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MDOlab research is divided into two main thrusts

Fundamental MDO algorithms Applications of MDOBy the inverse function theorem, if @R
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is invertible at u

⇤, there exists a
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The Jacobian of the inverse turns out to be equal to the matrix of total
derivatives we are after, so the result is
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This equation unifies all methods for computing the derivatives of a
computational model.
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Optimization can refine good designs…

[Lyu, Kenway, and Martins, AIAA J., 2014]

http://mdolab.engin.umich.edu/content/aerodynamic-shape-optimization-investigations-common-research-model-wing-benchmark


…but can we start from really bad designs? 



Wing design demands more than just aerodynamics

Shape in flight

Shape on ground



Want to optimize both aerodynamic shape and
structural sizing, with high-fidelity

[Kenway and Martins, J. Aircraft, 2014]

http://mdolab.engin.umich.edu/content/multi-point-aerostructural-optimization-transport-aircraft-configuration


[Kenway, Kennedy, and Martins, AIAA J., 2014]

http://mdolab.engin.umich.edu/content/scalable-parallel-approach-aeroelastic-analysis-and-derivative


This aerostructural optimization framework can be 
adapted for the design of wind turbine blades



CHAPTER 4. AEROSTRUCTURAL RESULTS AND DISCUSSION

4.2.3 WindPACT Blade

The aerostructural results for the WindPACT blade are shown in Figures (4.10) and (4.11).

Figure (4.10) shows the aerostructural results of the blade in a similar fashion to the previous

case, while Figure (4.11) shows the details of the results at the blade tip. The convergence plot

for this case is shown in Figure (4.9). The test case was also run on a single processor, and the

aerostructural solution required approximately 200 s to complete.
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Figure 4.10: Aerostructural plot for the WindPACT blade: exploded surfaces denote

the structural mesh with the inverse load-to-fail factor contour; unexploded surface

denotes the aerodynamic surface with Cp distribution, with undisplaced tip and wake

mesh

4.3 Discussion

Here we discuss the aerostructural analysis results of the three cases in detail.

4.3.1 NACA Wing

The aerostructural plot (Figure (4.7)) shows the result for the wing test case. The structure

deflections are easily noticeable: Figure (4.13) shows the maximum deflection is nearly 200 mm

58

• Aerostructural analysis 
using 3D panel method and 
FEM 

• Aerostructural optimization 
with BEM theory and beam 
finite elements 

• Aerodynamic shape 
optimization by use of BEM 
theory 

Our previous effort were limited to 
low-fidelity aerodynamic models

[Kenway and Martins, AIAA J., 2008]

http://mdolab.engin.umich.edu/content/aerostructural-shape-optimization-wind-turbine-blades-considering-site-specific-winds-1


• Structured compressible RANS-based 
solver ‘SUmb’ 

• Roe scheme without limiter 
• Spalart–Allmaras turbulence model 
• Wind speeds: 5, 7, 10, 13, 15, 20, and 

25 m/s

We can now perform steady-state RANS analysis in 
the rotating frame



7 m/s - r/R = 30% 7 m/s - r/R = 63%

7 m/s - r/R = 95%

Attached flows are well predicted for the NREL VI 
sequence S experiment



While attached flows are well predicted,
the separated flow conditions are not



… but stagnation in residuals due to unsteadiness at 
cylindrical -and transition part

Flow separation at blade as well

Steady-state adjoint stagnates! No optimization possible



7 m/s

Optimization is feasible in 
attached flow region

7 m/s

Removing cylinder and transition part works!



Conventional vs. Optimal Design Process

Conventional Optimal

Baseline
design

Specifications

Analyze or
experiment

Evaluate
performance

Change
design

Is the design
good?

Final design

No

Yes

Baseline
design

Specifications

Analyze

Evaluate
objective and
constraints

Change
design

Is the design
optimal?

Final design

No

Yes

Gradient-based optimization is essential
for large set of design variables

number of blocks, this behavior would not be observed. The total-
derivative time includes the calculation of all partial-derivative terms
in the total-derivative equation.
It is instructive to examine how the convergence characteristics of

the nonlinear aerostructural solution and linear adjoint solutions
change as the size of the computation increases by nearly two orders
of magnitude. Figure 7 shows the nonlinear convergence, and Fig. 8
shows the adjoint convergence.
For both the level-1 and level-2 meshes, convergence to 10−6 is

achieved in approximately the same number of iterations (16 and 19,
respectively), whereas engineering accuracy (10−3) for the lift-to-
drag ratio is achieved in approximately 10 iterations. However, the
level-3 solution requires 36 iterations, and engineering accuracy is
not achieved until iteration 20.
Moving from mesh level 2 to 3, the number of NLBGS iterations

doubles, but thewall time increases by a factor of 4.3. Because a fixed
aerodynamic forcing tolerance is used, each iteration is also more
costly on the larger mesh. The performance for the coupled adjoint
solution is similar. In this case, the cost of each iteration is similar
for all three mesh levels, such that the number of iterations required
for convergence in Fig. 8 is representative of the overall solution
time. All of the adjoint solutions use the same aerodynamic
preconditioning settings, ILU(1) and additive Schwartz(1), resulting
in nearly constant memory usage across the mesh levels. For mesh
level 3, faster convergence times can be achieved by using stronger
preconditioning, which reduces the condition number of the
preconditioned system.

E. Design Variable Scalability

The main advantage of using the coupled adjoint method to
compute the gradients of the functions of interest is that the
computational cost is theoretically independent of the number of
design variables. However, as described in Sec. III.B, careful
implementation of the partial-derivative terms ∂I∕∂x, ∂A∕∂x, and
∂S∕∂x in the total-derivative equation (15) is required to ensure that
the computational cost is practically independent of the number of
design variables.
We now consider the time required to compute the gradient of CL

with respect to thousands of design variables. The design variables
are distributed according to Table 8 and contain both global
geometric variables and local variables.
We compare the computational time required to compute the

gradient for the coupled adjoint method and for first-order finite
differences. The level-2 discretization is used, and the computational
time is normalized by the time required for a single aerostructural
solution. The results are shown in Fig. 9.
We expect the cost of finite differencing to be linearly dependent

on the number of design variables. However, the slope is not equal
to one but is significantly lower, because the solution for each

design-variable perturbation uses the previous solution as a starting
point, and it is closer to the converged state than a uniform-flow field
solution. For each additional design variable, finite differencing
requires a time equivalent to 23% of an aerostructural solution,
resulting in a slope of 0.23.
The coupled adjoint method exhibits an extremely small slope.

The main contributor to this slope is the design-variable-dependent
load transfer, which requires a synchronous data transfer for each
geometric design variable. Nevertheless, each additional design
variable requires only 0.005% of the aerostructural solution time.
It is worth comparing the current results with the previous work of

Martins et al. [27]. In that work, the coupled adjoint cost was found to
scalewith the number of design variables according to 3.4! 0.01Nx.
Because the constant term in the equation includes the aerostructural
solution, the coupled adjoint solution had a baseline cost of 2.4. The
present method scales according to 1.67! 5 × 10−5Nx, as indicated
in Fig. 9. This corresponds to a baseline cost for the coupled adjoint of
0.67, i.e., a 72% reduction relative to the previous implementation.
This is primarily due to the elimination of the finite differencing that
was used to compute the off-diagonal coupled adjoint terms. This
improvement is even more significant in absolute terms because the
aerostructural solution of the new implementation is also much more
efficient. Additionally, the slope in the dependency on the number of
design variables has been reduced by over two orders of magnitude.
This is achieved by eliminating the use of finite difference derivatives
in the total-derivative equation (15).
We have shown that the new implementation of the coupled

adjoint method exhibits extremely good design-variable scaling.
The coupled computational cost can be considered practically
independent of the number of design variables, and it is now feasible
to compute coupled gradients with respect to thousands of design
variables.

V. Conclusions
Strategies for the analysis and derivative computation of high-

fidelity aerostructural systems have been presented. Two methods
were implemented for solving the nonlinear aerostructural systems:
a block Gauss–Seidel method with Aitken acceleration and a fully
CNK approach. Both methods performed well on the present
problem of interest, with the latter method typically requiring 10%
less computational time than the former. With the proposed CNK
approach, a typical aerostructural solution with 2 × 106 CFD cells

Table 8 Design variables

Description Quantity
Global variables

Span 1
Sweep 1
Chord 3
Twist 5
Shape 4818

Aerodynamic variables
Angle of attack 1
Tail rotation 1

Structural variables
Upper skin 54
Lower skin 54
Upper stringers 54
Lower stringers 54
Ribs 18
Rib stiffeners 18
Spars 36
Total 5120
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Fig. 9 Gradient evaluation cost for first-order finite differencing and
the coupled adjoint method vs number of design variables; one unit of
normalized time corresponds to one aerostructural solution.
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Figure 3: Study 1: Dimension analysis for 2-D Rosenbrock function
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Figure 4: Study 1: Local minimum of 8-D Rosenbrock function

methods reflect in their better ability to find global minimum. As the increasing of problem size, gradient
methods tends toward the local minimum while non-gradient methods can still find the global minimum.
However, consider their performance at high dimension, we cannot take fully use of this advantage.

6

[Kenway, Kennedy, and Martins, AIAA J., 2014] 

http://mdolab.engin.umich.edu/content/multi-point-aerostructural-optimization-transport-aircraft-configuration


22.4% increase in torque by subtle changes in shape 
and twist

• Maximizing torque 
• 496 design variables: 

shape and twist 
• thickness -and linear 

constraints



26.5% improvement in Annual Energy Production 

• Optimize the design for various wind 
speeds (cut-in to rated wind speeds) 

• AEP based on Rayleigh distribution 
• Dutch part of the North Sea

AEP Initial :19.9 MWh 
AEP Optimal: 25.3 MWh



Summary
A gradient-based aerodynamic shape optimization methodology is developed for 

wind turbine blades

• Gradient computation and optimization 
• Unsteadiness results currently in non-solvable optimization 
• Fast and robust aerodynamic shape optimization



Future Work

• Unsteady adjoint solver for optimization of quasi-steady solutions 
• Mesh perturbation method for periodic boundary conditions 
• Adding more design variables (pitch, rotating speed, and planform) 

and constraints (separation, bending moments) for more realistic 
designs 

• Aerostructural optimization 

periodic boundary conditions
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