ELECTRIC MOTOR THERMAL MANAGEMENT FOR ELECTRIC TRACTION DRIVES

Kevin Bennion, Justin Cousineau, Gilbert Moreno National Renewable Energy Laboratory

SAE 2014 Thermal Management Systems Symposium September 22–24, 2014 Denver, CO

NREL/PR-5400-62919

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC

Relevance – Why Motor Cooling?

- Current Density
- Magnet Cost
 - Price variability
 - Rare-earth materials
- Material Costs
- Reliability
- Efficiency

Sample electric traction drive motor.

Motor Thermal Management – Passive and Active Cooling

Problem

Extracting heat from within the motor to protect motor and enable high power density

Example

4 to 9 kW of heat could be produced with an 80-kW motor operating with an efficiency between 90% and 95% [1]. **Motor Cooling Section View**

[1] S. Oki, S. Ishikawa, and T. Ikemi, "Development of High-Power and High-Efficiency Motor for a Newly Developed Electric Vehicle," SAE International, 2012-01-0342, Apr. 2012.

ATF: Automatic Transmission Fluid

SAE INTERNATIONAL

Problem

Extracting heat from within the motor to protect motor and enable high power density

Challenges

 Orthotropic (direction dependent) thermal conductivity of lamination stacks

Problem

Extracting heat from within the motor to protect motor and enable high power density

Challenges

- Orthotropic (direction dependent) thermal conductivity of lamination stacks
- 2. Orthotropic thermal conductivity of slot windings

Problem

Extracting heat from within the motor to protect motor and enable high power density

Challenges

- Orthotropic (direction dependent) thermal conductivity of lamination stacks
- 2. Orthotropic thermal conductivity of slot windings
- 3. Orthotropic thermal conductivity of end windings

Problem

Extracting heat from within the motor to protect motor and enable high power density

Challenges

- Orthotropic (direction dependent) thermal conductivity of lamination stacks
- 2. Orthotropic thermal conductivity of slot windings
- 3. Orthotropic thermal conductivity of end windings
- 4. Convective heat transfer coefficients for ATF cooling

Problem

Extracting heat from within the motor to protect motor and enable high power density

Challenges

- Orthotropic (direction dependent) thermal conductivity of lamination stacks
- 2. Orthotropic thermal conductivity of slot windings
- 3. Orthotropic thermal conductivity of end windings
- 4. Convective heat transfer coefficients for ATF cooling
- 5. Thermal contact resistance of stator-case contact

Problem

Extracting heat from within the motor to protect motor and enable high power density

Challenges

- Orthotropic (direction dependent) thermal conductivity of lamination stacks
- 2. Orthotropic thermal conductivity of slot windings
- 3. Orthotropic thermal conductivity of end windings
- 4. Convective heat transfer coefficients for ATF cooling
- 5. Thermal contact resistance of stator-case contact
- 6. Cooling jacket performance

Research Objective

Motor Cooling Section View

SAE INTERNATIONAL

ATF Flow

End Winding

Impingement

ATF

Shaft

ATF Flow

Research Focus

 Measure interface thermal resistances and orthotropic thermal conductivity of materials

Photo Credit: Jana Jeffers, NREL

Material and Thermal Interface Testing

Research

Tasks

Support broad industry demand for data to improve and better understand motor thermal management

Active Convective Cooling – ATF Heat Transfer Coefficients

• Measure convective heat transfer coefficients for ATF cooling of end windings

ATF Impingement Test Section

<i>D</i> (mm)	<i>d</i> (mm)	S (mm)	S/d	D/d
12.7	2.06	10	5	6.2

Oil Impingement Test Section Schematic

Photo During Operation

ATF Impingement Target Surfaces

	Baseline	18 AWG	22 AWG	26 AWG
Radius (wire and insulation), mm	N/A	0.547	0.351	0.226
Total wetted surface area, mm ²	126.7	148.2	143.3	139.2

AWG = American Wire Gauge

SAE INTERNATIONAL

ATF Heat Transfer Coefficients

Note: Heat transfer coefficient calculated from the base projected area (not wetted area)

SAE INTERNATIONAL

ATF Heat Transfer Coefficients

18 AWG sample data for all inlet temperatures

ATF flowing over surface

Note: ATF viscosity decreases as temperature increases

Passive Thermal Design – Material and Interface Thermal Measurements

- Measure interface thermal resistances and orthotropic thermal conductivity of materials
- Stacked lamination thermal conductivity
- Slot windings

Effective thermal properties for motor design and simulation

Passive Thermal Design – Effective Through-Stack Thermal Conductivity

Passive Thermal Design – Effective Through-Stack Thermal Conductivity

Error bars represent 95% confidence level

Passive Thermal Design -Effective Through-Stack Thermal Conductivity

Error bars represent 95% confidence level

Passive Thermal Design – Effective Through-Stack Thermal Conductivity

Passive Thermal Design – Effective Through-Stack Thermal Conductivity

Passive Thermal Design – Effective In-Plane Lamination Stack Thermal Conductivity

 Measured in-plane thermal conductivity of lamination stacks provided by Oak Ridge National Laboratory (ORNL)

Passive Thermal Design – Effective In-Plane Lamination Stack Thermal Conductivity

 Confirmed in-plane thermal conductivity is close to bulk material thermal conductivity

- 1. Based on measured thermal conductivity of similar material
- 2. Calculated assuming 99% stacking factor
- 3. Average of measured orthotropic property in setup shown in figure

SAE INTERNATIONAL

SAE INTERNATIONAL

oto Credits: Justin Cousineau, NREL

Passive Thermal Design – Effective Wire Bundle Cross-Slot Thermal Conductivity

Measured cross-slot thermal conductivity of wire bundles prepared and provided by ORNL

Force Applied

Passive Thermal Design – Effective Wire Bundle Cross-Slot Thermal Conductivity

- The agreement between model and experimental results depends on assumptions for fill factor, voiding, and thermal contact resistance
- Modeling approach appears to match, but additional testing is needed

Note: Wire fill factor includes copper and insulation

Conclusion

Relevance

- Supports transition to more electric-drive vehicles with higher continuous power requirements
- Enables improved performance of non-rare earth motors and supports lower cost through reduction of rare earth materials used to meet temperature requirements (dysprosium)

Technical Accomplishments

- Received sample motor materials from ORNL and measured orthotropic thermal conductivity
- Completed expanded lamination thermal tests
- Measured ATF heat transfer convection coefficients on target surfaces
- Received ATF fluid property data from Ford Motor Company to support future work to develop correlations and computational fluid dynamics models

Collaborations

- Motor industry representatives: manufacturers, researchers, and end users (light-duty and medium/heavy-duty applications)
- Oak Ridge National Laboratory

Acknowledgments:

Susan Rogers and Steven Boyd, U.S. Department of Energy

Team Members:

Justin Cousineau (NREL) Jana Jeffers (NREL) Charlie King (NREL) Gilbert Moreno (NREL) Tim Burress (ORNL) Andy Wereszczak (ORNL)

For more information, contact:

Principal Investigator Kevin Bennion Kevin.Bennion@nrel.gov Phone: (303) 275-4447

APEEM Task Leader:

Sreekant Narumanchi Sreekant.Narumanchi@nrel.gov Phone: (303) 275-4062