

WESE Workshop Turbine Level Integrated Design Approaches Hub Height Example

Patrick Riley January 15, 2014

Imagination at work.

Hub Height Optimization – Component Level

Optimization based on lowest tower cost / AEP

WESE Workshop| 15 January 2015

Hub Height Optimization – Turbine Level

Energy of Taller Hub Heights

- Higher mean *wind speed*
- Reduced <u>wind shear</u>
- Reduced <u>turbulence</u>
- Potential impact to loads and structures design

Costs of Taller Hub Height

- Non-linear increasing <u>cost of tower</u>
- *Logistic* costs & constraints
- Installation costs
- Increase in <u>O&M</u> costs

Installation Costs

Tower logistic costs

Optimization based on lowest turbine cost / AEP

 $\ensuremath{\mathbb{C}}$ 2015 General Electric Company – All rights reserved

Hub Height Optimization – Plant Level

Energy of Taller Hub Heights

- Higher mean *wind speed*
- Reduced wind shear
- Reduced <u>turbulence</u>
- Value depends on *market pricing*
- <u>Wake & cable losses</u>
- Increased <u>rotor diameter & rating</u>

Costs of Taller Hub Height

- Non-linear increasing <u>cost of tower</u>
- *Logistic* costs & constraints
- Installation costs
- Increase in <u>O&M</u> costs
- <u>BOP costs</u>
- Economies of scale

Optimization based on Customer Metric

WESE Workshop| 15 January 2015

© 2015 General Electric Company

North American Optimized Product

Large Project Sizes (often >50 turbines)

Competes with variable cost of gas ... low PPA values

Moderate wind resource ... IEC Class II & III

> Manage cost & performance for low PPA's ... lower hub heights

European Optimized Product

Constrained by land available ... Small farm sizes

Strong feed-in tariff rates ... AEP valued

Poorer wind resource ... IEC Class III & IV

Increasing size can pay off with high feed-in tariffs ... higher hub heights

5

Where Would We Expect Tall Towers

Impact of forested terrain

Key issue in Finland, Sweden and Germany

Impact of forested terrain ...

- high turbulence above tree line ... negative impact on site suitability / turbine life
- Boundary layer above trees resulting in very high shear

Economic value drivers

PPA 0.06	6.0 m/s	7.0 m/s
0.2 shear	82	86
0.3 shear	262	264
0.4 shear	444	441

PPA 0.08	6.0 m/s	7.0 m/s
0.2 shear	201	206
0.3 shear	442	444
0.4 shear	684	680

¹⁰⁰m vs 140m HH - 20 years incremental NPV / WTG (k€)

Drivers in key target markets ...

- Thailand... <6 m/s wind & ~20ct/kWh ppa
- Germany... ~6.0 m/s wind & 8 ct/kWh ppa
- Sweden... up to 0.4 shear in forest
- Finland... ~9ct/kWh in forest

WESE Workshop 15 January 2015

Evaluate New Technology in System Eyes

Space Frame Tower

Metal lattice structure ... break logistic constraint Fiberglass coat ... Protect from weather

WESE Workshop| 15 January 2015

Space Frame Tower Comparison

	Assemble in Factory	Assemble on Site	
Direct Material (subject to Local Content Rules)	 Greater mass "Turnkey" supply chain may shift with project locations 	 Lower mass Global suppliers of multiple subsystems 	
Logistics (varies by project location)	• Specialized trailers \$30/mile (multiply by tower sections) • Permits/escorts/restrictions	 Predictable, competitive market More loads to manage 	
Installation Cost (varies with labor rates)	Optimized through 1000's of units	 Apply factory principles to the field More people, fixtures? 	

Challenge: Optimize hub height requires various detailed models

WESE Workshop| 15 January 2015

System Optimization of Space Frame Tower

Component Level Analysis

- Reduced tower mass & cost
- Removal of *logistic constraints*

Turbine Level Analysis

- Increased *installation* costs
- Reduced *logistic* costs
- <u>O&M</u> costs ... add cover for weather protection
- Allows <u>cost-effective scaling</u> of tower

Fleet Level Analysis

- Economies of scale on *installation* time
- <u>Market revenues</u>
- <u>Market rules</u>

Value not in 80 to 110m towers, but greater >120m ... 3MW products Most impactful locations have high shear & energy price Optimized at 139m for 2.75-120 product

WESE Workshop| 15 January 2015

Join the conversation

GE Global Research website www.ge.com/research

Edison's Desk – GE's longest running blog www.edisonsdesk.com

Edison's Desk on Twitter twitter.com/edisonsdesk

Youtube account www.youtube.com/grcblog

GE's Genius of the Day www.ge.com/genius

We're on Facebook too!

Engage with GE scientists and engineers about innovation and science

GE)

WESE Workshop| 15 January 2015

GE Wind Products & Hub Heights

1 & 2 MW Platform

Turbine	Hub Height	Tip Height	Turbine	Hub Height	Tip Height
1.6-87	80m	123.5	2.5-120	85m 110m 120m 139m	145 170 180 199
2.75-120	80m 86m (60Hz only)	130			
	90111 (00H2 01119)	140		85m	145
1.7-103	80m	131.5	2.75-120	110m 139m	170 199
1.85- 82.5	65m (50Hz only) 80m	106.25 121.25	2.85-100	70m 75m 85m	120 125 135
1.85-87	80m	123.5	2.05 1.07	96.311	140.3
				70m 75m 85m 98.3m	121.5 126.5 136.5 150
2.3-107	80m	133.5	3.2-103		

WESE Workshop| 15 January 2015