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Objective

1. Efficient heat transfer technologies can 
enable increased power density and 
specific power.

2. Thermal management is a path to 
reduce cost and maintain robust 
operation.

3. Thermal management should not be an 
afterthought but should involve an 
integrated systems approach.

4. Cost-effective solutions require 
integration of capabilities for cooling, 
packaging (materials/geometry), and 
reliability prediction.
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Relevance of Thermal Management
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Thermal management directly relates to improvements in cost, 
power density, and specific power.

Impacts: Lower cost, volume, and weight
“Easy ways to increase output power are paralleling more silicon chips and/or step-up the 
die size to increase current capacity.  But this strategy is unaffordable in terms of both 
increased chip cost and packaging space.”

Concern: Heat
“The most significant concern for increasing current is intensified heat dissipation.”

Source: Yasui, H., et al, “Power Control Unit of High Power Hybrid System” – EVS23

Prius PE MY 2004 Camry PE MY 2007 LS 600h PE MY 2008

Double-sided 
Cooling
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Outline

Background
• Department of Energy’s Advanced Power Electronics and 

Electric Machines (APEEM) activity.
• Thermal management for power electronics cooling.

Problem
• Quantify trade-off interaction between packaging configuration 

and cooling technology.
• Identify effective packaging and cooling combinations.

Approach

Results
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Background

DOE’s Advanced Power Electronics and Electric Machines (APEEM)
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Background
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Background
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• NREL Advanced Power Electronics Thermal Focus Areas
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Background
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• Defines thermal requirements
• Links thermal technologies to electric 

traction drive systems



Problem
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How do developments in cooling 
impact APEEM technology 
selection?

How do developments in 
APEEM technologies influence 
cooling technology selection?

APEEM
Thermal Control Subsystem

integration, performance, requirements

APEEM
Technology

Development

Potential Thermal Management 
Technologies

Advanced 
Vehicle 
Systems
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Approach
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Quantify interaction between package configuration and cooling technology on total 
thermal performance. 
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Approach
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Approach
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Approach
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Applied process to range of package configuration examples approximated 
from in-use commercial packages with different geometries.

Toyota Prius 2004Semikron SKM Toyota Camry

Semikron SKAI Lexus LS 600h

IGBT and diode pair
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Approach
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Baseline Package Configurations

Layer S
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owSolder x x x x
Cu x x x** x**

Substrate AlN NA* x x x
Al2O3 x NA NA NA

Cu x x x x
Solder x NA x x

Heat Spreader Cu x NA NA NA
Cu-Mo-Cu NA NA x x

TIM x x+ x x
Heat Sink x x x x

Cooled Surface Footprint Area: [cm2] 15.34 3.90 16.86 7.68 15.00++

* Included additional model variation with AlN.
+ Modeled with reduced thermal interface material thickness of 0.05 mm.
**  Assumed copper metallization layer.
++ Listed area is for one side of the package, and it is the same on each side of the package.

Reference:
K. Bennion and K. Kelly, “Rapid Modeling of Power Electronics Thermal Management Technologies,” IEEE Vehicle Power 
and Propulsion Conference, Sept. 7-11,  2009.
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Results
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* Sample single-sided and double-sided total thermal resistance. (Source: Y. Sakai, H. Ishiyama, and T. Kikuchi, “Power control unit for high power 
hybrid system,” SAE 2007 World Congress, Detroit, MI, April 16-19, 2007, SAE Paper 2007-01-0271.)

**  Sample cooling performance.  (Source: I. Mudawar, "Assessment of high-heat-flux thermal management schemes," IEEE Transactions on 
Components and Packaging Technologies, vol. 24, no. 2, pp. 122-141, June 2001.
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Results

• All curves flatten as the heat 
exchanger performance 
improves (R’’h,h-a decreases).

• Package becomes thermal 
limitation.

• Difference in total thermal 
performance (R’’th,j-a) is affected 
by the footprint area available 
for cooling.

• Method for comparing 
alternative heat exchanger 
technologies and package 
configurations.
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* Sample single-sided and double-sided total thermal resistance. (Source: Y. Sakai, H. Ishiyama, and T. Kikuchi, “Power control unit for high power 
hybrid system,” SAE 2007 World Congress, Detroit, MI, April 16-19, 2007, SAE Paper 2007-01-0271.)

**  Sample cooling performance.  (Source: I. Mudawar, "Assessment of high-heat-flux thermal management schemes," IEEE Transactions on 
Components and Packaging Technologies, vol. 24, no. 2, pp. 122-141, June 2001.
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Results
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• Weight the total thermal 
performance (Rth,j-a) by the total 
footprint area available for 
cooling.

• Curves collapse onto a single 
curve as the heat exchanger 
resistance increases.

• Removes effect of different 
package footprint areas.
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Results
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Package geometry, material, 
and cooling trade-offs
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Results
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Baseline
Direct Cooled 

DBC (DCD)

Baseline 
• At low Rth,h-a , the separation between 

AL203 and AlN package resistance is more 
significant.

• Trade-off between material cost and heat 
exchanger performance cost.

• At about 100 mm2-K/W, switching to AlN 
would have a similar benefit to a 10X 
heat exchanger improvement.

Direct Cooled DBC (DCD)
• At high Rth,h-a , the cooling area footprint 

and heat exchanger resistance dominate 
thermal performance.

• As the cooling technology improves, the 
thermal characteristics of the package 
become more important.
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Results
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• Weight the total thermal 
performance (Rth,j-a) by the total 
footprint area available for 
cooling.

• Curves collapse onto a single 
curve as the heat exchanger 
resistance increases.

• Removes effect of different 
package footprint areas.

• Highlights impact of package.
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Results
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• The impact of a material with 
improved thermal conductivity 
depends on the package 
configuration and heat 
exchanger performance.

• The cost/benefit trade-off 
improves for more aggressive 
cooling and packages with 
fewer thermal bottlenecks.

• Relationship between package 
thermal performance and 
cooling technology can lead to 
a more expensive system than 
necessary if the relationship is 
not used properly.
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hybrid system,” SAE 2007 World Congress, Detroit, MI, April 16-19, 2007, SAE Paper 2007-01-0271.)

Matching package geometry 
and cooling technology
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• To maximize the thermal 
performance, the package and 
heat exchanger technology 
should be investigated together.

• Identify appropriate cooling 
methods for a given package 
technology.

• Identify appropriate packaging 
options for a given cooling 
approach.

Matching package geometry 
and cooling technology



National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future

Conclusion
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• Thermal management plays an important part in the cost 
of electric drives in terms of power electronics packaging.

• Cost-effective solutions require an appropriate balance 
between package and thermal management design.

• Appropriate cooling technology depends on
• Package application

• Reliability

• Integration of capabilities for cooling, packaging
(materials/geometry), and reliability prediction provide a 
system view of technology developments.
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