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Simplified load basis 
• From 300 N/m^2 to standardized load spectrum based on measurements 

 
 
 
 
 
 
 
 
 
 
 
 

• Combination of stochastic and deterministic loads 
• The importance of frequency coincidence 
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Industrial use of aeroelastic models 
• The industry matured 
• Turbines grew – cost and safety became issues 
• Models developed from separate aerodynamics and load tools to 

combined aeroelastic tools  
• The need for standardization was recognized 

 
 
 
 

• The triggering points in the model development became partly the 
development of the turbine technology, partly issues experienced in the 
field 

• Depending on the task at hand, the fidelity level needed varies 
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State of the art aeroelastic modelling 
• Handling of non-linear large 

deflections 
• Various aerodynamics models 

fully coupled to the structural 
model (from BEM to CFD) 

• Fully integrated turbine 
controller 

• Integrated support structure 
modelling 

• Offshore modelling 
capabilities 

• Option for separate frequency 
domain analysis of modal 
characteristics 
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HAWC2 model developed as part of the OC4 project  DTU-I-0240(EN) 



14 January 2015 DTU Wind Energy, Technical University of Denmark 
    

     
   

Typical full-IEC load setup for design 
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Name Description WSP Wdir Turb Seeds Shear Gust Fault
DLCxxx Wind speed [m/s] Wind 

direction 
[deg]

Turbulence Number of 
seeds

Shear 
factor

None, EDC, 
NTM

DLC12 Normal  production 4:2:26 -10/0/10 NTM 6 0.2 None None
DLC13 Normal  production 4:2:26 -10/0/10 ETM 2 0.2 None None
DLC14 Normal  production Vr/Vr+2/Vr-2 0 None None 0.2 ECD None
DLC15 Normal  production 4:2:26 0 None None Eq. in IEC EWS None
DLC21 Grid loss 4:2:26 -10/0/10 NTM 4 0.2 None Grid loss  at 10s
DLC22y Extreme yaw error 4:2:26 15:15:345 NTM 1 0.2 None Abnormal  yaw error 
DLC22b One blade s tuck at min. angle 4:2:26 0 NTM 12 0.2 None 1 blade at fine pi tch 
DLC23 Grid loss Vr+2/Vr-2/Vout 0 None None 0.2 EOG Grid loss  at three di ff. times
DLC24 Production in large yaw error 4:2:26 -20/20 NTM 3 0.2 None Large yaw error
DLC31 Start-up Vin/Vr/Vout 0 None None 0.2 None None
DLC32 Start-up at four di ff. times Vin/Vr+2/Vr-2/Vout 0 None None 0.2 EOG None
DLC33 Start-up in EDC Vin/Vr+2/Vr-2/Vout 0 None None 0.2 EDC None
DLC41 Shut-down Vin/Vr/Vout 0 None None 0.2 None None
DLC42 Shut-down at s ix di ff. times Vr+2/Vr-2/Vout 0 None None 0.2 EOG None
DLC51 Emergency shut-down Vr+2/Vr-2/Vout 0 NTM 12 0.2 None None
DLC61 Parked in extreme wind V50 -8/8 0.11 6 0.11 None None
DLC62 Parked grid loss V50 0:15:345 0.11 1 0.11 None None
DLC63 Parked with large yaw error V1 -20/20 0.11 6 0.11 None None
DLC64 Parked 4:2:0.7*Vref -8/8 NTM 7 0.2 None None
DLC81 Maintenance Vmaint -8/8 NTM 6 0.2 None Maintenance

All possible 
situations are 
simulated 

Various 
combinations of 
mean wind and 
turbulence 

...and fault 
conditions 

In total 1-2000 
simulations 
onshore  

Will we continue to see development towards more 
complex models and more requirements ? 

 

Yes, but for Systems Engineering the answer could be 
different 
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How simple can a load model be ? 
• Sometimes we need a fast estimate on main load signals – typical for 

product scoping, conceptual evaluation or for systems engineering/ 
optimization 
 

• How low can we go ?  
 

• Rated power and diameter combined with some engineering 
experience ?  
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Thrust and power coefficients 
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Power, thrust force and its gradient 
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Flapwise moment and its gradient 
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blade load distribution: 
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From turbulence to load variation 
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From std. dev. of loads to extreme loads 
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From std. dev. of loads to STEL 

15 

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

0 5 10 15 20 25 30

Fl
ap

w
is

e 
1H

z 
fa

tig
ue

 lo
ad

 [k
N

m
] 

Wind speed [m/s] 

Flap STEL

𝑅𝑒𝑒 = 2𝑎𝜎𝜎𝑀𝑥

𝑚 600
𝑇1P

1
𝑚

 

Journal of Solar Energy Eng. 

STEL: 

Assuming that flapwise moment has 
a dominating 1P component with period 𝑇1P  
and adjusting its range with the factor 𝑎𝜎: 
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Simplified model and full model 
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Full Simple 

Maximum flap 22435 19070 

Life time fat. flap 12380 11755 

Maximum tower 168500 123300 

Life time fat. tower 61280 61088 
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Needed modelling level depends on the task  
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? 
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Development drivers and future perspective 
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Development drivers 
• Turbine technology 
• System requirements – e.g. grid requirements, flexibility, etc. 
• Design optimization/design to limit – experience from field 
 
Future perspectives 
• One-system-design-process: integration of component and ‘system’ 

design 
• Further coupling between aero-elastic and electrical modelling 
• Inflow modelling – further development of turbulence models (and 

other external conditions) 
• Validation methods, formal quantification of success criteria 
• For different tasks we need different fidelity levels – both simple fast 

robust models but also high fidelity models with all details 
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