

Electric Motor Thermal Management R&D

Kevin Bennion Organization: NREL Email: kevin.bennion@nrel.gov Phone: 303-275-4447

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

NREL/PR-5400-63004

Team members/collaborators: Justin Cousineau, Charlie King, Gilbert Moreno, Caitlin Stack (NREL) Tim Burress, Andy Wereszczak (ORNL)

DOE Vehicle Technologies Office Electric Drive Technologies FY15 Kickoff Meeting

Oak Ridge National Laboratory Oak Ridge, Tennessee November 18 – 20, 2014

This presentation does not contain any proprietary or confidential information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Thermal Management Enables More Efficient and Cost-Effective Motors

State of the Art

- Water-ethylene glycol stator cooling jacket
- Automatic transmission fluid (ATF) impingement on motor end windings

Why Motor Cooling

- Current Density
 - o Size
 - o Weight
 - Cost
- Material Costs
 - o Magnets
 - Rare-earth materials
 - Price variability
- Reliability
- Efficiency

Passive and Active Cooling

Challenges

Problem

Extracting heat from within the motor to protect the motor and enable high power density

Challenges

- Orthotropic (direction dependent) thermal conductivity of lamination stacks
- 2. Orthotropic thermal conductivity of slot windings
- 3. Orthotropic thermal conductivity of end windings
- 4. Convective heat transfer coefficients for ATF cooling
- 5. Thermal contact resistance of stator-case contact
- 6. Cooling jacket performance

Motor Cooling Section View

Proposed Research Objectives

Motor Cooling Section View

Research Focus

Automatic Transmission Fluid Heat Transfer

Photo Credit: Jana Jeffers, NREL

Material and Thermal Interface Testing

Photo Credit: Justin Cousineau, NREL

Measure convective heat transfer coefficients for ATF cooling of end windings

• Measure interface thermal resistances and orthotropic thermal conductivity of materials

Objective

Tasks

Support broad industry demand for data to improve and better understand motor thermal management

Photo Credit: Jana Jeffers, NREL

Measure heat transfer coefficients for ATF cooling of end windings Impingement on Motor End Windings

Photo Credit: Kevin Bennion, NREL

Average Heat Transfer Coefficients

- Establish credibility of experiment and data through comparison of plain target surface results to existing correlations in literature
- Produce new data for textured surfaces representative of end-winding wire bundles

Spatial Mapping of Convective Heat Transfer Coefficient

- Jet local convective heat transfer
- Large-scale end-winding convective heat transfer mapping

ATF Impingement Target Surfaces

- ATF impingement baseline target is plain, polished copper with 600-grit sandpaper
- Additional targets mimic wire bundles with insulation (18, 22, and 26 AWG)

Credit: Gilbert Moreno, NREL

Comparison to Plain Surface Correlations

Comparison of test results to literature correlations on flat target surface

ATF fluid properties provided by Ford

Local convective heat transfer coefficient

- Jet impingement heat transfer coefficients are not uniform over the entire cooled surface
- The highest heat transfer coefficients occur at the jet impact zone
- The rate of decrease in the heat transfer coefficient is unknown

TLC Experimental Apparatus

- Fabricated a test section to spatially measure jet impingement heat transfer coefficients on a discrete heat source.
- Initial tests will be conducted using thermochromic liquid crystals (TLCs), followed by infrared imaging

NATIONAL RENEWABLE ENERGY LABORATORY

Accomplishments to Date – FY14

Passive Thermal Stack

Material Measurements

Measure interface thermal resistances and orthotropic thermal conductivity of materials

Effective Thermal Properties for Motor Design and Simulation

Photo Credit: Kevin Bennion, NREL

Photo Credit: Justin Cousineau, NREL

Stacked lamination thermal conductivity

- Quantified thermal contact resistance between motor laminations
- Supports improved thermal models for motor design and thermal analysis

Winding effective thermal properties

- Initiated work to measure orthotropic thermal properties
- Supports improved thermal models for motor design
- Enables analysis to improve thermal properties of motor materials

Case-to-stator thermal contact resistance

• Developed ability to measure case-to-stator thermal contact resistance

• Lamination-to-lamination thermal contact resistance calculated from slope of weighted curve fit

Error bars represent 95% confidence level

• The lamination-to-lamination thermal contact resistance is affected by the surface topography and contact pressure

Error bars represent 95% confidence level

• The effective through-stack thermal conductivity approaches the asymptote within 30–50 laminations

Error bars represent 95% confidence level

In-Plane Lamination Thermal Conductivity

Photo Credit: Justin Cousineau, NREL

 Confirmed in-plane thermal conductivity is close to bulk material thermal conductivity

- 1. Based on measured thermal conductivity of similar material
- 2. Calculated assuming 99% stacking factor
- 3. Average of measured orthotropic property in setup shown in figure

FY15 Tasks to Achieve Key Deliverable

2014 Oct	Νον	Dec	2015 Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	
ATF impingement experiments to measure variation in local convective						Publications for End- Winding Heat Transfer						
heat tra	nsfer co	efficient	S		End-w transf	vinding s er coeff	spatial ma icients or	apping c end-wi Go/	of ATF co nding fe Sele	nvective atures ect passi	heat ve	
Thermal measurements of passive thermal stack elements in collaboration with Oak Ridge National Laboratory (ORNL)								No-Go thermal materials for bench-level testing in partnership with ORNL				
Winding thermal properties												
• Con	tact inte	rfaces										
• Thei mot	rmal ana or resea	lysis sup rch	port in c	ollaborat	ion with	ORNL						

Local ATF Jet Heat Transfer Mapping

Spatially measure jet impingement heat transfer coefficients on a discrete heat source.

Thermal-electrical finite element analysis (FEA) reveals edge effects mostly associated with copper bus bars

- ΔT across foil 47°C (most of heat loss to copper bars)
- 85% of foil heater power dissipated by jet

Local ATF Jet Heat Transfer Mapping

Spatially measure jet impingement heat transfer coefficients on a discrete heat source.

Use of guard heaters minimize edge effects through the use of guard heaters

- ΔT across foil 7°C (heat loss to copper decreased)
- 98% of foil heater power dissipated by jet

Large-scale end-winding convective heat transfer mapping

Photo Credit: Kevin Bennion, NREL

- Map the large-scale spatial distribution of the heat transfer coefficients over motor end windings
- Study effects of
 - Oil jet placement
 - ATF free flow over endwinding surfaces
 - Jet interactions

Large-scale end-winding convective heat transfer mapping

Custom heat transfer sensor package in end winding

- Target surfaces installed on three surfaces to measure heat transfer coefficients
 - Outside diameter surface
 - Inside diameter surface
 - Axial end surface

Large-scale end-winding convective heat transfer mapping

- 1. Fluid Jet Geometry
 - Location and orientation of ATF fluid jets
 - Nozzle type/geometry
 - System flow rate
 - Jet velocity
 - Parasitic power
- Relative positon between measured heat transfer and jet location
 - Impact of gravity and free fluid flow
 - Fluid interactions between jets

Passive Thermal Stack

- Case thermal contact resistance
 - Case surface characteristics
- Slot and end-winding effective thermal conductivity
- Potting materials for end-winding cooling

Sample Motor End Windings

Photo Credits Kevin Bennion, NREL

NATIONAL RENEWABLE ENERGY LABORATORY

Sample Case-Stator Contact Surface for Motor Cooling

Example Interference Fit with Stator and Cooling Jacket Case

Project Summary

Project Duration: FY14–FY16 Overall Objective: Provide data to support broad Industry demand for improving motor thermal management

FY14 Focus: Characterized ATF impingement average heat transfer coefficients and completed lamination-tolamination thermal contact resistance measurements

Deliverable:

Completed measurement of average convective heat transfer coefficients with ATF and compared results of plain surface data to correlations in the open literature. Completed lamination-to-lamination thermal contact measurements and stack effective thermal conductivity

Go/No-Go:

Developed test apparatus to measure local impingement heat transfer results with ability to measure local heat transfer coefficients. Developed test hardware design and plan for representative wire bundle geometries

FY15 Focus: Spatially map ATF impingement convective heat transfer coefficients and measure passive thermal stack thermal resistances

Deliverable: Publish end-winding heat transfer performance data

Go/No-Go: In collaboration with ORNL select passive thermal stack materials for bench-level thermal testing

FY16 Focus: Confirm convective heat transfer performance on in-situ motor thermal performance tests.

Deliverable: Report heat transfer performance and model validation

Go/No-Go: Complete in-situ motor thermal tests for ATF cooling

Publications:

K. Bennion and J. Cousineau, "Sensitivity Analysis of Traction Drive Motor Cooling," in *IEEE Transportation Electrification Conference and Expo (ITEC)*, 2012, pp. 1–6.

NATIONAL RENEWABLE ENERGY LABORATORY

Technology-to-Market Plan

- This research impacts industry needs because ...
 - The heat flow, temperature distribution, and fluid dynamics for motor thermal management are complex problems
 - Data on cooling convective heat transfer coefficients and heat spreading within the motor are needed to improve motor performance within cost, efficiency, and reliability constraints
- This research is on the path to commercialization because ...
 - The research is reviewed by and shared with industry experts
 - The data are used by industry experts in the analysis and design of electric motors

Partners/Collaborators

Industry

- Motor industry suppliers, end users, and researchers
 - Input on research and test plans
 - Sharing of experimental data, modeling results, and analysis methods
 - Companies providing research input, requesting data, or supplying data include: Ford, Chrysler, GM, Tesla, UQM Technologies, Remy, Magna, John Deere, Oshkosh

Other Government Laboratories

- o ORNL
 - Support from benchmarking activities
 - Collaboration on motor designs to reduce or eliminate rare-earth materials
 - Collaboration on materials with improved thermal properties
 - Potting materials for end windings for improved heat transfer
 - Slot winding materials

Acknowledgments:

Susan Rogers and Steven Boyd U.S. Department of Energy

For more information, contact:

Principal Investigator Kevin Bennion Kevin.Bennion@nrel.gov Phone: (303)275-4447

Team Members:

Justin Cousineau Charlie King Gilbert Moreno Caitlin Stack Tim Burress (ORNL) Andy Wereszczak (ORNL)

APEEM Task Leader:

Sreekant Narumanchi Sreekant.Narumanchi@nrel.gov Phone: (303)275-4062