A Carbon Molecular Sieve Membrane-Based Reactive Separation Process for Pre-Combustion CO₂ Capture

Mingyuan Cao¹, Linghao Zhao¹, Dongwan Xu¹, Seçgin Karagöz², Patricia Pichardo², Richard J. Ciora, Jr.³, Doug Parsley³, Paul K.T. Liu³, Vasilios I. Manousiouthakis², and Theodore T. Tsotsis¹

¹Mork Family Department of Chemical Engineering and Materials Science, University of Southern California; ²Chemical and Biomolecular Engineering Department, University of California; ³Media and Process Technology, Inc.

School of Engineering

Field-tested at NCCC

Part ID	He [GPU]	N ₂ [GPU]	H ₂ [GPU]	CO ₂ [GPU]	H ₂ /N ₂ [-]	H ₂ /CO ₂ [-]
HMR-61	578	2.5	550	1.0	219	558
HMR-67	450	1.6	581	2.8	354	211
HMR-68	591	3.0	675	2.7	227	248
MR-70	445	1.5	502	0.7	344	738
HMR-72	500	1.7	602	2.5	359	246
HMR-104	542	1.5	540	2.0	361	270

Experimental conversion for the MR with different sweep ratios and the corresponding MR model fits using both the empirical and microkinetic models. (300 °C, feed pressure of 15 bar, CMS#1)

The MR-AR model accounts for mass/energy balances in the catalyst, sorbent and the reactor fluid phases. The Dusty-Gas-Model is used to describe membrane transport. It describes well the laboratory data without resorting

Hydrotalcite (HTC) Adsorbent

Co-Mo/Al₂O₃ Sour-Shift Catalyst

Reaction rate data generated and global kinetics model developed

to adjustable parameters. It is used in the TEA calculations.

Preliminary TEA - MR-AR IGCC Process Scheme

Coal Slurry Mixer Slurry Water Slurry Water Air Air Slurry Water Air	H ₂ O	H2O MR H2+H2O Flash Flash Diluent Gas T Com	Flash CO2+H2O WGS-AR Regen 42 Syrn Expan	CO2 Compressor	Claus Sulfur Plant Varogenation and Cooler	Shell IGCC Shell IGCC MR-AR IG	w/o
Vent Gas Clau Plan Oxid	is it Jant	Ambient Air	Flue gas	HRSG Steam Turbine	→ 5	MR-AR Rea	lliza
	Capital Cost (\$/1000)	Variable Operating Cost (\$)	Net Power (<u>MWe</u>)	N ₂ Product (ton/h)	COE (No N ₂ sale/ N ₂ Sale) (\$/MWh)	% COE reduction vs Baseline (No N ₂ sale/ N ₂ Sale)	
IGCC CCS	\$1,840,115	\$46,580,032	543	0	135.4	0	
MR-AR Realization	\$1,539,820	\$47,672,487	593	619	113.1 / 86.3	16.4% / 36%	

Designs	Net Power Production (MWe)	CO ₂ Capture (%)
Shell IGCC w/o CCS – 1-Stage Selexol	622	0
Shell IGCC w/ CCS – 2-Stage Selexol	543	90
MR-AR IGCC Plant	593	92

	% CO Conversion	% H₂ Recovery	% CO ₂ Purity	% CO₂ Recovery
Target	>95	>90	>95	>90
MR-AR Realization	99%	99	99	92

	Net Power (MWe)	COE (No N₂ sale/ N₂ Sale) (\$/MWh)	CO ₂ Captured Cost (No N ₂ sale/ N ₂ Sale) (\$/tonne)
IGCC CCS	543	135.4	63.2
MR-AR Realization	593	113.1 / 86.3	39.3 / 5.1

