OneWind Concept 00000 OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

OneWind

Concepts and Products

Urs Wihlfahrt

2015 Wind Energy Systems Engineering Workshop

January 14th, 2015

1

© Fraunhofer

OneWind Concept 00000 OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

Agenda

Fraunhofer IWES

OneWind Concept

OneWind Modelica Library

OneWind Software Products

Extensions

Conclusion

OneWind Concept 00000 OneWind Modelica Library

OneWind Software Products 0000

Extensions 000 Conclusion

Agenda

Fraunhofer IWES Fraunhofer-Gesellschaft IWES

OneWind Concept

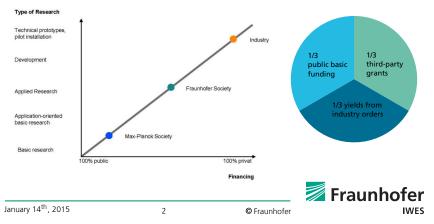
OneWind Modelica Library

OneWind Software Products

Extensions

Conclusion

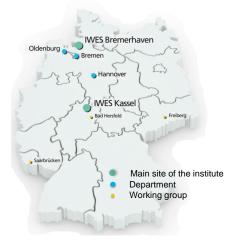
OneWind Concept


OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

Fraunhofer-Gesellschaft: Industry focus as success factor


- -< Largest organization for applied research in Europe
- -< More than 80 research institutions, including 67 Fraunhofer institutes in Germany
- -< More than 24,000 employees, mainly with natural or engineering science education
- $\prec \in$ 2.0 billion annual research budget totaling

 Fraunhofer IWES
 OneWind Concept
 OneWind Modelica Library
 OneWind Software Products
 Extensions

 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 <t

Fraunhofer Institute for Wind Energy and Energy System Technology (IWES North-West)

Managing Director:: Prof. Dr.-Ing. Andreas Reuter

→ Research Spectrum:

Wind energy from wind physics up to energy network feeding

→ Budget 2014: around €14 million

- ✓ Staff: 150 employees
- ✓ Previous investments in the establishment of the institute: €50 million
- -< Strategic Association with ForWind and the German Aerospace Center (DLR)

OneWind Concept

OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

Accelerated time-to-market by realistic testing

Rotor Blade Test Hall up to 90 meter

- -< Testing of design prior to series production
- -< Simulation of 20 year life-spans in a few months
- -< max. static bending moment 115,000 kNm; max. dynamic bending moment: +/- 30,000 kNm

DyNaLab with 10 MW Drive Performance / Peak 15 MW

- ✓ Norminal torque: > 8,6 MNm
- Rotor load application unit for dynamic bending moments, thurst and radial forces
- -< Artificial network: 44 MVA installed inverter power

Support Structure Test Center

- -< Testing support structure fatigue behaviour
- -< Solving production problems through design changes
- ✓ Scale of 1:10 1:3,5

© Fraunhofer

OneWind Concept

OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

Agenda

Fraunhofer IWES

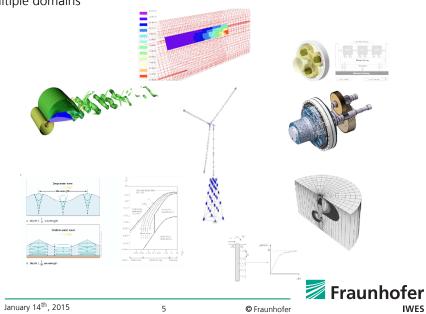
OneWind Concept Background Consistent modeling Base technologies

OneWind Modelica Library

OneWind Software Products

Extensions

Conclusion

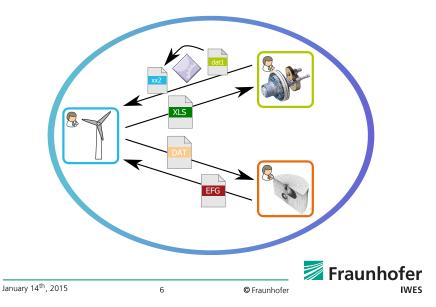

OneWind Concept

Multiple domains

OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

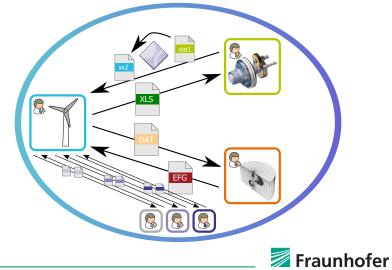


OneWind Concept O●○○○ OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

Cooperation in the design process

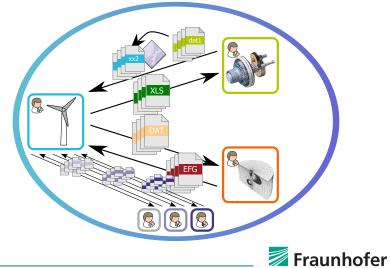


OneWind Concept O●○○○ OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

Cooperation in the design process

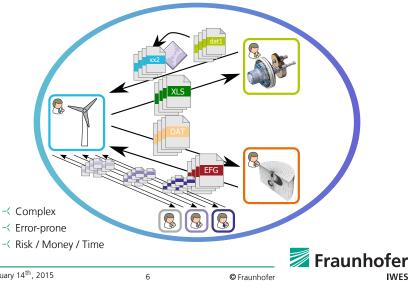


OneWind Concept O●○○○ OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

Cooperation in the design process



OneWind Concept 00000

OneWind Modelica Library

OneWind Software Products

Cooperation in the design process

January 14th, 2015

Consistent modeling

OneWind Concept

OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

All components of a wind turbine

- ≺ in **one** numerical model
- -< with **different** levels of detail
- \prec and automatic ${\bf transformation}$ of models

OneWind Concept

Consistent modeling

OneWind Modelica Library

OneWind Software Products 0000

Extensions 000 Conclusion

All components of a wind turbine

- -< in **one** numerical model
- -< with different levels of detail
- \prec and automatic **transformation** of models

Project OneWind

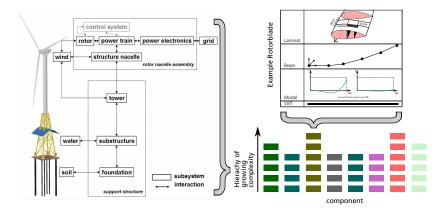
duration:	2009 – 2014
budget:	5.7 Mio. €
personnel:	\leq 10 employees

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Fraunhofer	IWES
000	


OneWind Modelica Library

OneWind Software Products

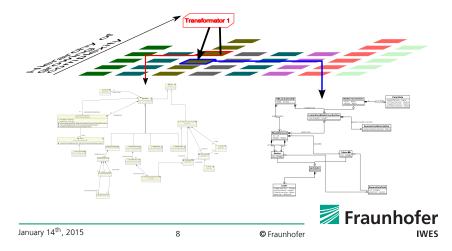
Extensions 000 Conclusion

Concept

- < Purely parametric component models (Engineer Design Data)

© Fraunhofer

Fraunhofer	IWES
000	


OneWind Modelica Library

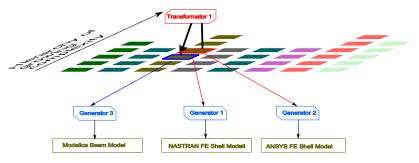
OneWind Software Products 0000

Extensions 000 Conclusion

Concept

- -< Purely parametric component models (Engineer Design Data)
- -< Transformation between different levels of detail

Fraunhofer	IWES
000	

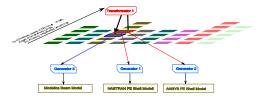

OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

Concept

- -< Purely parametric component models (Engineer Design Data)
- -< Transformation between different levels of detail
- -< Generation of models for calculation


Fraunhofer	IWES
000	

OneWind Modelica Library 0000 OneWind Software Products

Extensions 000 Conclusion

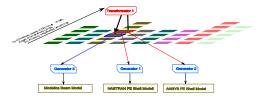
Concept

- -< Purely parametric component models (Engineer Design Data)
- -< Transformation between different levels of detail
- \prec Generation of models for calculation

Advantages:

- -< Consistency of the models with different levels of detail
- -< Decoupling of model and tool knowledge

Fraunhofer	IWES
000	


OneWind Modelica Library

OneWind Software Products

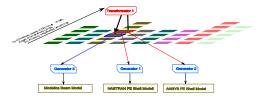
Extensions 000 Conclusion

Concept

- -< Purely parametric component models (Engineer Design Data)
- -< Transformation between different levels of detail
- -< Generation of models for calculation

Advantages:

- -< Consistency of the models with different levels of detail
- -< Decoupling of model and tool knowledge


Fraunhofer	IWES
000	

OneWind Modelica Library 0000 OneWind Software Products

Extensions 000 Conclusion

Concept

- -< Purely parametric component models (Engineer Design Data)
- -< Transformation between different levels of detail
- -< Generation of models for calculation

Advantages:

- -< Consistency of the models with different levels of detail
- -< Decoupling of model and tool knowledge


OneWind Concept

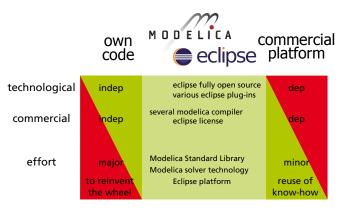
OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

OneWind base technologies: Modelica and Eclipse

© Fraunhofer

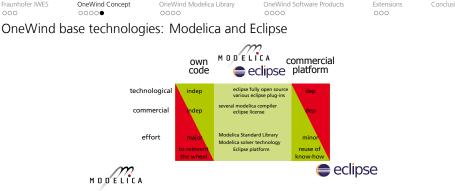

OneWind Concept

OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

OneWind base technologies: Modelica and Eclipse



© Fraunhofer

- Open source language for physical modeling (ODE)
- ✓ Separation of physics and numerics and → intuitiv to engineers
- Extensive Modelica Standard Library (MSL)
- Vendor independent, component based, extensible

- Open source language for physical modeling (ODE)
- ✓ Separation of physics and numerics and → intuitiv to engineers
- Extensive Modelica Standard Library (MSL)
- Vendor independent, component based, extensible

- Open source community
- Reuse of techniques from software development: plug-in framework, support for collaboration (subversion, tickets)
- \prec Domain specific models \rightarrow EMF
- -< Example: Eclipse Automotive Industry Working Group

OneWind Concept 00000 OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

Agenda

Fraunhofer IWES

OneWind Concept

OneWind Modelica Library Architecture Verification

OneWind Software Products

Extensions

Conclusion


OneWind Concept

OneWind Modelica Library •000 OneWind Software Products

Extensions 000 Conclusion

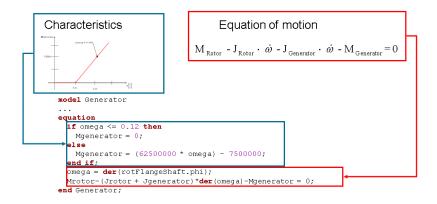
OneWind Modelica Library

- -< Modelica based
- Component based (exchangeable, extendible)
- -< Source code / no blackbox
- -< Modal reduction of blades and towers
- -< Including NREL offshore 5MW baseline wind turbine
- Verification OCx



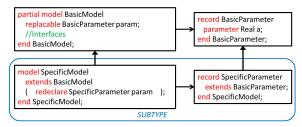
a 🛋 OneWind Modelica Library v1.1.1

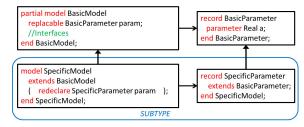
- a 🌐 OneWind
 - BeamElement
 - a 🌐 Components
 - Drivetrain
 - B Generator
 - Nacelle
 - DeratingControl
 - 🔺 🌐 Rotor
 - Blade
 - 🖻 🖶 Hub
 - b 🗄 Tower
 - a 🌐 Environment
 - Wind
 - Interfaces
 - 🗦 🖶 Types
 - b 🗄 Utilities


© Fraunhofer

- a 🌐 WindTurbine
 - HorizontalAxis
 - a 🌐 Template
 - NREL_5MW

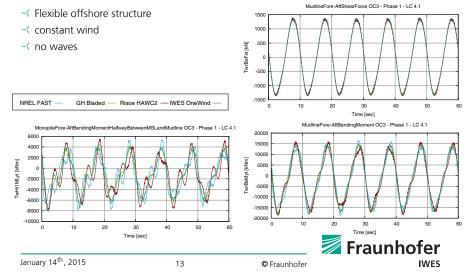
Fraunhofer IWES	OneWind Concept	OneWind Modelica Library	OneWind Software Products	Extensions	Conclusion
000	00000	0000	0000	000	


Modelica Example: Generator


Inheritance concept of library

Inheritance concept of library

Example Code


Graphical output

January 14th, 2015

© Fraunhofer

Fraunhofer IWES	OneWind Concept	OneWind Modelica Library	OneWind Software Products	Extensions	Conclusion
000	00000	0000	0000	000	
Verification					

OC3 Phase 1 loadcase 4.1

OneWind Concept 00000 OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion

Agenda

Fraunhofer IWES

OneWind Concept

OneWind Modelica Library

OneWind Software Products Framework Product overview Look and feel

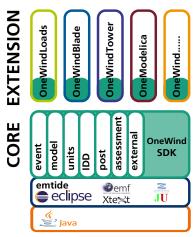
Extensions

Conclusion

OneWind Concept 00000 OneWind Modelica Library

OneWind Software Products

Extensions 000 Conclusion


OneWind-framework structure

Concept

- -< Modeling windturbines and workflow
- -< Engineering Design Data
- -< Core / extension

Software engineering

- -< Eclipse Rich Client Platform (RCP)
- -< Continuous integration build
- -< Documentation within products
- -< Tests within the products

DneWind Concept

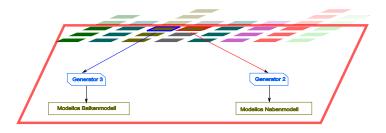
OneWind Modelica Library

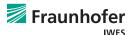
OneWind Software Products ○●○○

Extensions 000 Conclusion

- -< OneWindLoads Load calculation
- -< OneWindBlade Structure design of rotorblades
- -< OneModelica Integrated development environment for Modelica
- -< OneWindSDK Software Development Kit for OneWind products

Fraunhofer	IWES
000	


DneWind Concept


OneWind Modelica Library

OneWind Software Products ○●○○

Extensions 000 Conclusion

- ConeWindLoads Load calculation
- -< OneWindBlade Structure design of rotorblades
- -< OneModelica Integrated development environment for Modelica
- -< OneWindSDK Software Development Kit for OneWind products

Fraunhofer	IWES
000	

DineWind Concept

OneWind Modelica Library

OneWind Software Products ○●○○

Extensions 000 Conclusion

- -< OneWindLoads Load calculation
- -< OneWindBlade Structure design of rotorblades
- -< OneModelica Integrated development environment for Modelica
- -< OneWindSDK Software Development Kit for OneWind products

Fraunhofer	IWES
000	

neWind Concept

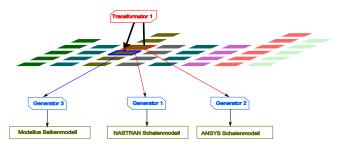
OneWind Modelica Library

OneWind Software Products ○●○○

Extensions 000 Conclusion

- -< OneWindLoads Load calculation
- -< OneWindBlade Structure design of rotorblades
- OneModelica Integrated development environment for Modelica
- -< OneWindSDK Software Development Kit for OneWind products

Fraunhofer	IWES
000	


OneWind Concept

OneWind Modelica Library

OneWind Software Products ○●○○

Extensions 000 Conclusion

- -< OneWindLoads Load calculation
- -< OneWindBlade Structure design of rotorblades
- -< OneModelica Integrated development environment for Modelica
- -< OneWindSDK Software Development Kit for OneWind products

Fraunhofer IWES	OneWind Concept
000	00000

OneWind Modelica Library

OneWind Software Products 0000

Look and Feel of OneWindLoads

Model - NREL5MW_Tower at platform/resource/NREL5MW_Reference		MW_Tower.ringtowe	/ - OneWind.	Loads v0.9 - D.\work	vuntime-On:		ures				:
ile Edit Navigate Search Broject OneWind Bun Window E											BE Overing IN Brokk IN Chap. 77
	V_Tower S	S NREL5MW_Co	ntrol								De optime TE Linguit all encour of
	perties										B
Im NRELSMW WEC Onshore Flexible 2014-1: Ni	me NREL	5MW_Tower									Creating And Simulating a Wind
a 💣 models 27242 Tower Fish										kg/m 🔹	Turbine
M NRELSMW_WEC_Onshore_(Flexible)	ures 0.0									kg/m ◆	* Introduction
MRELSMW_WEC_Onshore_(Flexible)	contaction .	Damping coefficie					0.039 B				This tutorial demonstrates all necessary steps
INRELSMW_ConstantWind Damping de NRELSMW_Control			nts o				0.039 B			0.028	that need to be perfromed in order to simula
NRELSMW_Control NRELSMW_NacelleStiff		Damping ratio								0.0	a wind turbine model with OneWindLoads starting from scratch. The tutorial introduces
AND DAMAGE DAMAGE	efficient										starting from scratch. The tutorial introduces step by step the necessary actions like mode
A 1/2 NRELSMW_Tower	Pericient	0.7								-	project creation, model creation and
Tower bottom Ring	Stations	Position	uter Diam.	Wall Thicknes:		ss Material L			Youngs Modulus		parametrization and simulation execution. Predefined models will be used to minimize
Tower top		m •		* m	• kg	•	kg/m •	Nm^2	 N/m^2 		the parametrization effort to start the
Ring Stations		0.000	6.000	0.027	0.000	NREL_Stahl	4306.506	4.745e+11	2.100e+11	Delete	simulation as quickly as possible.
4 G EC-1		10.000	6.000	0.027	0.000	NREL_Stahl	4305.506	4.745e+11	2.100e+11	Delete	Click to Begin
E EC-1.1		17.760	5.787	0.026	0.000	NREL_Stahl	4030,444	4.131e+11	2.100e+11	Delete	Create a New Model Project
EC-1.2		25.520	5.574	0.025	0.000	NREL_Stahl	3763,448	3.578e+11	2.100e+11	Delete	New Wind Turbine Model
EC-1.3		33,280	5.361	0.025	0.000	NREL_Stahl	3505.519	3.083e+11	2.100e+11	Delete	 Changing Model Settings
E EC-14 E EC-15		41.040	5.148	0.024	0.000	NREL_Stahl	3256.656	2.641e+11	2.100e+11	Delete	 Creating Turbulent Wind
E EC-13		48.799	4.935	0.023	0.000	NREL_Stahl	3016.859	2.248e+11	2.100e+11	Delete	 Set Up Simulation Parameters
G IEC-3		56.559	4.722	0.022	0.000	NREL_Stahl	2785.129	1.901e+11	2.100e+11	Delete	
5 (6) IEC-4		64.319	4.509	0.021	0.000	NREL_Stahl	2564.465	1.595e+11	2.100e+11	Delete	
> 🕼 IEC-5		72.079	4.296	0.021	0.000	NREL_Stahl	2351,867	1.328e+11	2.100e+11	Delete	
> 🥴 IEC-6		79.839	4.083	0.020	0.000	NREL_Stabl	2148.336	1.095e+11	2.100e+11	Delete	
> G HC-7 > G HC-8		87.599	3,870	0.019	0.000	NREL_Stahl	1953.871	8.949e+10	2.100e+11	Delete	
b Gr parameters 27242		New *									
> 2 src 27242											
		1.4.									
m , Console	E Event L	og 🗹 tower.towerB									
SVN Repositories 💠 👘 🗖	0		tow	er.towerBo	ottom.c	utTorque	entries[1]			
🟠 🗇 🕹 🖶 🖪 🚨 😤 -10.000.0											
http://onewind/svn/OneWind/branches/dev/OneW -20.000.0											
DymolaSimulationParameters 27175											
-00,000,0			/	·	X		/	\sim			
-60,000,0	00	- \ -	/		-\		/				
iddresources 27242 -70.000.0	00	+ + + + +	/		+	/					
modelproject 27242 -80.000.0	00		///		>						
project 27242 -90.000.0											
ROOT 27242 REVISIONS	0 0	5 1 1.5	2 2.5	3 3.5	4 4.5	5 5.5	6 6.5	7 7.5 8	8.5 9	9.5 10 10.!	
All strategies			_			Time (s)					
H F				tower.towerBott	tom.cutTo	rque.entries[1] [N^m] KIEC	>1.1>			
										_	
						_				Frai	unhofer
h dath poors											
January 14 th , 2015			16	5			© Fra	unhofer			IWES

OneWind Concept 00000 OneWind Modelica Library

OneWind Software Products

Extensions

Conclusion

Look and Feel of OneModelica

OneWind Concept 00000 OneWind Modelica Library

OneWind Software Products

Extensions

Conclusion

Agenda

Fraunhofer IWES

OneWind Concept

OneWind Modelica Library

OneWind Software Products

Extensions Approaches to extend Ongoing work Dual license

Conclusion

OneWind Concept

OneWind Modelica Library

OneWind Software Products

Extensions ●○○ Conclusion

Extension of the framework

"Fast approach" – Modelica based

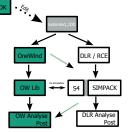
- -< Enhancements of single component
- \prec Usage within library for loads calculation
- -< OneModelica

"Complete approach" - OneWind-Framework based

- -< Engineer Design Data model for new component
- -< Transformations, generators and assessments
- -< Core / Extension based \Rightarrow OneWind Product
- -< OneWindSDK

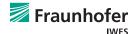
Fraunhofer	IWES
000	

OneWind Concept


OneWind Modelica Library 0000 OneWind Software Products 0000 Extensions

Conclusion

Ongoing work


Project Wind Muse

- -< Cooperation IWES DLR
- -< Combine tools from IWES and DLR
- Modelica model exchange via Functional Mock-up Interface (FMI)
- \prec combined parametric model Extended_EDD
- -< Enhanced load case management
- -< OnePrePost (alternative simulator)

© Fraunhofer

DneWind Concept

OneWind Modelica Library 0000 OneWind Software Products 0000 Extensions

Conclusion

Dual license

- -< commercial license
- -< noncommercial usage
 - → Restrictive Open Source License
 - Extensions / Modifications
 - -< Reference to "OneWind"

OneWind Open Source License Agreement

2. Royalties

The granting of a license under paragraph III, Article 1 is free of charge.

- Obligation of Licensee
- 3.1 The Licensee grants to Fraunhofer on all modification, addition and/or DERIVATIVE WORKS in Source or Object Code on the COMPUTER PROGRAM which the Licensee makes in accordance to this agreement a worldwide, non-exclusive, unlimited and free of charge license with the right to sublicense.
- 3.2 The LICENSEE will inform Fraunhofer about all modifications and/or DERIVATIVE WORKS in Source- or Object Code on the COMPUTER PROGRAM which the LICENSEE makes in accordance to this agreement and deliver this modifications and/or DERIVATIVE WORKs in Source- or Object Code on the COMPUTER PROGRAM to FRAUNHOFER.

E-Mail: license@onewind.de

- 3.3 Fraunhofer is able to sublicense all modifications, additions and/or DRNVATWE WORKS in Source- or Object Code on the COMPUTER PROGRAM under this license or as NON-Open-Source for license fee to third parties.
- 3.4 LICENSEE guarantees to make all modifications, additions and/or DERWATVE WORKS in Source- or Object Code on the COMPUTER PROGRAM itself and does not infringe third party rights.
- 3.5 LICENSEE is obligated to give clear reference in all Publications in conjunction with the COMPUTER PROGRAM to the Computer Program (One/Wind®) of Fraunhofer/IWES. Suggested text: "We acknowledge the use of Fraunhofer One/Wind® Software for"

IV. MISCELLANEOUS

1. Duration and Termination of Agreement

Fraunhofer IWES	OneWind Concept 00000	OneWind Modelica Library	OneWind Software Products	Extensions 000	Conclusion
Agenda					

OneWind Concept

OneWind Modelica Library

OneWind Software Products

Extensions

Conclusion

Fraunhofer IWES 000	OneWind Concept	OneWind Modelica Library	OneWind Software Products	Extensions 000	Conclusion
Conclusion					

OneWind is

- -< Consistent modeling with different levels of details
- -< "OneWind Modelica Library" tool for loads calculation
- -< Extensible software framework for wind-energy applications

THANK YOU FOR YOUR ATTENTION

Any questions?

urs.wihlfahrt@iwes.fraunhofer.de

January 14th, 2015

© Fraunhofer