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Downwind wind turbines may be advantageous at large
scales because of the relaxed tower-strike constraint
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WISDEM: Wind-Plant Integrated System Design
and Engineering Model
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A coupled, multidisciplinary approach

Discipline Theory

Blade aerodynamics Blade element momentum

Blade structures Beam finite element, classical laminate theory

Tower aerodynamics Power-wind profile, cylinder drag

Tower structures Beam finite element, Eurocode and GL

Nacelle Physics-based component models, Univ. of Sunderland
Cost mass-based TCC, new BOS




35 design variables

Rotor

Nacelle I

Tower

chord distribution

twist distribution

spar-cap thickness distribution
aft panel thickness distribution
blade precurve distribution
tip-speed ratio in Region 2

bedplate [-beam dimensions
low speed shaft lengths

tower diameters
tower wall thicknesses
tower waist location
tower height



100+ constraints

; | ; Natural Frequencies (resonance)

H B Deflections (tower strike, ground strike, bedplate)
B B m Ultimate Stress/Strain (max wind and max thrust)
il B Buckling (panel, shell, global)

H B Fatigue Damage

= Max Tip-Speed

- B Transportation

Welding and Manufacturing



Several specific additions/modifications were made
for this downwind study

- Converged aero/structural response
- Reductions in AEP due to blade curvature/deflection

- CurveFEM used to find natural frequencies of curved
blades



OpenMDAQO facilitates coupled gradients across
102 components
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The dependence graph for the rotor contained the
most complexity including nested solvers




Analytic gradients allow for quicker and more

robust convergence
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Class |, 5-MW —negligible benefit for downwind
designs
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Blade mass savings was limited because survival wind
speed was dominant constraint.



The cost savings for lighter blades were offset by a
heavier tower




AEP was slighter lower for downwind designs




Class lll, 5-MW —Dblade mass savings of around

30%
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Class I, 7-MW —results were similar but tower

design is limiting factor
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Highly downwind precurved bladed did not appear
to be advantageous
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max strain at rated (microstrain) 1,336 841
max strain at survival (microstrain) 3,001 2,872
1st flap freq (Hz) 0.961 0.848
1st edge freq (Hz) 1.15 1.08
AEP (MWh) 19,560 18,802




Conclusions

Downwind rotors allowed for blade mass reductions of
around 10-30%

- Downwind configurations were potentially advantageous
for sites with lower wind speeds, and for turbines with
higher power ratings

- For very large turbines, efficient tower design is critical

- Optimal precurved blades were curved upwind



