
CRUNCH USER’S GUIDE

by

Marshall L. Buhl, Jr.
National Wind Technology Center

National Renewable Energy Laboratory
Golden, Colorado

October 15, 2003

INTRODUCTION Test\CertTest.bat The batch file used to certify the
installation. Crunch is a software utility program that performs many

types of analyses for one or more files. Much of the code
for Crunch came from the author's GPP and GenStats pro-
grams. Crunch performs many of the same analyses as GPP;
however, it is more of a batch program, whereas GPP is an
interactive program. If you are performing repetitive tasks,
Crunch is the better choice.

Test\DateTime.exe A program used to generate the
date and time.

Test\NewLine.txt A file with only a new-line
character in it.

Test\Test??.cru The Crunch input files for the
certification procedure.

Test\Validate.dat A data file used in the
certification.

Although Crunch was written to process wind-turbine
test or simulation data, it may also be useful for most tabular
data.

Test\tstfiles*.* The results from the certification
test.

CERTIFICATION TEST
RETRIEVING FILES FROM THE ARCHIVE Before using Crunch, you should run the certification

testing program. It is a DOS batch file called “CertTest.bat”
and can be found in the “Test” folder. To test the
installation, edit “CertTest.bat,” and set the environment
variables found near the top of the file to settings compatible
with your system. You will probably have to change only
the “Editor” variable. Then open up a command window, go
to the Test folder, and enter “CertTest”.

You can download the Crunch archive from our web
server page http://wind2.nrel.gov/designcodes/. The file
should be named something like “Crunch_v236.exe.” Cre-
ate a Crunch folder somewhere on your file system and put
this file there. You can double click on it from Windows
Explorer or by entering “Crunch_v236” at a command
prompt with the Crunch folder as the current folder. This
will create some files and folders. Please see Installing
NWTC Design Codes on PCs Running Windows NT® for
details on how to set up your system to run Crunch.

Crunch will run many times. The test procedure will
compare the results to those stored in the “Test\TstFiles”
folder. The procedure will write the differences between the
output files to a file called “CertTest.out.” The test proce-
dure will automatically open this file with the editor you
specified with the “Editor” variable. Scan through the file;
the only differences should be the date and time stamps in
the header of the file. If you recompiled Crunch with
another compiler, there may be some slight differences in
the last digit of many of the numbers.

DISTRIBUTED FILES
The files included in the archive of Crunch are as

follows:

ArcFiles.txt The list of files that are written to
the archive.

Archive.bat The batch file that creates the
archive.

PROCESSING INPUT Change.log The list of changes to Crunch.
Crunch.doc This user’s guide in Word format.

Specifying the input-parameter file Crunch.pdf This user’s guide in PDF format.
Source*.f90 Crunch source files. To determine what functions to perform, Crunch reads an

input-parameter file. By default, it reads a file called
“param.cru.” You can override the default name by
specifying it on the command line. Enter “Crunch /h” (PC)
or “Crunch -h” (UNIX) for command-line help.

Test*.tim Time-series data used for the
automated tests.

Test\Bell.txt A file that includes the bell
character to ring the bell.

Crunch User’s Guide 1 Last revised on October 15, 2003 for version 2.9

http://wind2.nrel.gov/designcodes/
http://wind2.nrel.gov/designcodes/papers/setup.pdf
http://wind2.nrel.gov/designcodes/papers/setup.pdf

and it has three columns of data, you cannot use the auto-
detection feature for columns because Crunch will think it
has six channels (three of them named “Chan”).

Input-parameter file format
Use one of the sample .cru files found in the test folder

as a template. Except for calculated-channel, moving-aver-
age, crosstalk, load-rose, and extreme-event information and
the list of data files, no lines should be added or removed
from the sample input file. For calculated-channel, moving -
average, crosstalk, and extreme-event information, there
should be one line for each channel. For load roses, there
should be one line for each rose. For data files, list the file
names one per line. Exactly one line separates each section
of the parameter-input file from other sections.

If you choose to auto-detect channels and give a zero for
the line containing the titles, Crunch will use the first data
line to figure how many channels there are. It will assign the
channels the names “Chan1”, “Chan2”, etc. if there are
fewer than 10 channels. If there are between 10 and 99
channels, the names will be “Chan01”, etc. I'll leave it to the
reader to figure out the names if there are more than 99
channels.

If you choose to auto-detect channels and give a zero for
the line containing the units, Crunch will not use any unit
string for the run. If that is the case, you must not specify
the units for calculated channels.

Although my sample input files are written using a sen-
tence-like structure, you do not need to do it that way. For
example, one of the first lines in the my sample input files
says:

If you want to tell Crunch the channel layout, do so by
setting the number of input channels to a number greater
than zero. Crunch can reorder and rename channels from the
original data file with this feature. It will process only those
channels you choose, and apply scales and offsets as it reads
the data. If you let Crunch auto-detect channels, it cannot
apply scales and offsets.

1 is the row with the channel titles on
it.

If you prefer, you can rewrite that line as:

1 The row with the channel titles on
it.

As long as the parameter(s) being read is the first “word”
on the line and it is separated from the comment portion of
the line with any sort of white space, Crunch will not mind.
The amount of spacing is not important—use whatever looks
good to you.

Crunch can also create new channels using typical
Fortran expressions with references to other channels. See
the Calculated Channels section below.

If you want Crunch to auto-detect the number of rows,
set the number of data records to zero. You can specify start
and end times if time is available in the data file. If you do,
Crunch will use only those records that fall within those
limits. If you set the start and end times both to zero, then
Crunch will read and use all data records in the file.

Specifying layout of the data files
You can let Crunch figure out how many columns and/or

rows your data files have, or you can specify these things
explicitly. If you want Crunch to figure out how many
columns are in the data file and to use all of them, set the
number of input channels to zero and don't give it a list of
channels.

You can skip as much of the beginning and/or end of the
file as you wish by specifying the line containing the first
data record and the total number of records to store in the
data array. Crunch assumes that all files have the same
number of rows and columns. If Crunch has a read error or
runs out of data on files other than the first, it will skip those
files. Crunch will allocate the storage array at run time, so
you are limited only by the available virtual memory in your
computer.

If you want Crunch to parse titles, and even units,
specify the line(s) that contains such information. If you
specify a zero for either, Crunch assumes there is no such
line. If you tell Crunch which line contains titles, it will use
that line to determine the number of channels. It assumes
that channel titles are a contiguous group of letters and/or
symbols that do not contain a space, tab, comma, apostro-
phe, or double quote. For instance, if the title line was the
following: FILE TYPES

Crunch can generate many different types of analyses
and can generate almost any combination of them during a
single run. The analyses can be performed for individual
files or an aggregate of all the files. The aggregate is es-
sentially a concatenation, that is, a series or chain, of all the
files into a single data set. For most of the analyses, it is
perfectly fine to do so. For rainflow cycle counting, a usu-
ally negligible error occurs because of the discontinuities.

Chan1 “Chan2”“'Chan_3, Chan-4 “ Chan
5”

Crunch would find six channels whose titles would be
“Chan1”, “Chan2”, “Chan_3”, “Chan-4”, “Chan”, and “5”
(without the quotes). If your input file has a title line like
this:

“Chan 1” “Chan 2” “Chan 3”
Output files generated for individual files use the original

data file's root name and append an appropriate extension.

Crunch User’s Guide 2 Last revised on October 15, 2003 for version 2.9

Output files generated for aggregate analyses use a user-
specified root name instead. The extensions are:

azi Azimuth averages
eev Extreme events
ext Extrapolated extreme values
mod Modified data
pmf Probability mass functions (histograms)
rcc Rainflow cycle counts
sts Statistics
sum Summary statistics

Crunch can output data in fixed columns or delimited by
tabs. The former is best for viewing with an editor or for
printing. The latter is best for importing into spreadsheets.

You can also write out the modified data. The output
will contain only the data used for the analyses, and include
the effects of scales and offsets, crosstalk corrections, and
peak finding.

FILE HEADERS
All output files have similar headers. The headers for

files generated for individual analyses contain the following
information:

• Program name, version, and compile date
• Original data file name
• Number of records used in the analysis
• Indication of whether the peak-finding algorithm

was used
• Mean wind speed and turbulence intensity (if wind-

speed channel is specified)
The headers for files generated for aggregate analyses

contain the following information:
• Program name, version, and compile date
• Number of records and files used in the analysis
• Indication of whether the peak-finding algorithm

was used
• Mean wind speed and turbulence intensity of the

aggregate (if wind-speed channel is specified)

CRUNCH FEATURES
General Parameters

The second block of input in the parameter file sets up
some general parameters. The first line in this block tells
Crunch whether or not to generate one or more statistics
files.

Use the second line to tell Crunch if it should output the
data in its working array. This data includes the channels
used from the input file. If scales and offsets were applied to
the input data, if the peak finder was used, or if Crunch fil-
tered any of these channels, these modifications will be re-
flected in the mod file. The mod file will also include cal-

culated channels, moving averages, roses, and channels with
the azimuth averages removed.

Next in the parameter input file is a flag that tells Crunch
if it should delimit the columns in the various output files
with tabs instead of using fixed column spacing. If you want
to view the output with an editor or print it, set it to “False”.
If you want to import it into a spreadsheet, set it to “True”.

The fourth parameter in this block is the Fortran format
specifier for output of floating-point numbers. If you are not
generating tab-delimited output, the full width of the field
must be at least 11 characters. This is to accommodate the
ten-character channel names, plus a space for separating the
columns. If you want more space between columns in your
fixed-format files, make the field width wider than 11. Here
are some example specifiers and what they will make num-
bers look like in the output files:
For values: 65.4321 –987654.321 0.012345678
F11.4 ����65.4321 *********** �����0.0123
E10.3 �0.654E+02 -0.988E+06 �0.123E-01
1PE10.3 �6.543E+01 -9.877E+05 �1.235E-02
ES10.3 �6.543E+01 -9.877E+05 �1.235E-02
ES10.3E1 ��6.543E+1 �-9.877E+5 ��1.235E-2
EN10.3E1 �65.432E+0 ********** �12.346E-3
EN11.3E1 ��65.432E+0 -987.654E+3 ��12.346E-3
G11.4 ��65.43���� -0.9877E+06 �0.1235E-01

Please note that Crunch will not add space between col-
umns of fixed-width output files. Instead, you must ensure
that at least one space will precede the numbers with your
format specifier. The only specifier listed above that meets
this requirement is “ES10.3E1”, but “ES11.3” and “E11.3”
will work.

The next parameter in this block tells Crunch whether or
not to treat multiple input files as one aggregate file. If this
flag is set ‘True”, the output file will no longer use the root
names of the input files in the names of the output files.
Instead, it will use the quoted string from the next line of the
parameter file as the root name of the output files for the
aggregate analyses.

Filtering
Crunch can filter your data before it processes or uses it

in any other way. The formulation follows the bilinear
infinite-impulse recursive filter described in Numerical
Recipes, 2nd edition, on pages 553–555.

You can filter your data with a low-pass, high-pass, or
band-pass filter. You will need to specify a high cut-off fre-
quency for the low-pass filter. You will need to specify a
low cutoff frequency for the high-pass filter. You will need
to specify both low and high cutoff frequencies for the band-
pass filter.

Crunch User’s Guide 3 Last revised on October 15, 2003 for version 2.9

Here is an example of the section of the parameter-input
file for low-pass filtering:

6 of the output columns are to be …
4 5 6 7 8 9
1 is the type of filter (1-LowPass,…
0.0 is the low cutoff frequency
(ignored…
10.0 is the high cutoff frequency …

Here is an example for band-pass filtering using a differ-
ent input style:

 3 Number of filtered channels
 4, 8 9
 3 Type of filter (1-LP, 2-HP, 3-BP)
 5.0 Low cutoff frequency (Hz)
10.0 High cutoff frequency (Hz)

This recursive filter is stable with a somewhat rounded
and asymmetric filter response below and above the user-
selected cutoff frequencies. The data are filtered twice
(forward and backward) to remove phase shift. The filter
formulation assumes the data are evenly spaced.

It appears that the ends of the times series may have
divergent values due to the filtering process. If you have
highly variable data that either begins or ends with data
points that are away from the trend line, the filter will force
itself to follow these points. It may be appropriate to elimin-
ate both ends of the filtered data from your analyses.

Calculated Channels
You can create new channels of data through the calcu-

lated-channels feature, which allows you to specify a single
algebraic expression for each new channel. Expressions
typically follow the format of standard Fortran expressions.
Parentheses allow nesting of expressions. Many intrinsic
Fortran functions are available and some others have been
added. You can refer to any channel you read in or even
previously created calculated channels, thus allowing you to
construct more complex expressions by creating intermedi-
ate channels. Please refer to Appendix A for more details on
the allowed expressions.

Calculated channels are numbered in the order created
with the first number being:

<CC_1> = <total # of input channels> + 1
The first line in the calculated-channels section of the pa-

rameter input file specifies the number of new channels be-
ing created. The second line specifies a seed for the ran-
dom-number generator. Even if you don’t use the random-
number generator, you must include this seed in the input
file. A comment describing the format for the lines de-
scribing the calculated channels is next. After that, enter one
line for each calculated channel. These lines contain two or
three fields; each is enclosed in quotes (either single or dou-
ble) and separated by some sort of white space. The first
field is for the channel name. The second is for the channel

units. Skip this field if units are not being used. The last
field is the Fortran-style equation.

Here is an example of the calculated-channels section of
the parameter-input file when units are included:

3 new calculated channels will be
generated.
1234567890 is the integer seed for the
random
Format for column info is: Col_Title(10
char
"B1_Mmag" "(kN m)"
 "SQRT(C4^2+C5^2)"
"B1_Mphase" "(deg)" "ATAN2D(C5,C4)"
"Random" "(-)" "RAND+1"

Moving Averages
You can create new channels of data that are moving av-

erages of other channels (those that are input and calculated
channels). In the input file, you tell Crunch the name of the
new channel(s), the number of the channel being averaged,
and an averaging period. Crunch assumes that the time step
is constant for all files and records. It will compute the time
step from the difference between the first two data records of
the first data file. Crunch uses the time step to compute the
number of records in the averaging period. For instance, if
your data file’s time step is 0.05 seconds and you specify an
averaging period of 3 seconds (Crunch assumes the units of
the period and the time column are the same), Crunch will
use 60 (3.0/0.5) records for the running average. You cannot
use this feature without a time channel.

<MA_1> = <total # of input channels>
+ <total # of calculated channels> + 1

Here is an example of the moving-average section of the
parameter-input file:

1 channels will have moving averages…
Format for moving-average info is:
"Title"…
"WS_ma", 2, 3

I have found two uses for this feature. The first was to
compute the three-second average wind speed of turbulence
files to see if 50 m/s turbulent winds produced a gust that
averages over 70 m/s for three seconds. The other use is to
filter data.

Time and Wind-Speed Columns
You can tell Crunch which of your input columns

contain the time and wind speed. The time is needed for
crossing frequency, extreme-value extrapolation, binned
rainflow cycle counting, and filtering. The wind speed, if
the column is non-zero, will be put in the headers of files
along with the turbulence intensity. Either of these channels
may be calculated channels.

Crunch User’s Guide 4 Last revised on October 15, 2003 for version 2.9

Here is an example of this section of the input file:

1 Time column.
2 Primary wind-speed column.

Load Roses
Crunch can generate load roses. You can have multiple

roses in a single Crunch job. The user enters one line of
input for each rose. The lines contain a quoted root name, a
0º load column, a 90º load column, and the number of sec-
tors. One new column will be added to the data arrays for
each sector. The names of the new columns will be the root
name with a 2-digit sequential sector number appended.
Because of the two-digit field, you cannot specify more than
99 sectors. The units for the two load columns must be the
same. The two load columns can be any of the input chan-
nels or calculated channels.

The calculation of the new channels uses the following
equations:

Angle = (Sector - 0.5)*180/NumSectors
Load(Sector) =

Load0*COS(Angle) + Load90*SIN(Angle)

If the number of sectors is three, the three new columns
will be for angles 30, 90, and 150º. You will never get 0 or
180º points. There is no need to go beyond 180º, because
those loads will be the negatives of the load on the opposite
side (the sector that is 180º less). Crunch generates loads
only for angles between 0 and 180º.

It may be advisable to use an even number of sectors so
that you do not waste space by reproducing the 90º-load
channel. I believe the IEC standard calls for 15º resolution
for load roses. That requires 12 sectors at the following an-
gles: 7.5, 22.5, 37.5, …, 172.5º.

Here is an example of the load-rose section of the pa-
rameter file:

2 pair(s) of channels will have load
roses…
Format for column info is: “Rose_Title”…
"Blade", 4, 5, 12
"Tower", 6, 7, 12

Azimuth Averages
Crunch can generate azimuth averages (AA) of selected

channels. It creates two new columns for later analysis for
each azimuth-averaged channel. One is a pseudo time series
in which the value is the average signal value for the
azimuth at each time step. Crunch generates the second
detrended channel by subtracting the pseudo AA channel
from the original signal.

The AA channels have the same channel name as their
original channels, but have an “aa” added to the AA column
in the analyses tables. The detrended channels will have “-
aa” in the AA column of that table. For the summary tables,

the file names will be “<ChannelName>_aa.sum” and
“<ChannelName>-aa.sum.”

To use azimuth averaging, specify:
• Which channels to average
• How many azimuth bins to use
• Which column contains the azimuth signal
• Whether or not to output the azimuth averages.

Here is sample input for azimuth averages:

0 Number of AA columns.
0
0 Number of azimuth bins.
0 The azimuth column.
True Output azimuth averages to a file?

Azimuth-averaged channels are numbered such that the
“aa” channels are listed immediately following the last non-
AA (original input, calculated, or load-rose) channel. The
detrended channels (“-aa”) then follow in the same order.
Thus, for N non-AA channels and M AA channels, the total
list of channels would be:

Column # Channel
1 <non-AA_1>
.
.
N <non-AA_N>

N+1 <AA_1>“_aa”
.
.

N+M <AA_M>“_aa”
N+M+1 <AA_1>“-aa”

.

.
N+M+M <AA_M>“-aa”

Notice: I spent a lot of time one day trying to figure out
why an AA of the azimuth position didn't always produce a
perfectly straight line. Because Crunch forces the azimuth
value to be a number >= 0 and < 360, you can get strange
averages if the original azimuth signal is outside that range.
This will most likely manifest itself if the original azimuth
signals are > 0 and <= 360. In that case, all the 360 values
will be accumulated into the first bin instead of the last bin,
thus distorting the results.

This is not an issue unless you choose to azimuth aver-
age the azimuth column, which is not a very meaningful
thing to do. Do not worry about what the azimuth range is
for your data files—Crunch will map them to the 0-360
range.

Crosstalk Removal
Crunch can remove the crosstalk from a pair of signals,

such as the strain gages on the blades, shaft, and tower. If

Crunch User’s Guide 5 Last revised on October 15, 2003 for version 2.9

the gages are not perfectly aligned, they will not produce
pure signals. By applying a weight to the signals, you can
remove this crosstalk. Once you've determined the proper
weights, Crunch can apply them to the data as they are read
in. It replaces the original signals stored in Crunch's
memory with ones that have had the crosstalk removed. The
matrix operation Crunch uses is:

Chan1,new = XT11*Chan1,orig + XT12*Chan2,orig
Chan2,new = XT21*Chan1,orig + XT11*Chan2,orig

The first line of the crosstalk section specifies the
number of pairs of channels for removng crosstalk. The
second line is a comment describing the format of the
following lines. After that, one line for each pair follows.
The first two parameters on each line are the channel pairs
(they must be orthogonal loads). The third through sixth are
the elements of the crosstalk matrix (XT11, XT12, XT21,
XT22). Here is an example:

2 pairs of columns will have their
crosstalk…
Format for crosstalk info is: Col #1,
Col #2, …
4 5 1.0 0.0 0.0 1.0
8 9 0.0 1.0 1.0 0.0

Peak Finding
Crunch can find peaks and valleys in the signals and fit

them with parabolas. It will then replace the peak and valley
values with the maxima and minima of the parabolas. The
time values for these peaks are not adjusted. The various
analyses will use these new values. The .mod files will
include the effects of the peak finder.

Please note that like all column lists in Crunch, the order
of columns do not need to be ascending, as the following
example shows:

4 Number of columns to use peak
finding.
4, 5, 9, 3

Peak/Trough Listing
Crunch can generate listings of peaks and/or troughs it

finds in the data. It can use either the change-of-slope
method or a threshold-crossing method to find them.
Crunch creates one file for each channel and input file. If
you do an aggregate analysis, Crunch will produce just one
aggregate file for each channel. You have the option of in-
cluding the time the peaks and/or troughs occur in the output
files. Please realize that the times will not be monotonically
increasing when you do an aggregate analysis. You can also
specify whether you want to generate peaks, troughs, or
both.

The threshold method divides the data into contiguous
blocks that are outside the thresholds. Within each block, it
finds the maximum or minimum value and uses it for the

peak or trough. The following chart shows an example in
which the valid peak and trough are marked with circles:

Please note that the point that just touches the peak

threshold is not counted as a peak. In addition, if two data
points within a block have the same maximum value, only
the first is counted as a peak.

The input section for peak/trough listing consists of a
line specifying how many channels to process, one specify-
ing which method to use (“1” for the slope-change method
or “2” for the threshold method), and one with a flag that
indicates whether or not to include time in the output files.
After that is a comment that tells how to enter the channel
information. If you set the number of channels to zero, do
not include any lines of channel information, but include the
comment.

When specifying the channel information, enter one line
for each channel that is to be processed. On each line, enter
the channel number, a TRUE or FALSE to indicate whether
or not to include the troughs in the output, the trough thresh-
old, a TRUE or FALSE to indicate whether or not to include
the peaks in the output, and the peak threshold. You cannot
specify FALSE for both. If you use the string “MEAN”
instead of threshold values, Crunch will use the mean value
for the channel and file (or aggregate) as the threshold value
for both thresholds. If you are using the slope-change
method, the threshold values are ignored, but you must in-
clude dummy values. Here is an example:

3 channels will have their peaks and/or
valleys…
2 Method of identifying peaks (1:
slope…
False Include the time in the peak-list…
Format for peak-list info is: Channel,…
3, True, "MEAN", False, MEAN
4, True, -1.0, True, 1.0
5, False, 200.0, True, 300.0

In this example, Crunch will use the threshold method.
It will not include the time channel in the output. For chan-
nel 3, it will find one trough for each block of data that is all
below the mean value. For channel 4, it will find both peaks

Crunch User’s Guide 6 Last revised on October 15, 2003 for version 2.9

and troughs that are outside the range of –1 to 1. Crunch
will output the peaks above 300 for channel 5.

If you analyze files individually, the output files include
the root of the input file, the channel name, and the exten-
sion “pek.” For instance, if you process “input1.dat” and
“input2.dat,” and list the peaks of “Chan1,” Crunch will cre-
ate two output files called “input1_Chan1.pek” and
“input2_Chan1.pek.” If you do an aggregate analysis with
the aggregate root name of “agg,” Crunch will produce only
one file and name it “agg_Chan1.pek.”

Probability Mass Functions
Crunch can generate probability mass functions (PMFs),

which are also sometimes referred to as histograms. A plot-
ted PMF of a signal can give a much better feel for how the
data vary than a table of simple statistics.

The input section for PMFs consists of a line specifying
how many channels will be processed and one specifying
how many bins to use. After that is a comment that tells
how to enter the channel information.

When specifying the channel information, enter one line
for each channel that is to be processed. On each line, enter
the channel number, the minimum, and the maximum. If
you set both the minimum and maximum to zero for one or
more channels, Crunch will determine them for you. You
can mix and match auto-calculation. Here is an example:

2 of the output columns will have PMFs…
20 is the number of PMF bins.
Format for column info is: Column #,
Minimum…
2, 5.0, 25.0
4, 0.0, 0

Rainflow-Cycle Counts
Crunch can generate binned rainflow-cycle counts or raw

cycles. You can use these counts or cycles to estimate the
fatigue life of a part. Crunch can generate either 1-D (cycle
ranges only) or 2-D (cycle ranges and cycle means) tables.

Crunch allows you to assign a weight to all unclosed cy-
cles. If you want to count them as full cycles, use a value of
one for the half-cycle multiplier. If you want to exclude
them, set the multiplier to 0. If you want to count them as a
half cycle, set the multiplier to 0.5.

To make it possible to plot the results of one Crunch run
with another and have a fair comparison, Crunch can nor-
malize the binned cycle counts by the bin width (1-D) or bin
area (2-D). You must multiply the results by the listed nor-
malization constants before using the data to estimate fatigue
life. You can also eliminate the need for normalization by
specifying the bin sizes explicitly (see below).

To generate rainflow cycles or binned counts, tell Crunch
how many channels to process, the rainflow counting period
in seconds, whether or not to normalize the results, whether
to output spaces or zeros when the bin count is zero and the

files are to be tab-delimited, the number of range and mean
bins, and the channel information.

If you set the number of range bins to zero, Crunch will
output the raw cycles instead of binning them. If you set the
number of mean bins to 1, Crunch will output only range
data. Otherwise, it outputs both ranges and means. Crunch
writes the raw cycles for each channel into separate files
with the name “<InFileRootName>_<ChanName>.rcc.”

When specifying the channel information, enter one line
for each channel that is to be rainflow counted. On each
line, enter the channel number, the half-cycle multiplier, the
maximum range, the minimum mean, and the maximum
mean. If you set the maximum range to zero, Crunch will
auto-calculate it for you. If you set both the minimum mean
and maximum mean to zero, Crunch will calculate them,
too. You can mix and match auto-calculation. If you are
doing only 1-D binning, you do not need to input the mini-
mum mean or the maximum mean. You can include them if
you like. If you are generating only the raw cycles (un-
binned), you do not need to enter the maximum range,
minimum mean, or maximum mean. An example of 2D
binning follows. Here, channel 4 uses specified bin widths
and Crunch automatically calculates bin sizes for channel 5.

2 Number of cycle-counted columns.
1 Rainflow counting period
(seconds).
True Normalize rainflow cycle count.
True For bins with zero counts, output…
20 Number of rainflow range bins
10 Number of rainflow means bins.
 Format for column info is: Column
#…
4 0.5 1.0e4 –0.5e4 0.5e4
5 0.5 0.0 0.0 0.0

If you have bazillions of runs and do not want to cycle
count them in one huge Crunch job, you can specify the bins
widths and then simply add the cycle counts from multiple
Crunch jobs. The trick is knowing the maximum range and
the limits on the means. You can determine the maximum
range you will need by generating aggregate statistics for
each batch of files and looking for the largest maximum
range from all batches. I would use the most positive maxi-
mum and most negative minimum from all batches for the
maximum and minimum means.

Extreme-Event Tabulator
You can tabulate extreme events either for individual

files or for the aggregate of multiple files. You can create
groups of channels to examine additional loads that occur
when a member of the group hits an extreme.

Each group has two sets of channels associated with it.
The first set is called the extreme channels. These columns
of your data will be searched for extremes. The other set is
the informational set. The channels in this set will not be

Crunch User’s Guide 7 Last revised on October 15, 2003 for version 2.9

searched for extremes, but their values will be added to the
tables of extremes.

Summary Files
Summary files are very useful to summarize the statistics

for a number of files. The input for this section is simple.
The first line tells Crunch how many parameters to
summarize, and the second is a simple list of channels. Here
is an example:

As an example, you may want to create a blade loads
group. In the set of extremes, include the six components of
the root forces and moments. Because you may find it
useful to know what the time or wind speed are when one of
the blade loads hits an extreme, add them to the informa-
tional set. This is what the section of the input file might
look like:

3 Number of summary files.
4, 3, 5

1 groups of parameters will have their
extreme…
Format for column info is:
Group_Title(100 char…

Crunch generates a different output file for each pa-
rameter that is summarized. If you specified channel titles
or if Crunch found them in the data file(s), the summary files
will use the channel titles for the root file name with a .sum
extension. If you do not have real titles, the file names will
looks like “Chan001.sum.”

"Blade Loads", 6, 15,16,17,18,19,20, 2,
1,2

The first column of the output holds the names of the in-
put data files. If you tell Crunch which channel contains the
wind speed, the next two columns of the output will be the
mean wind speed and turbulence intensity. Columns for the
standard statistics (see the Statistics section below) follow.

You may also be interested in tower loads, but are not
necessarily interested in seeing what the tower loads are
when the blade loads reach extremes, and vice versa. In this
case, create a second group for the tower loads. For the
tower loads, you may be interested in knowing the wind
direction in addition to the time and wind speed at the times
any tower extremes occur. If so, add wind direction to the
list of informational channels for the tower group. Each
group has its own set of informational channels. If you don't
want to have any informational channels in a particular
group, set the number of informational channels to zero and
Crunch will ignore any additional numbers on the group
line.

Extrapolating Extreme Values
For each channel, Crunch can extrapolate the expected

extreme values based on their statistics and the number of
hours to extrapolate to. Peter Madsen of Risø (Madsen, et
al. 1999 [editor: I don’t know if I’m supposed to use 1998 or
1999]) developed the method used to calculate these ex-
pected values. Output results include expected values for
the basis period and for a specified percentile, and expected
values for the number of requested hours to extrapolate to
based on both “N” and “T” extrapolation. A table of percen-
tiles whose size is determined by the number of input files is
also presented along with the data used in the extrapolation
process presented in a sorted table.

For each group, Crunch creates a table of the extreme
events. There are twice as many rows in the table as there
are extreme channels (minima and maxima). The number of
columns in the table is equal to the number of extreme
channels plus the number of informational channels. The
informational channels are listed last. If you ask for aggre-
gate channels when multiple files are crunched, each row of
the table will include the name of the file in which the ex-
treme occurred.

If azimuth binning is desired, the columns of interest
must first be azimuth averaged; then, the “aa” columns must
be specified for extrapolation.

This section of the input contains one line telling Crunch
how many channels are to be extrapolated. The second is a
comment, followed buy one line for each channel (or no
lines if none are extrapolated) that contains the channel
number, the hours to extrapolate to, and the desired quantile.
Here is a sample of the input:

The first line in the extreme-event section of the input
file specifies the number of groups. The second is a
comment telling you the format of the group lines. After
that one line follows for each group. The first field in the
group is a quoted string indicating the group name (for ex-
ample, “Blade Loads”). The string is limited to 100 charac-
ters. The second field is the number of channels that will be
searched for extreme events.

1 of the output columns will have their…
Format for statistics info is: Col_#…
4, 1.0, 0.57

If you choose aggregate analysis, Crunch will generate
one file with the root name specified at the beginning of the
input file and with the extension “.eev”. If you choose to
analyze the files individually, Crunch will generate one
extreme-event file for each input file, using the root of the
input file name for its root.

Statistics
Crunch can generate the following statistics:

• Minimum
• Mean
• Maximum
• Maximum range (Maximum-Minimum)
• Standard Deviation

Crunch User’s Guide 8 Last revised on October 15, 2003 for version 2.9

KNOWN BUGS • Skewness
• Kurtosis • None.
• Mean crossing frequency (how often the signal

crosses its mean in a positive-going direction).
POSSIBLE FUTURE ENHANCEMENTS

Crunch can also create summary files of the statistics for
selected channels. For all input data files in a single run,
Crunch generates one table of statistics for each requested
channel. These tables are written to files called
“<ChannelName>.sum.” Summary files have two additional
columns of statistics—mean wind speed and turbulence
intensity.

• Add option to rainflow cycle counting that gener-
ates cumulative cycles and outputs the cycle range
in the first column.

• For the Extreme-Events feature, add the ability to
generate runners up. That is, the second largest
loads. Emil Moroz requested this.

• Add binning (e.g., power versus wind speed).
COMPILING CRUNCH • Add PSDs.

You should not need to compile Crunch unless you want
to make changes to the code. The archive contains code
primarily for the Compaq Visual Fortran compiler. All of
the compiler-specific code should reside in files called
“SysPCD.f90” and “ModPCD.f90.” Included in the
distribution are untested routines for the Sun f90 compiler.
They reside in the files “SysSun.f90” and “SunMod.f90.”
To compile with either compiler, choose the correct set of
compiler-specific files and link them with the other .f90
files. All source code resides in Crunch's “Source” folder.

• Add 2D histograms.
• Add the ability to generate a time column.
• Calculate equivalent loads and fatigue life.
• Enable Crunch to signify that a value of zero for the

time column means that no time column is
available. This will mean many features will have
to be disabled for that run (crossing frequency, ex-
treme-value extrapolation, binned rainflow cycle
counting, and filtering).

• Add Steve Winterstein's extreme-value analysis.
LIMITATIONS • Consider changing the filtering so that one can

specify different filters in a single run. Currently,
all filtered channels must use the same filter.

Crunch has the following limitations:
• All files must have the same number of records.

• Modify the calculated-channels tool so that we can
specify rows in addition to columns. For example
"C1-C1[1]" would subtract the value of column 1
for the first time step from every time step.

• All files must have the same channel layout.
• File names must be less than 100 characters long.
• There cannot be more than 998 channels of data.

• For calculated channels, add integration and
differentiation.

• Title and units lines must be less than 10,000
characters long if Crunch is automatically
determining the file layout (column info). • Suggestion from Garrett Bywaters: “For the rain-

flow counting analysis, it would be really nice if
one could specify the # of wind speed bins, and
hours in each bin, and run Crunch once, cycle
counting and scaling, with say a list of 25 files (5
ten minute files in each of 5 wind speed bins). This
would speed up the process, and enable one to
readily calculate fatigue under different IEC WTGS
wind classes.”

• Computers must have sufficient virtual memory to
contain all the data for a run.

• For aggregate rainflow-cycle counting to work, all
files must have the same time step.

• Channel names and units strings are limited to 10
characters each.

• Expressions for calculated channels must be less
than 100 characters long. • Make it impossible to cycle count the time column.

• For Crunch to work, you must run it on a system
that can handle long file names. The distributed
Crunch executable file will not work on DOS. It
should run fine on 32-bit Windows and UNIX.

• Make it impossible to cycle count the same column
twice.

• Add ability to read BLADED binary output files.
• Add ability to handle files that are not all the same

length. I doubt this will ever happen. • You cannot specify more than 99 sectors for load
roses.

• The maximum number of columns in any extreme-
event group is 20.

Crunch User’s Guide 9 Last revised on October 15, 2003 for version 2.9

CAVEATS REFERENCES
NREL makes no promises about the usability or

accuracy of Crunch, which is essentially a beta code. NREL
does not have the resources to provide full support for this
program. You may use Crunch for evaluation purposes only.

Madsen, Peter Hauge; Pierce, Kirk; Buhl, Marshall.
“Predicting Ultimate Loads for Wind Turbine Design.” Pre-
sented at the 1999 American Society of Mechanical Engi-
neers Wind Energy Symposium, Reno, Nevada, January 11–
14, 1999. NREL/CP-500-25787. Golden, Colorado: Na-
tional Renewable Energy Laboratory, November 1998. ACKNOWLEDGEMENTS

Marshall Buhl of the National Wind Technology Center
(NWTC) wrote most of Crunch. Norm Weaver, of Inter-
Weaver Consulting, wrote or designed some algorithms for
other programs that Marshall adopted for use in Crunch.
Paul Veers of Sandia National Laboratories was the inspira-
tion for the peak-finding algorithm. Larry Schluter of
Sandia coded Veers' algorithm in LIFE2 and we started with
his code. Crunch uses the rainflow-cycle-counting
algorithm taken from “Simple Rainflow Counting Algo-
rithms,” by S.D. Downing and D.F. Socie. Paul Veers
originally coded the algorithm and Larry Schluter modified
the code to work with the LIFE2 code. The routines used in
Crunch are heavily modified versions of those from LIFE2.
James Van Buskirk created the parser used for the calculated
channels. Dave Laino of Windward Engineering added
Peter Hauge Madsen's extreme-value extrapolation algo-
rithms. Kirk Pierce, Garrett Bywaters, Craig Hansen, David
Malcolm, and Emil Moroz provided much input, encourage-
ment, and feedback.

Funding for the original Crunch development came from
the U.S. Department of Energy (DOE) under contract No.
DE-AC36-83CH10093 to the National Renewable Energy
Laboratory. The original work was performed under task
WE80.4040, which is managed by C.P. “Sandy” Butterfield
of the NWTC. Later enhancements were funded by the
DOE under contract No. DE-AC36-98-GO10337 to the
NREL. The enhancements were done under many tasks.

FEEDBACK
If you have problems with Crunch, please contact

Marshall Buhl. If he has time to respond to your needs, he
will do so, but please do not expect an immediate response.
Please send your comments or bug reports to:

Marshall L. Buhl, Jr.
NWTC/3811
National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3393
United States of America

Web: http://wind2.nrel.gov/designcodes/
Email: marshall_buhl@nrel.gov
Voice: (303) 384-6914
Fax: (303) 384-6901

Crunch User’s Guide 10 Last revised on October 15, 2003 for version 2.9

http://wind2.nrel.gov/designcodes/
mailto:marshall_buhl@nrel.gov

Appendix A
Crunch Calculated Channels

This is the detailed help for the Calculated-Channels
feature of Crunch. Please note that the expressions for
calculated channels are not case sensitive.

ATAN2D(Y,X) Returns the arc tangent in degrees. Either X
or Y must be nonzero.

ATAND(X) Returns the arc tangent in degrees.
CEILING(X) Returns the smallest integer greater than or

equal to the argument. Examples:
 CEILING(4.8) = 5.0
 CEILING(-2.55) = -2.0

OPERATORS
“+”, “-”, “*”, and “/” are recognized for algebraic

operations. Both “^” and “**” are recognized for exponentia-
tion. Parentheses allow nesting of operations.

COS(X) Returns the cosine of an angle specified in
radians.

COSD(X) Returns the cosine of an angle specified in
degrees. The order of operator precedence from highest to lowest

is “**” or “^”, “*” or “/”, and “+” or “-”. Expressions within
the most deeply nested parenthesis are evaluated first.

COSH(X) Returns the hyperbolic cosine of an angle
specified in radians.

DIM(X,Y) Returns the difference between two numbers
if the difference is positive. Otherwise, the
result is zero. Examples:
 DIM(6,2)=4
 DIM(-4.0,3.0)=0.0

All expressions are insensitive to case. Expressions are
calculated with 15 digits of precision and can have exponents
up to 300.

EXP(X) Returns the exponential value of a real
argument. CONSTANTS

FLOOR(X) Returns the greatest integer less than or
equal to the argument. Examples:
 FLOOR(4.8)=4.0
 FLOOR(-5.6)=-6.0

Constants may be entered in the expression as normal
decimal numbers or using scientific notation (examples:
0.0123, 1.23E-02 or 1.23D-02). Some common constants are
provided for you to make their use easier: INT(X) Converts a value to integer type.

LOG(X) Returns the natural logarithm of a real
argument. E 2.71828182845904523536

PI 3.14159265358979323846 LOG10(X) Returns the common logarithm of a real
argument. GAMMA 0.57721566490153286061

MAX(A1,A2,[A3,…]) Returns the maximum value in a list of two or
more arguments.

CHANNELS MIN(A1,A2,[A3,…]) Returns the minimum value in a list of two or
more arguments. You can refer to existing channels by using a “C”

followed by the channel number. For instance, if you want to
add channel 3 and channel 6 together to create a new channel,
enter the expression “C3+C6”.

MOD(A,P) Returns the remainder when A is divided by
P. If P is not zero, Result is A-INT(A/P)*P. If
P is zero, the result is undefined. Examples:
 MOD(7,3)=1
 MOD(9,-6)=3
 MOD(-9,6)=-3

FUNCTIONS MODULO(A,P) Returns the modulo of the arguments. If P is
not zero, the result is A-FLOOR(A/P)*P. If P
is zero, the result is undefined. Examples:
 MODULO(7,3)=1
 MODULO(9,-6)=-3
 MODULO(-9,6)=3

Many Fortran intrinsic functions are available. We have
added some new ones to allow you to specify angles in
degrees instead of radians. The following is a list of the
functions:

NINT(X) Returns the nearest integer to a real
argument. ABS(X) Returns the absolute value of a real

argument.
RAND Returns a pseudo-random number with a uni-

form distribution between 0 and 1. Do not in-
clude parentheses or arguments after the
function name.

ACOS(X) Returns the arc cosine in radians.
ACOSD(X) Returns the arc cosine in degrees.
ASIN(X) Returns the arc sine in radians.

ROOT(X,Y) Returns X raised to the 1/Y power. If X is
negative then Y must be an odd number.
Examples:
 ROOT(8,3)=2
 ROOT(-27,3)=-3

ASIND(X) Returns the arc sine in degrees.
ATAN(X) Returns the arc tangent in radians.
ATAN2(Y,X) Returns the arc tangent in radians. Either X

or Y must be nonzero.

Crunch User’s Guide 11 Last revised on October 15, 2003 for version 2.9

SIGN(A,B) Returns the absolute value of A times the
sign of B.

SIN(X) Returns the sine of an angle in radians.
SIND(X) Returns the sine of an angle specified in

degrees.
SINH(X) Returns the hyperbolic sine of an angle in

radians.
SQRT(X) Derives the square root of a real argument.
TAN(X) Returns the tangent of an angle in radians.
TAND(X) Returns the tangent of an angle specified in

degrees.
TANH(X) Returns the hyperbolic tangent of an angle in

radians.

Crunch User’s Guide 12 Last revised on October 15, 2003 for version 2.9

	Appendix A
	Crunch Calculated Channels

