

Selected Highlights of LCA Activities at NREL

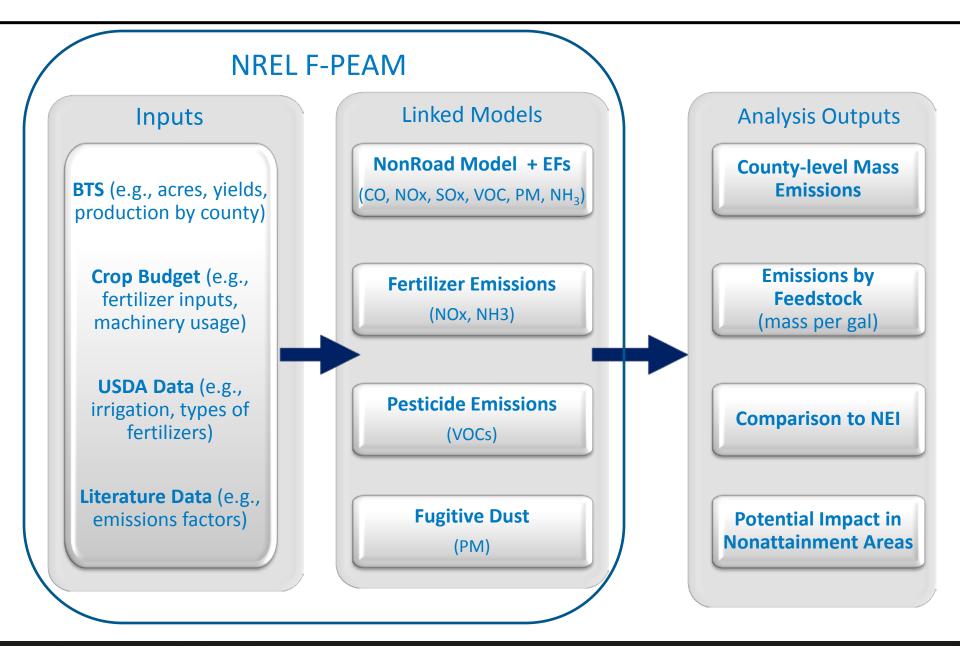
October 2, 2013

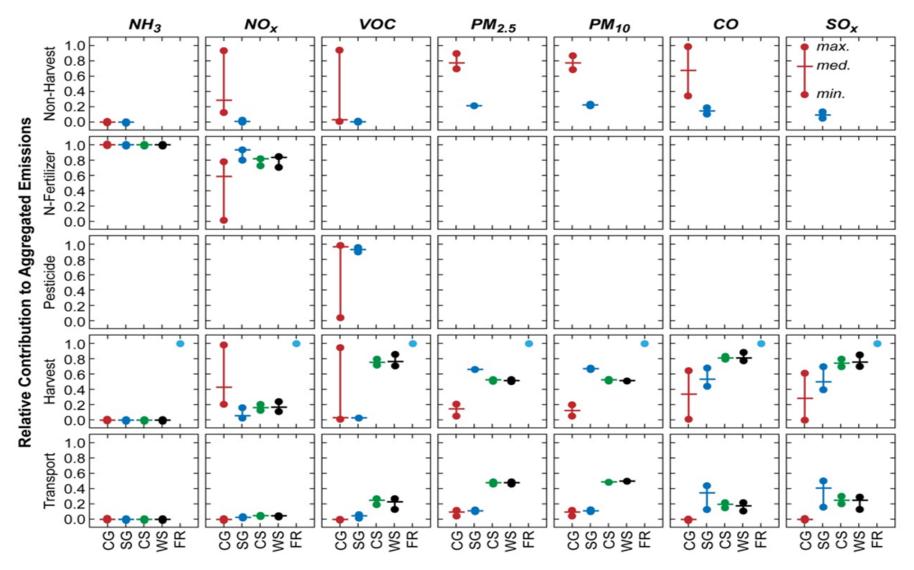
NREL/PR-6A20-60059

TEAM: Alberta Carpenter Garvin Heath Daniel Inman Margaret Mann Ethan Warner Yimin Zhang

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

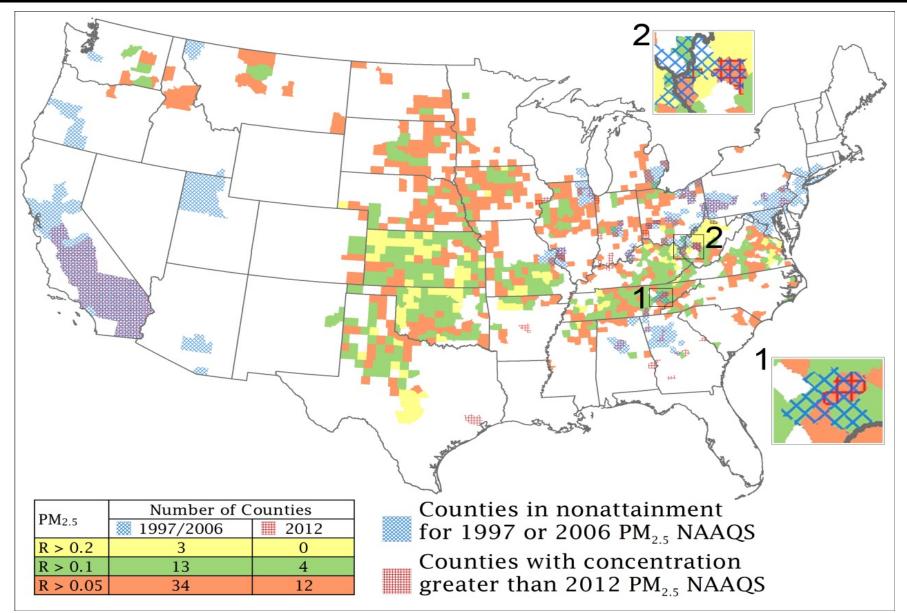
- 1. Life cycle air pollutant emissions inventory for biofuels; spatially, temporally, and chemically explicit life cycle inventories
- 2. Materials Flows through Industry (MFI) tool for energy impacts
- 3. Land use change modeling methodology.

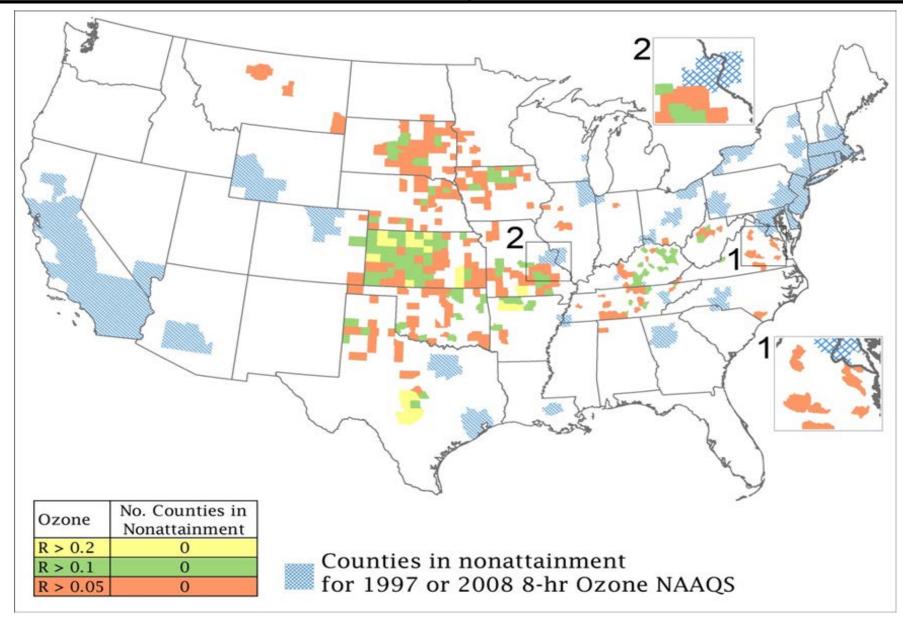



Comparative air pollutant emissions of selected biofuels feedstocks in 2022

Yimin Zhang, Garvin Heath, Alberta Carpenter, Noah Fisher

NREL Feedstock Production Emissions to Air Model (F-PEAM)

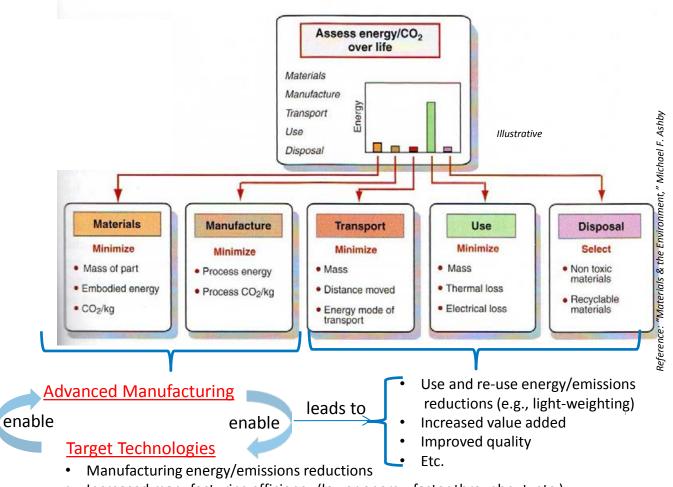

Contribution by Activity Category to County Emissions: First Step to Target Setting


Blanks represent no emissions of that pollutant for that feedstock.

Source: NREL Draft – Do Note Cite, Quote or Distribute

Counties with Cellulosic Feedstock O₃ Precursor Emissions Exceeding 3 NEI Thresholds, Alongside Current O₃ Nonattainment Areas

Counties with Cellulosic Feedstock O₃ Precursor Emissions Exceeding 3 NEI Thresholds, Alongside Current O₃ Nonattainment Areas



Alberta Carpenter, Margaret Mann

DOE AMO Life Cycle Approach

Increased manufacturing efficiency (lower energy, faster throughput, etc.)

• New and improved processes/product.

What are the opportunities for manufacturing impacts across the life cycle?

Materials Flow through Industry (MFI) Tool

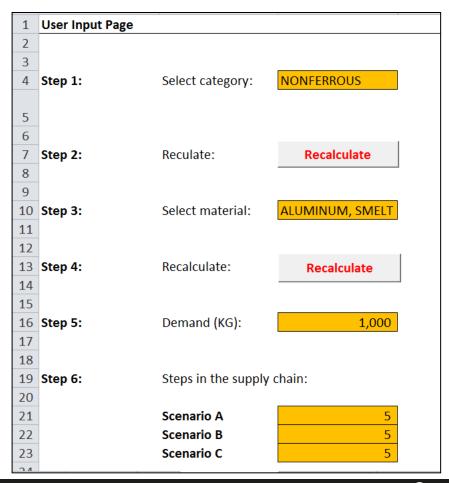
Function: A tool enables scenarios of changes in energy efficiency of processes, changes in materials use, changes in carbon intensity of materials:

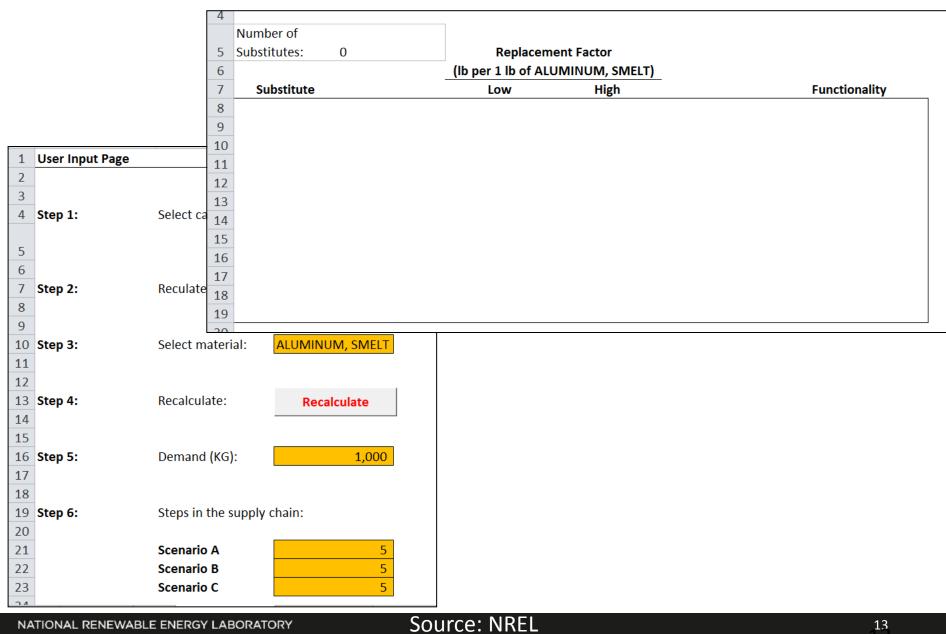
- Process comparisons
- Material substitution
- Sector energy efficiency potential
- Grid mix evaluation
- Track energy & GHG emissions at the per unit (mass) product level

Data Driven:

- Use pre-existing lifecycle (LC) data readily adopted for parts of the sector (USLCI, ecoinvent).
- Market data and recipes for over 500 products and 1200 processes
- Recipes (mass & energy balance) of the manufacturing step: raw materials; fuel inputs; product & co-product outputs; GHG emissions (SRI).

Output:


- Overall material & energy balance material flows of through supply chain.
- Energy & GHG emissions tracked at the per unit product level and at market use level.
- Tabular and graphical representation of "base case" and "scenario" (e.g. after material substitution).


MFI Tool Structure

- IO process based matrix model
- Tracks energy and fuel derived • carbon emissions
 - Inputs and outputs are based on LCI and process economics data (proprietary)
- Includes 500+ products, 1200+ • processes
- All flows accounted for in kg or kwh.

Total impact of a product is equal to the cumulative impact of the commodities and intermediates that are needed to produce that product

			Choose Baseline	Choose Baseline	Choose Baseline
Product: ALUMINUM, SMELT			Input Own New	Input Own New	Input Own New
	Baseline	Equal	Weighting	Weighting	Weighting
Process	Weighting	Weighting	Scenario A	Scenario B	Scenario C
CARBOTHERMIC	0%	17%	100%	100%	100%
CLAY CARBOCHLORINATION	0%	17%	0%	0%	0%
HH WETTED CATHODE	0%	17%	0%	0%	09
H-H/INERT ANODE	0%	17%	0%	0%	09
MODERN HALL HEROULT PROCESS	100%	17%	0%	0%	09
MELTING OF REFINED ALUMINA TO METALLIC ALUMINUM	0%	17%	0%	0%	09
			0%	0%	09
			0%	0%	09
			0%	0%	09
			0%	0%	09
			0%	0%	09
			0%	0%	09
			0%	0%	09
			0%	0%	09
			0%	0%	0%

Source: NREL

12				
13	Step 4:	Recalculate:	Recalculate	
14				
15				
16	Step 5:	Demand (KG):	1,000	
17				
18				
19	Step 6:	Steps in the supply o	chain:	
20				
21		Scenario A	5	
22		Scenario B	5	
23		Scenario C	5	
24				

				Choose Baseline, E	qual Weighting or Ir	nput Own Values
			_			Choose Baseline
Pro	duct: ALUMINUM, SMELT		L.			Input Own New
		Baseline	Equal	Weighting	Weighting	Weighting
	Process	Weighting	Weighting	Scenario A	Scenario B	Scenario C
CA	RBOTHERMIC	0%	17%	100%	100%	100%
CL	V CARBOCHLORINATION	0%	17%	0%	0%	09
-						09
1-1	n		Ch	09		
M			Choose Baselii	ne Choose Baseli	ne Input Own	09
SN	Product: ALUMINUM, SMELT		Input Own Ne	w Input Own Ne	w Input Own Ne	w 09
		Baseline	Implimentatio	on Implimentatio	on Implimentatio	n 09
	Process	Implimentation	Scenario A	Scenario B	Scenario C	09
	CARBOTHERMIC	0%			10%	
	CLAY CARBOCHLORINATION	0%				0%
	HH WETTED CATHODE	0%				0%
	H-H/INERT ANODE	0%				0%
	MODERN HALL HEROULT PROCESS	0%				0%
	SMELTING OF REFINED ALUMINA TO METALLIC ALUMINUM	0%				0%
						0%
						0%
						0%
						0%
•						0%
						0%
						0%
•						0%
				0%	0%	<mark>0%</mark>
L		1				
c	tep 6: Steps in the supply chain:					
3						
	Scenario A 5					
	Scenario B 5					
	Scenario C 5					
1						

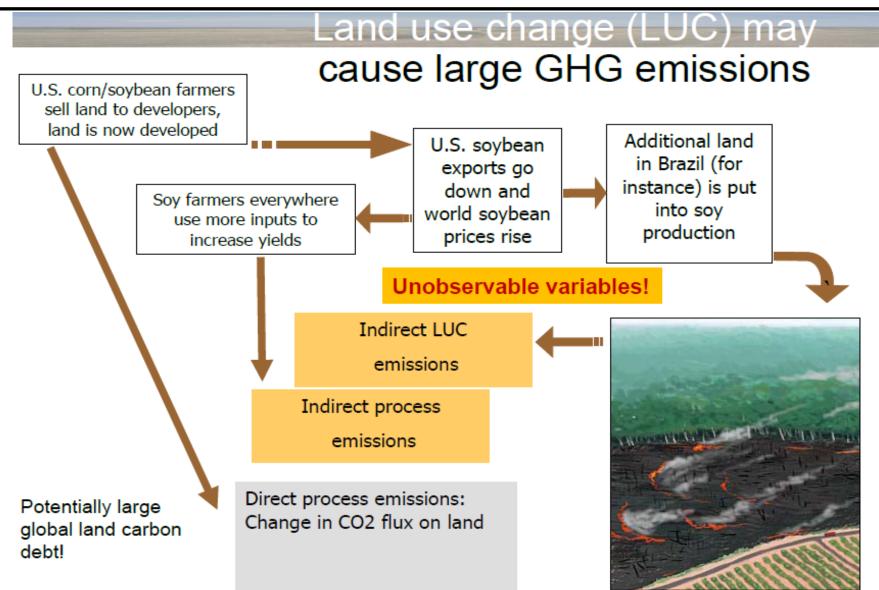
Source: NREL

				Choose Basel	ine Choose	Baseline Cho	ose Baseli
Produc	t: ALUMINUM, SMELT			Input Own N	ew Input O	wn New Inp	ut Own Ne
		Baseline	Equal	Weighting	Weig	hting	Weighting
	Process	Weighting	Weighting	Scenario A	Scena	ario B	Scenario C
CARBO	THERMIC	0% 17% 100% 100%				100%	10
0.	ARBOCHLORINATION	0%	1	7%	0%	0%	
HI							
H-ion				Choose Baseline			
M			Choose Ba			nput Own	
SN Pro	oduct: ALUMINUM, SMELT		Input Owr			ut Own New	
	B	Baseline	Implimen				
	Process RBOTHERMIC	Implimentation 0%	Scenari	o A Scena	100%	Scenario C 100%	
	AY CARBOCHLORINATION	0%		0%	0%	0%	
	WETTED CATHODE	0%		0%	0%	0%	
	H/INERT ANODE	0%		0%	0%	0%	
	DDERN HALL HEROULT PROCESS	0%		0%	0%	0%	
	ELTING OF REFINED ALUMINA TO METALLIC ALUMINUM	0%		0%	0%	0%	
П							
					Baseline or Ov Choose Baselir		
	Product: ALUMINUM, SMELT			hoose Baseline (Input Own	Input Own	ne Choose B Input (
	Product: ALOWINDIN, SWELT	Base	line	Grid Mix	Grid Mix	Grid I	
	Process	Implime		Scenario A	Scenario B	Scenar	
	ELECTRICITY GRID, FRCC		0%	0%		0%	0%
	ELECTRICITY GRID, MRO		0%	0%		0%	0%
14	ELECTRICITY GRID, NATIONAL		100%	100%	10		100%
	ELECTRICITY GRID, NPCC		0%	0%		0%	0%
	ELECTRICITY GRID, RFC		0%	0%		0%	0%
Ster	ELECTRICITY GRID, SERC		0%	0%		0%	0%
Ster			0%	0%		0%	0%
Ster	ELECTRICITY GRID, SPP		0%	0/0			070
Ster			0% 0%	0%		0% 0%	0%

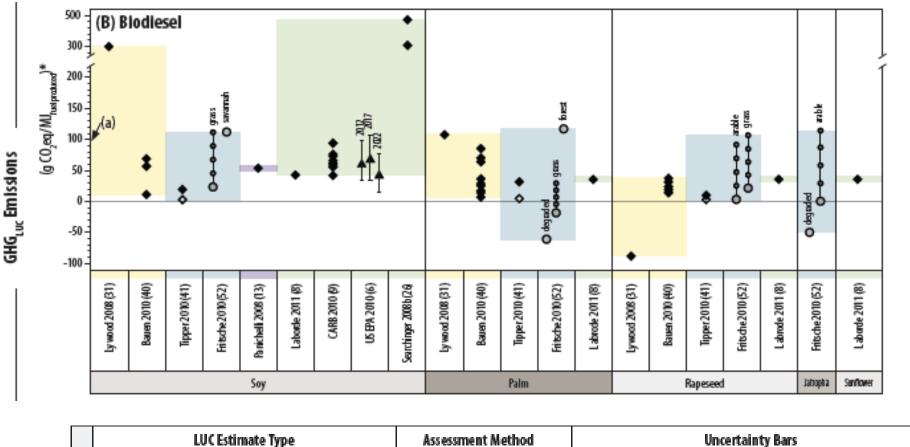
Tool Outputs

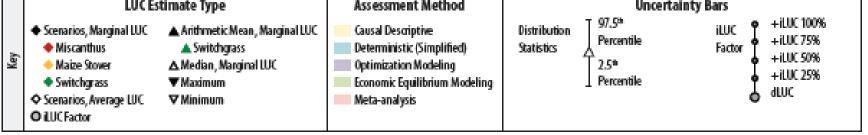
				Sce	nario A: Result	s per 1000 KG of A	LUMINUM, SM	ELT for 5 Steps				
SORTED BY DIRECT	Electricity	Coal (GJ)	Natural Gas	Diesel (GJ)	Kerosene	Fuel Oil and	Crude Oil	Primary Energy	Steam (GJ)	Mass (KG)	Carbon Dioxide	Carbon Dioxide
TOTAL	3.08E+03	9.01E+00	9.77E+03	-4.60E+04	-2.32E+04	9.58E+03	2.20E+05	1.70E+05	0.00E+00	3.62E+05	1.28E-02	2.19E-04
1 REFINERY GAS	1.53E+03	0.00E+00	1.07E+03	-2.76E+04	-1.47E+04	-1.01E+03	1.35E+05	9.29E+04	0.00E+00	2.04E+02	7.14E-03	1.24E-07
2 COKE	3.67E+02	0.00E+00	2.56E+02	-6.60E+03	-3.52E+03	-2.43E+02	3.23E+04	2.22E+04	0.00E+00	4.14E+04	1.71E-03	2.51E-05
3 KEROSENE	1.63E+02	0.00E+00	6.10E+02	-3.10E+03	0.00E+00	8.51E+02	1.19E+04	1.02E+04	0.00E+00	3.13E+04	7.66E-04	1.90E-05
4 GASOLINE	1.42E+02	0.00E+00	3.80E+01	-3.68E+02	-1.96E+02	8.08E+03	1.80E+03	9.35E+03	0.00E+00	1.45E+05	7.01E-04	8.81E-05
5 PETROLEUM, COPRODUCT	1.46E+02	0.00E+00	1.02E+02	-2.63E+03	-1.40E+03	-9.67E+01	1.29E+04	8.85E+03	0.00E+00	1.43E+04	6.80E-04	8.66E-06
6 BITUMEN	1.46E+02	0.00E+00	1.02E+02	-2.68E+03	-1.40E+03	-9.67E+01	1.29E+04	8.80E+03	0.00E+00	1.02E+04	6.77E-04	6.16E-06
7 LIQUID PETROLEUM GAS	1.45E+02	0.00E+00	1.01E+02	-2.61E+03	-1.39E+03	-9.60E+01	1.28E+04	8.78E+03	0.00E+00	6.90E+03	6.75E-04	4.19E-06
8 DIESEL	1.92E+02_	0.00E+00	6.74E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.74E+03	0.00E+00	8.77E+04	3.39E-04	5.32E-05
9 FUEL GAS	2.02E+02	0.00E+00	7.13E+02	-5.83E+02	-4.94E+02	1.17E+03	0.00E+00	8.01E+02	0.00E+00	4.90E+03	4.82E-05	2.97E-06
10 BUTYLENES	2.44E+01	0.00E+00	2.96E+00	0.00E+00	0.00E+00	7.69E+02	0.00E+00	7.72E+02	0.00E+00	4.03E+03	5.76E-05	2.45E-06
11 BAUXITE	7.51E+00	0.00E+00	6.40E-02	2.54E+02	0.00E+00	4.84E+01	0.00E+00	3.03E+02	0.00E+00	5.29E+03	2.12E-05	3.21E-06
12 NAPHTHA	9.35E-01	0.00E+00	1.07E+01	-3.84E+01	-1.08E+02	1.91E+02	0.00E+00	5.52E+01	0.00E+00	1.33E+03	4.65E-06	8.06E-07
13 ALUMINA	8.74E-01	4.65E+00	9.09E+00	5.97E-02	0.00E+00	8.26E+00	0.00E+00	2.21E+01	0.00E+00	1.93E+03	1.50E-06	1.17E-06
14 PROPYLENE	4.50E+00	0.00E+00	8.54E+00	0.00E+00	0.00E+00	8.29E+00	0.00E+00	1.68E+01	0.00E+00	2.76E+03	1.05E-06	1.68E-06
15 SODIUM HYDROXIDE	9.06E-02	3.96E+00	2.45E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.99E+00	0.00E+00	1.73E+02	3.57E-07	1.05E-07
16 C4 FRACTION	9.03E-03	0.00E+00	3.75E-01	0.00E+00	0.00E+00	2.73E+00	0.00E+00	3.11E+00	0.00E+00	7.74E+00	2.23E-07	4.70E-09
17 NATURAL GAS, LIQUIDS, 86% E	4.64E-03	0.00E+00	2.90E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.90E+00	0.00E+00	6.47E+01	1.46E-07	3.92E-08
18 GAS OIL, VACUUM	7.94E-03	0.00E+00	6.40E-02	-7.78E-01	0.00E+00	2.42E+00	0.00E+00	1.70E+00	0.00E+00	2.55E+02	1.30E-07	1.55E-07
19 ISOBUTANE	1.39E-01	0.00E+00	1.33E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.33E+00	0.00E+00	2.17E+03	6.71E-08	1.32E-06
20 ANODE	2.09E-01	2.82E-02	9.66E-01	4.73E-02	0.00E+00	2.14E-01	0.00E+00	1.26E+00	0.00E+00	4.50E+02	7.04E-08	2.73E-07
21 METHANOL	0.00E+00	8.42E-02	7.23E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.07E-01	0.00E+00	2.34E+01	4.39E-08	1.42E-08
22 XYLENES, MIXED	9.77E-02	0.00E+00	5.84E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.84E-01	0.00E+00	6.51E+02	2.94E-08	3.95E-07
23 CALCIUM OXIDE	1.43E-02	2.75E-01	5.01E-02	2.12E-03	0.00E+00	0.00E+00	0.00E+00	3.28E-01	0.00E+00	5.87E+01	2.74E-08	3.56E-08
24 COAL	5.26E-02	0.00E+00	7.15E-02	5.13E-02	0.00E+00	0.00E+00	0.00E+00	1.23E-01	0.00E+00	2.92E+02	7.15E-09	1.77E-07
25 LIMESTONE	2.15E-03	1.38E-04	8.06E-04	3.16E-03	0.00E+00	0.00E+00	0.00E+00	4.10E-03	0.00E+00	1.41E+02	2.72E-10	8.57E-08
26 IRON, PIG	0.00E+00	2.67E-03	2.32E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.69E-03	0.00E+00	1.93E-01	2.41E-10	1.17E-10
27 FERRONICKEL, 25% Ni	2.41E-04	3.43E-04	2.55E-04	1.64E-05	0.00E+00	3.22E-05	0.00E+00	6.47E-04	0.00E+00	8.58E-03	4.72E-11	5.21E-12
28 LIME	1.75E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.14E-04	0.00E+00	1.14E-04	0.00E+00	7.63E+01	8.54E-12	4.63E-08
29 N-METHYL-2-PYRROLIDONE	3.84E-06	0.00E+00	5.03E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.03E-05	0.00E+00	6.06E-02	2.53E-12	3.67E-11
30 FERROCHROMIUM, HIGH-CARB	3.78E-05	3.07E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.07E-05	0.00E+00	3.16E-03	2.75E-12	1.91E-12
31 STEEL, ALLOYED	3.13E-05	9.90E-08	1.48E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.49E-05	0.00E+00	3.96E-01	7.55E-13	2.40E-10
32 IRON, SCRAP	9.76E-07	0.00E+00	0.00E+00	2.71E-06	0.00E+00	0.00E+00	0.00E+00	2.71E-06	0.00E+00	2.71E-02	1.88E-13	1.64E-11
33 FERROMANGANESE, HIGH-CO4	1.11E-05	1.34E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.34E-06	0.00E+00	2.98E-03	1.20E-13	1.81E-12
34 DOLOMITE	6.90E-08	0.00E+00	0.00E+00	1.06E-08	0.00E+00	5.51E-08	0.00E+00	6.57E-08	0.00E+00	5.90E-04	4.85E-15	3.58E-13
35	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
36	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
77	0.005.00	0.005.00	0.005.00	0.005.00	0.005.00	0.005.00	0.005.00	0.005.00	0.005.00	0.005.00	0.005.00	0.005.00

- Results are still in preliminary stages
- Looking to identify which product inputs have largest energy and carbon demands.

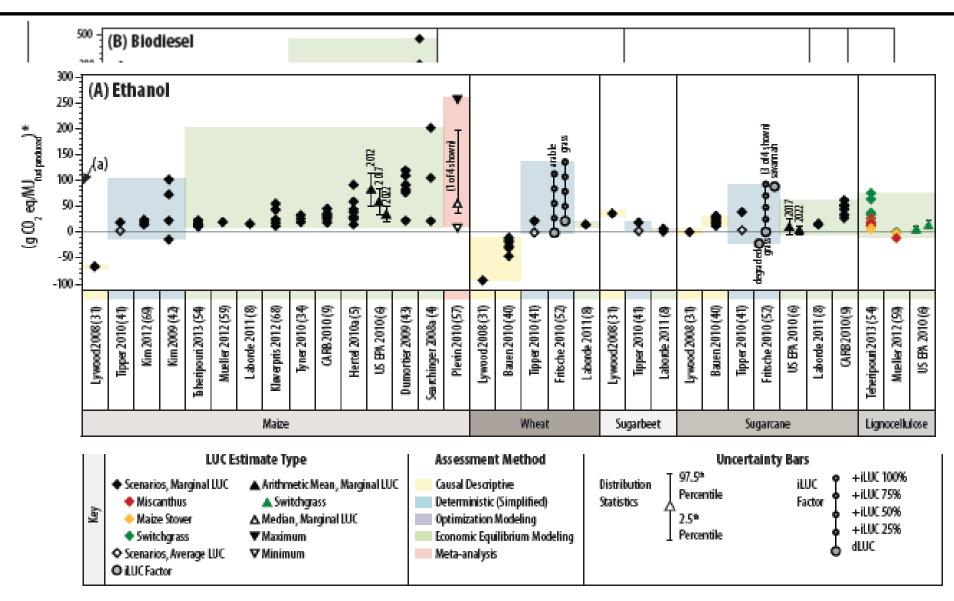


Land use change model


Ethan Warner, Daniel Inman, Yimin Zhang

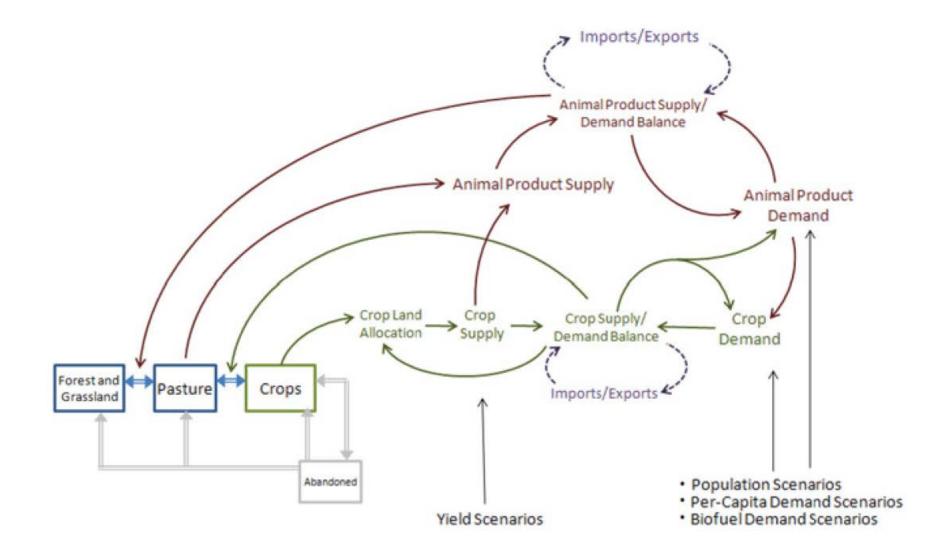

Background

Source: Searchinger T, Heimlich R, Houghton R A, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D and Yu T H 2008 Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change Science 319 1238–40


Literature Review

Source: Warner, Zhang, Inman and Heath. 2013. Challenges in the estimation of greenhouse gas emissions from biofuel-induced global land-use change. Biofuels, Bioproducts and Biorefining. DOI: 10.1002/bbb.1434

Literature Review


Source: Warner, Zhang, Inman and Heath. 2013. Challenges in the estimation of greenhouse gas emissions from biofuel-induced global land-use change. Biofuels, Bioproducts and Biorefining. DOI: 10.1002/bbb.1434

- 1. To create and utilize systems dynamics to model the key drivers of land use change, including biomass conversion and biofuels production
- 2. To create a transparent and relatively simple model for test assumptions about land use change and to facilitate discussion about the topic area.

NREL's Modeling Strategy & Approach

- System dynamics framework
 - Stocks/flows
 - Feedback within and across stages in supply chain.
- Modular, "regional" model architecture
 - "Region" can reflect world, nation, geographical region, level of development, etc.
 - Enables rapid extension of model from $1 \rightarrow 2 \rightarrow$ n regions.
- Reliance on demographic scenarios and FAO/GTAP data to drive dynamics around population, yield, food demand
- Calibrate model against FAO datasets for land use and disposition
- Avoidance of explicit market mechanism.

Our Model Captures Important System Interactions

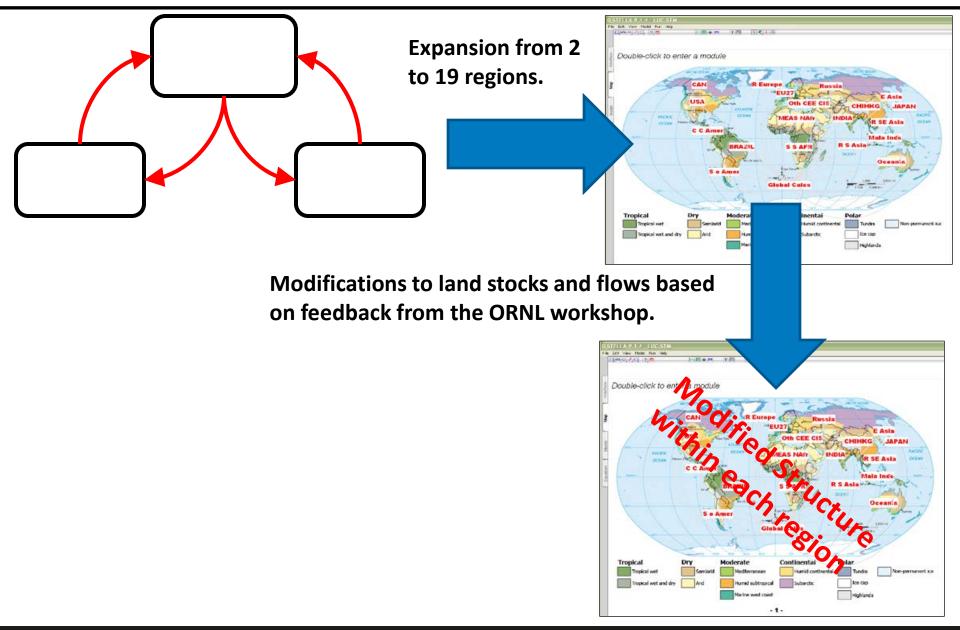
Source: Warner et al. 2013, Environ. Res. Lett. 8 015003

Conclusions

- BioLUC modeling effort is focused on improving our understanding of how bioenergy and LUC interact
- Once complete, the model will be released publically along with processed datasets

To be hosted on GitHub with links; also on Bioenergy KDF

- We expect the model to facilitate much discussion among stakeholders and provide an accessible medium for groups to test different assumptions and datasets
- Having a transparent and relatively simple model (i.e., runs quickly, isn't very large, etc.) will add value to the community as a whole
- It is our hope that model release will stimulate an "opensource" level of interest and external development.


Questions?

LUC paper citation:

Warner, Inman, Kunstman, Bush, Vimmerstedt, Peterson, Macknick and Zhang. 2013. Modeling biofuel expansion effects on land use change dynamics. ERL, Vol. 8, No. 1

Supplemental Slides

BioLUC Model Progression

Two-Region Insights

- Results suggest that even in a future with high food and biofuel demands there is enough "available" land to meet both food and fuel needs.
- Most of the land is supplied by "pasture"
- Demand for land-intensive meat is difficult to supply under the high biofuel scenarios

	Base case system input per kg of product									
Animal Class	Forage	Pasture	Maize	Wheat	Rice	NEC	Oil Crop	Sugar	Total kg	
Cow Goat Sheep	6.1	4.9	2.6	0.1	0.0	0.0	1.1	0.0	14.8	
Dairy	4.5	0.0	1.2	0.0	0.0	2.0	0.0	0.0	7.7	
Pig	0.0	0.0	1.2	1.4	0.0	0.3	0.7	0.0	3.6	
Poultry	0.0	0.0	1.4	0.3	0.0	0.0	0.6	0.0	2.4	