the frequenc  y domain using a discrete f     ast F ourier transform (DFFT). Once in the frequenc      y domain, peaks are     

identified using a continuous w    avelet tree (CWT) peak detection algorithm, see for e        xample [29], [30], or [31].      For  
each time series, the first three periods (peaks) and their amplitudes are e            xtracted using this method.     Figure 7 sho  ws  
an e xample periodic jobs e   xhibiting both lar  ge (greater than 50 W) amplitude and small amplitude components.           

Figure 8 sho  ws the frequenc  y domain transformation of Figure 7(a) and the matched peaks using the CWT method.               

Periodic jobs account for 45% of our sample, among which 1.4% ha           ve high amplitude periodicity (greater than 50        

W). The second and third harmonics are generally smaller in both amplitude and period and there is a po                  wer la w  
(log/log linear) relationship between total job length and period.          Figure 9 sho  ws the distrib  ution of period and ampli­     

tude for those jobs e    xhibiting natural periodic structure.     Figure 10 sho  ws the log/log linear relationship between job        

duration and length of the first period.        In practice, this periodic structure may ha      ve little ef  fect on aggre  gate po wer  
use metrics since the median po     wer is still a reasonable predictor of central tendenc        y for periodic jobs.     However,  
periodic po wer use may lead to constructi     ve combinations between, or within jobs where peak po        wer use may be     

much higher and peaks may c     ycle.  Power a ware schedulers that account for these periodicities may choose to delay            

jobs with high amplitude periods so that their spik        es are of  fset relati ve to one another   , thereby balancing po   wer use   

across all jobs.    

In the ne  xt section we look at ho     w the combined dynamics of node po      wer use can interact with campus po      wer use.   

9 
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Figure 6. Power use statistics grouped by application. Only those appli­
cations with at least ten observations in our random sample are included. 
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Figure 7. Example time series showing strong periodic structure during the execu­
tion of an application on a single compute node. Large scale periodicities are ap­

parent in (a), a VASP job. Small scale periodicities are apparent in (b), a python job. 
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Figure 9. Observed periodicity in job power use. 
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3  HPC and Campus Integration     

Utility companies are f   aced with the challenge of al     ways meeting their customers’ demand for electricity and g        as.  
During certain times, when ener    gy consumption is at its highest, this challenge intensifies.          This period is called peak      

demand.  In order for utilities to meet peak demand, the        y typically supplement their primary generation methods with         

fossil fuel b  urning electricity generators.    The financial cost of using these generators is passed along to commercial             

consumers as peak demand char    ges.  Typically, these char  ges are based on the customer’     s highest a  verage po wer  
draw in a gi   ven month o  ver a 15-minute period.     

Many intricate systems contrib   ute to a b   uilding’s peak ener  gy consumption.   Some systems, e.g.    lighting, heating,   

and cooling loads, ha   ve an ener  gy consumption profile that v    aries with the seasons.     Other systems such as plug      

and process loads, including data centers, are f       airly independent of the seasons, and dra      w ener gy 24 hours a day    .  
High Performance b  uildings (HPB) require constant management of these systems to maximize ef          ficiency.  HPBs  
implement v arious ener gy ef ficiency strate gies to control and reduce ener     gy consumption.   Unfortunately, these   

strategies are not al   ways designed to reduce peak demand in a coordinated f         ashion.  

High performance computing data centers can be the single most ener          gy intense and highest ener    gy consuming   

component in a commercial b    uilding, and this type of load is only increasing (see [32, 33]).             HPC data centers are     

designed to operate f   ast, po werful machines that command a significant amount of ener        gy, which is re   garded as a    

very high, almost constant load, at all times.         This load is often independent of an      y other needs of the b     uilding and   

the rest of the campus.      Peak demand char  ges are unnecessarily magnified when such high-load b       uilding systems are    

operated in a sub-optimal manner    .  

The NREL data center that houses       Peregrine  makes up about 20% of the total ener       gy consumption for NREL   ’s South   

Table Mountain (STM) campus and the HPC system itself increases the campus peak demand by almost 600 kW                 . A   

typical campus and the aggre    gate HPC node-le  vel po wer loads for September 1-5, 2014 are sho       wn in Figures 11 and      

12, respecti vely.  Note that Figure 12 sho    ws aggre gate HPC node-le  vel po wer reported by iLO, which includes the        

power attrib uted to nodes, including CPUs, DIMMs, etc., b       ut not all of the auxiliary po      wer for infrastructure outside     

of the chips such as the PCIe, storage disks or interconnect de           vices.  

Several features are apparent in Figure 11.        In particular , the nighttime loads are typically higher than the loads at            

mid-day due to NREL   ’s on-campus photo  voltaic (PV) generation.    The peak loads are usually observ     ed on cloudy    

days such as September 5 when o      verall campus load approaches 4.0 MW     . W e include September 5, 2014 in these        

figures because the peak demand for NREL      ’s STM campus w   as set on this day    .  As mentioned abo  ve, NREL ’s utility   

Xcel Ener gy imposes a peak demand char     ge on lar  ge commercial b  usinesses.  The peak surchar  ge for this time period      

was $16.99 per kW   , or a little more than $66,700.        

Figure 12 sho  ws the aggre  gate node-le vel po wer across all of     Peregrine’s  1440 nodes during the September 1-5 time        

period.  is relati ve flat with the total po     wer dra w across all nodes oscillates between 250 kW and 350 kW          . In Section    

4, we will discuss the job-to-job po      wer v ariation and in  vestigate possibilities for e   xploiting this v  ariation.  That is, can    

we schedule jobs when electricity is ine      xpensive (from PV) and, as a result, reduce our monthly peak po           wer char ge?  
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Figure 11. NREL STM campus power load for September 1-5, 2014 (blue) along with cam­
pus photovoltaic (PV) power generation (red). Due to the large on-campus PV generation,
 

campus nighttime loads are typically higher than the loads at midday. The September cam­
pus peak power of around 4 MW was reached on September 5th due to extensive cloud cover.
 

Figure 12. The cumulative power draw across all nodes 
on NREL’s HPC system, Peregrine, for September 1-5, 2014. 
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4  Power-Aware Sc heduling
  

Our research suggests that the po     wer v ariance observ ed on   Peregrine  is being dri  ven by tw  o f actors:  (1) the system’  s  
utilization and (2) the schedule composition of jobs with dif         ferent po wer profiles.   Calculating a verage po wer per   

node of each job across the system from September 1-5 sho          ws that jobs on our system ha      ve significant v  ariance in   

their a verage po wer demand (see Figure 13).      During this w  ork week, the a   verage po wer dra w per node for indi    vidual  
jobs v aried between less than 100W to more than 500W per node.            The lar gest dra ws being associated with jobs      

exercising the co-processors on the Xeon Phi accelerated nodes.          Figure 14 sho  ws a considerable amount of v     ariation  
between dif ferent jobs on Node 750 of       Peregrine; this is consistent across all nodes on the system.            

The v ariance in the job po    wer profiles opens up the possibility of scheduling the HPC system to manipulate the               

system’s o verall po wer profile.   In this research, our goals are to maximize the usage of a           vailable PV po  wer and   

minimize peak po  wer surchar ges from the utility without sacrificing node utilization of the system.            

To understand the potential po    wer sa vings we consider a h    ypothetical rescheduling of the system for the 5-day period          

between September 1-5.    We chose this time period for tw      o primary reasons.    First, as mentioned abo   ve, our peak    

demand charge was observed on September 5th  
      and we are interested in quantifying the potential sa        vings in reduc­   

ing demand.   In addition, we observ   ed se veral sunn y days resulting in a lar     ge amount of PV electricity generation       

followed by a period of cloudy days.        We can calculate an upper bound on the potential ener         gy sa vings by separating    

the schedule into node minutes and sorting those node minutes by a           verage po wer.  Then we can “schedule” the node       

minutes by a  vailable PV po  wer.  For our fi  ve-day period this shifts 7652 kWh from the utility to our on-campus PV            .  
However, breaking jobs apart to optimize the po       wer schedule disre  gards the continuity of jobs on the system.         This of   

course is not practical, b    ut pro vides a clear upper bound of the potential ener        gy sa vings.  

We also considered rescheduling whole jobs based on their a         verage po wer usage using a     simple  bin filling-lik e  
algorithm.  This algorithm is by no means po      wer-optimal.  Rather the intent is to sho     w that significant amounts of      

energy can be shifted in the system’      s po wer profile with relati   vely simple adjustments to the schedule.       The steps   

involved in such a scheme are gi      ven belo w.  

1.  We create a bin for each minute in the schedule and populated the bins with the nodes used by the job sched­                      

ule.  

2.  We first randomly scheduled lar    ge jobs (i.e., jobs with w     allclock times of greater than 48 hours).This ensures         

that the lar  ge jobs will be placed before the schedule becomes too fragmented.            

3.  Next, small high-po  wer jobs (i.e., jobs with w     allclock times of less than 6 hours and a        verage po wer/node of   

greater than 200W) were sorted by po      wer and scheduled, centering their running times on highest a         vailable  
PV. This helped ensure that the periods in the schedule with high PV w             ould be tightly pack   ed with high-po  wer  
jobs.  

4.  Finally the remaining jobs were sorted by po       wer, and scheduled, centering their running times on a        vailable  
bins with the highest PV po     wer.  

We present the results of applying this algorithm to aggre         gate node po  wer on Pere  grine during September 1-5 in      

Figure 15.   The red line sho   ws the dif  ference in po  wer (Schedule Po  wer Delta) if we scheduled jobs using this algo­         

rithm v ersus the observ  ed po wer profile.   The black line represents PV po     wer generation.   Note that we run the most       

power-intense jobs when we are generating lar      ge amounts of PV electricity    .  

While this algorithm is not optimal, it sho       ws that e  ven a naïv  e approach is capable of significant ener      gy sa vings,  
off-setting 1.3 MWh to the on-campus PV o       ver a fi  ve-day period and sha   ving approximately 61.7 kW of    f our campus    

peak.  The peak sa  vings alone results in sa    ving o ver $1000 on the NREL utility bill for September        .  

17 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications 



 

            

          

 

                   

 

              

Histogram of job power September 1−5, 2014
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Figure 13. The distribution of job power across all nodes on NREL’s
 
HPC system, Peregrine, from September 1 through September 5, 2014.
 

Figure 14. A snapshot of node power by job or allocation type on Peregrine over a 7-hr time period. 
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Figure 15. Power difference between a power-aware job scheduling and the orignal September 1-5 schedule
 
(red) and the on-campus PV generation (black). Scheduling small power-intensive jobs as a function of
 

PV availability allows the HPC system to absorb up to 250 kW more PV power than the original schedule.
 
This power-aware schedule would also decrease the September 5th peak power surcharge by 61.7 kW.
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5  Application Ener gy Footprint
   

Our simple, some  what h ypothetical po wer-based schedule sho  ws that non-tri  vial ener gy sa vings can be obtained     

using job po  wer as scheduling metric.     These scenarios are based on perfect kno      wledge of each job’   s ener gy footprint   

and, in practice, this information is currently not a        vailable  a priori  .  Our preliminary w  ork suggests, ho  wever, that   

this kno wledge could lik  ely be obtained from mining historical scheduler      , resource manager  , and iLO data logs.      

To in vestigate this notion a little further     , we did a controlled study of three commonly used applications on             Peregrine  
–  OpenFOAM ([34]), WRF and V    ASP. These applications were run on v      arying sets of nodes, in dif     ferent concurrent   

combinations.  Their ener gy footprints were measured and the results are presented in Figure 16.             

As can be seen from OpenFO     AM, the po  wer v ariance ranges from 160-210 w    atts/node.  The range from WRF and      

VASP are in a tighter    , more predictable windo   w.  While collection of these kinds of historical data, pro        vides us a    

basis for a reasonable ener    gy footprints, it is not al     ways straightforw ard or easy to get a predictably small range for           

all applications, since a number of other parameters, not currently as well understood, may cause these wider po                 wer  
variance.  

Another approach to a better understanding a job’       s ener gy footprint can be obtained from a deeper understanding of           

algorithmic choices.   From application profiles the hotspots can be accurately pin-pointed, which may then indicate              

an alternate method or implementation for that computational k        ernel.  This alternate method or algorithm may result        

in a completely dif   ferent ener gy footprint, causing it to f     all in a dif   ferent “bin” in the abo    ve scheduling algorithm.    

This is illustrated belo   w in a simple e    xample.  

Unfortunately, we are currently unable to holistically measure the complete micro-le          vel ener gy footprint from of a      

scientific application.   That is, we are unable to get detailed, lo        w-level po wer measurements on components such as       

CPU, DIMM, PCIe de   vices, or across the ethernet or IB interconnect using and iLO solution.             However, some of this     

information is e  xposed by Intel’  s Running A  verage Po wer Limit (RAPL) interf   ace on Sandy Bridge and subsequent       

micro-processor chip architectures such as Ivy Bridge.        RAPL pro vides platform softw  are with the ability to monitor     ,  
control, and get notifications on SOC po      wer consumptions.   Here the platforms are di    vided into domains for fine      

grained control.   These domains include package, DRAM controller     , CPU core (Po   wer Plane 0), graphics uncore      

(power plane 1), etc.     The purpose of this interf    ace dri ver is to e   xpose RAPL for userspace consumption and can be         

accessed directly or through the use of third-party tools such as P           API [35].   

5.1  Example Application   

To illustrate the process of obtaining and analyzing a rele         vant application’ s ener gy footprint, we used standard      

matrix-matrix multiplication e  xamples.  These e xamples are similar in that the     y perform the same operations and       

obtain the same answer   , b ut v ary from an implementation standpoint.      Method 1 is a naïv    e and inef  ficient implemen­  

tation (Method 1), whereas the other (not sho       wn) is an ef   ficient implementation using BLAS function calls from        

Intel’s MKL performance library   .  These tests were run on a Dell Po       werEdge R470 serv  er system.  

:
 
for(j=0;j<MATRIX_SIZE;j++) {
 
for(i=0;i<MATRIX_SIZE;i++) { 
s=0; 
for(k=0;k<MATRIX_SIZE;k++) { 
s+=a[i][k]*b[k][j]; 

} 
c[i][j] = s; 

} 
} 
: 

Method 1 

Before e xplaining the output from our e     xperimental runs, we pro   vide a brief e   xplanation of the RAPL semantics.      

The  PPO_ENERGY  or  Power Plane Ener  gy  refers to the ener   gy used by the all the CPU cores in a single package or              

socket.  The  DRAM_ENERGY  is some what self-e xplanatory.  The  PACKAGE_ENERGY  is the total ener   gy used in a     

single package from all the cores, memory and accelerators as applicable.            The total ener  gy consumed during the run      

is gi ven in   Joules  while the a  verage po wer is e  xpressed in   Watts  on the side.    
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Figure 16. Power consumption of three common NREL HPC applications (OpenFOAM, WRF, and VASP).
 
The box plots represent the range of power/node readings obverserved across a range of nodes.
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5.2  Analysis of Results    

We ran the methods under different scenarios and obtained results on their energy footprints. The first scenario’s 
core implementation is outlined in the “Method 1” box above. The output from this run is shown in the “Method 
1 Results” box and shows a runtime of 15.8s. The output for the MKL implementation (see “Method 2 Results”) 
shows that the elapsed time is almost 150 times faster. The difference in runtimes is also reflected in the total energy 
consumed by the package during the run, although average power is higher for “Method 2”. 

Starting measurements...
 

Doing a naive 1536x1536 MMM...
 
(n,n) bottom right corner element of
 
matrix C = : -4276756635058176.000000
 

Stopping measurements, took 15.767s, gathering results...
 

Energy measurements:
 
rapl:::PACKAGE_ENERGY:PACKAGE0 285.218246J (Average Power 18.1W)
 
rapl:::PACKAGE_ENERGY:PACKAGE1 627.962112J (Average Power 39.8W)
 
rapl:::DRAM_ENERGY:PACKAGE0 212.298676J (Average Power 13.5W) 
rapl:::DRAM_ENERGY:PACKAGE1 225.826981J (Average Power 14.3W) 
rapl:::PP0_ENERGY:PACKAGE0 57.550034J (Average Power 3.6W) 
rapl:::PP0_ENERGY:PACKAGE1 397.744507J (Average Power 25.2W) 

Method 1 Results 

While it is unreasonable from a user’s perspective to replace an algorithm running 150x faster than its counterpart 
with a lower average power, it is more prudent to focus on the total energy to solution as a more reasonable metric. 
This example does however point to a larger context where, in general, two or more differing implementations for 
an application with different energy footprints may be considered for different scheduling options in order to satisfy 
building or campus energy constraints. Such implementations could lead to savings, provided the performance or 
energy footprints are not as disparate as in this matrix-matrix multiplication example. 

We extend the above example to illustrate the scheduling options possible for this campus. From the analysis sur­
rounding the campus load profile in Figure (11), the peak-demand periods straddle the NREL’s local PV generation 
during middle of the day, or at night. Given the thermal footprints that we have seen above, there are a couple of 
ways in which the peak demand can be reduced, e.g., using two different implementation of similar applications. 
That is, if these single runs need to be normalized, then the higher average power usage or “Method 2” could be 
scheduled to be run during off-peak hours or during mid-day, while the “Method 1” could be scheduled at night or 
during the higher demand periods during the day. If these runs are not needed to be normalized then the longer run 
time or greater power consumer job from “Method 1”, can be scheduled during NREL’s local PV generation pe­
riod when power draw is the least. Either of these approaches depending on the application run needs, could lead to 
possible lowering of the peak demands from the grid, which in turn would lead to savings. 

Starting measurements...
 

This example computes real matrix C=alpha*A*B+beta*C using
 
Intel MKL function dgemm, where A, B, and C are matrices of
 
size (1536,1536) and alpha and beta are double precision scalars
 

(n,n) bottom right corner element of matrix C =-4276756635058176.000000
 

Stopping measurements, took 0.097s, gathering results...
 

Energy measurements:
 
rapl:::PACKAGE_ENERGY:PACKAGE0 4.478149J (Average Power 46.3W) 
rapl:::PACKAGE_ENERGY:PACKAGE1 5.971725J (Average Power 61.7W) 
rapl:::DRAM_ENERGY:PACKAGE0 1.387238J (Average Power 14.3W) 
rapl:::DRAM_ENERGY:PACKAGE1 1.638504J (Average Power 16.9W) 
rapl:::PP0_ENERGY:PACKAGE0 3.079437J (Average Power 31.8W) 
rapl:::PP0_ENERGY:PACKAGE1 4.537292J (Average Power 46.9W) 

Method 2 Results 

Since matrix-matrix kernels are used in a wide-variety of scientific applications, under a different scenario, we ran 
each of the methods multiple times in a single run. The main computation was done inside a loop, as would be the 
case in any application where the matrix-matrix kernel is the main compute component. The objective here was to 
get a better understanding of their collective thermal footprints from multiple runs. 

From Figure 17, we see that the application using “Method 1” obtains an average power of around 25W from CPU 1, 
while its total package 1 energy is around 40W. The average power results are similar to the results observed in the 
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Figure 17. Energy footprint from multiple runs from Method 1 

single run case presented in “Method 1 Results”. 

Observing from Figure(18), we see that the CPU 1 averages around 95W, while the total package 1 energy, is av­
eraging around 120W. Comparing this to the single run case, there appears to be an almost two-fold increase in the 
PPO_Energy from Package 1, or the energy from all its CPU cores in Package 1. Although the explanation of this 
variance on the total energy relative to a single run case is not entirely clear, a plausible explanation may be that the 
single runs are so efficient (0.097s) that the overhead from the multiple runs in a loop contribute a relatively high 
time – and energy – in aggregate. 

From the discussion of the campus load profile both in the previous section and above for the single run case, it is 
possible to lower peak demand by scheduling the application using “Method 2” during the daytime while NREL’s 
PV generation is at its highest. Similarly the application using “Method 1” could be scheduled at night or at other 
peak demand periods during the day, due to its lower power footprint. This could possibly generate cost savings by 
lowering the peak demand from the data center. 

Either of these methods used, extrapolated to a larger scale, will have a direct effect on the peak demand depending 
on when they are run or when an appropriate scheduling slot is used for the method chosen. Indeed, there is immense 
value in application profiling and optimization, due to their direct energy footprint ramifications. 
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Figure 18. Energy footprint from multiple runs from Method 2 
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6 Predicting Power Characteristics

In scenarios where algorithmic static analysis may be too burdensome or simply inaccessible, power characteristics
may be inferred by mining historical power use data from similar jobs. In this section we look at the possibility of
predicting key metrics of power use from limited available information provided to the scheduler using standard
regression modeling approaches.

6.1 Regression Modeling

At the time of job submission, several factors are available to the scheduler which might be used to infer the power
use profile of a given job:

• Application – the application running is inferred using a system of regular expressions matching on the user’s
script augmented with a Naïve Bayes classifier. that also takes into account the user and group’s pattern of use.
This string (e.g., ’gaussian’, VASP’, etc.) is available at the time of submission.

• PPN – requested processors per node.

• Requested Duration – wall clock time requested by the user.

• Phi – a Boolean field indicating whether or not the job is requesting Phi processors.

• Interactive – a Boolean field indicating whether or not the job is run interactively.

• Account, User – the account and user running the job.

• Queue – the queue the job has been submitted to.

We attempt to fit a least squares regression model against both a full and reduced model to predict the median power,
maximum power, power spread (range of power measurements), first period (for periodic jobs), and amplitude. The
full model includes all available factors, while the reduced model is limited to only the most generalizable and easily
obtained parameters: application, PPN, and requested duration. In addition to a standard least-squares regression,
multiple adaptive regression splines (MARS) are used to adjust for nonlinearities in the model relationships. MARS
models fit piecewise linear regressions to portions of the data, two to 32 breaks are considered during fitting, see
[36], and [37]. Standard 10-fold cross validation with 25% of data withheld for testing is used to determine model
performance. Table 2 summarizes the results of this experiement.

Metric Method Full Model Reduced Model
RMSE R2 RMSE R2

Median Power (W) LM 47.2 0.37 55.8 0.11
Median Power (W) MARS 43.9 0.45 50.9 0.26

Max Power (W) LM 41.9 0.43 52.1 0.14
Max Power (W) MARS 39.5 0.51 47.8 0.27

Power Range (W) LM 47.1 0.32 52.1 0.14
Power Range (W) MARS 42.0 0.45 45.3 0.35
First Period (Min) LM 20.2 0.30 20.8 0.27
First Period (Min) MARS 19.6 0.35 20.2 0.32

First Amplitude (W) LM 16.2 0.27 16.1 0.24
First Amplitude (W) MARS 15.3 0.35 15.8 0.27

Table 2. Performance of least squares regression and MARS fits for each desired out-
come variable using a 10-fold cross validation with 25% of training data withheld.
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From this experiment, we can see that MARS provides a small improvement over standard multiple regression in 
nearly all cases. Among the aggregate power metrics, predicting maximum power has the smallest error rate, how­
ever performance is approximately 40-45 W RMSE regardless of which power metric is being predicted. While this 
level of accuracy may allow for prioritizing jobs based on their power use in a schedule, it does not allow for finely 
constrained power optimization on an entire system scale — even a RMSE of 40 W would result in the potential 
for an over or under estimate on the scale of 57.6 kW across the 1,440 nodes, or approximately 16 to 23% of total 
load1. Applications which may need to stay under a hard power cap can under provision their system so that errors in 
estimating power use are still under the desired threshold. 

1Assuming load between 250 and 350 kW. 

26 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications 



 

 

              

7  Summary  

In order to reach an e     xaFLOP computing en  vironment while staying under the DOE recommended 20 MW po         wer  
threshold, alternati ve strate gies for managing po   wer in an HPC enterprise must be e       xamined and, in promising cases,      

realized.  In this paper  , we presented the implications of managing a high performance computing scheduler with a               

facility’s photo voltaic installation in mind.     When combined and adopted, not only is o       verall ener gy (kWh) reduced,    

but peak demand (kW) is also reduced, and hence a lo          wer utility bill is the result.       

The inte grated HPC data-center at the NREL campus of       fers a v  aluable testbed for e   xploring interactions between a     

2.5  MW PV array and an ener     gy-efficient super computer  .  We belie ve this configuration will typify future campuses,        

which seek to optimize ener    gy use and w   orkloads through application monitoring, profiling, and rescheduling.        In  
particular, we suggest that the measurement and continued monitoring of HPC applications with respect to po               wer  
will lead to scheduling po    wer-intensive jobs when po   wer is not at a premium.       At a lo  wer micro-le vel, po wer profiling   

of those applications leads to the possibilities that some of these applications may be optimized using more “po                 wer  
friendly” methods, as illustrated by the simple matrix-matrix e        xamples.  Additionally, informatics systems that     

capture detailed information about per    -job po wer use enable    ex post facto    data mining that may be le     veraged to   

produce accurate inferences of k    ey po wer metrics, e  ven with the minimal information pro     vided to the scheduler   .  This  
would lik ely lead to additional optimization on job rescheduling to reduce o          verall ener gy consumption and costly     

peak demand char  ges.  

The suggested strate  gies presented here are lar    gely first steps on the path to      wards smooth, ef  ficient, and sensible soft­    

ware solutions for po   wer-aware HPC. Ho  wever, these rough methodologies do present a no       vel and cle  ver approach   

to computing by combining application po     wer monitoring, profiling and optimization/rescheduling algorithms with        

utility rates and considerations.     In practice, softw  are solutions will complement systems-le    vel hardw are control, e.g.,    

processor scaling and node po    wer-down.  Further w ork is needed to e    xplore ho w to reduce error in predictions of        

key po wer metrics, ho  w jobs can be aligned to produce smoother po        wer loads and a   void constructi ve interference   

between jobs’ compute loops, and ho     w these constraints can be best inte      grated into modern scheduling softw    are.  
Ultimately, optimal w  orkflow management will require a holistic vie      w of job scheduling requirements resolving job        

priority, quality of service, site specific decisions, and hardw        are control with ener   gy resource constraints.    

27 
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