Evolution of load simulation methods in a systems engineering perspective

Kenneth Thomsen, DTU Wind Energy

with input from:
Morten Hansen
Thanasis Barlas
Leonardo Bergami
Mads Pedersen
Torben Larsen
and others
Selected highlight in the model development

- Simplified load paradigm
- Load basis from measurements

Timeline:
- 1985
- 1990
- 1995
- 2000
- 2005
- 2010
- 2015
Simplified load basis

- From 300 N/m^2 to standardized load spectrum based on measurements

- Combination of stochastic and deterministic loads
- The importance of frequency coincidence
Selected highlight in the model development

- Simplified load paradigm
- Load basis from measurements
- ‘real’ turbulence models
- Industrial use of aeroelastic models

- Aeroelastic models (DYNAWECS, co-rotational 1981)
- Few DOF Aeroelastic models (FLEX4)
- Frequency domain models
- FEM based Aeroelastic models (HAWC)

Timeline:
- 1985
- 1990
- 1995
- 2000
- 2005
- 2010
- 2015
Industrial use of aeroelastic models

- The industry matured
- Turbines grew – cost and safety became issues
- Models developed from separate aerodynamics and load tools to combined aeroelastic tools
- The need for standardization was recognized

- The triggering points in the model development became partly the development of the turbine technology, partly issues experienced in the field
- Depending on the task at hand, the fidelity level needed varies
Selected highlight in the model development

1985
- Simplified load paradigm
- Frequency domain models
- Aeroelastic models (DYNAWECS, co-rotational 1981)

1990
- Load basis from measurements
- Few DOF Aeroelastic models (FLEX4)

1995
- ‘real’ turbulence models
- Stall induced vibration – aer + structure
- Large blades - Non-linearities
- Multi body codes

2000
- FEM based Aeroelastic models (HAWC)
- Focus on control and grid requirements
- Dedicated stability tools

2005
- More detailed aerodynamics – link to CFD
- Offshore modules included – monopiles
- Detailed wake models

2010
- Link to detailed component design: superelements

2015
- Offshore modules included – jackets + floating str.

- Industrial use of aeroelastic models
State of the art aeroelastic modelling

- Handling of non-linear large deflections
- Various aerodynamics models fully coupled to the structural model (from BEM to CFD)
- Fully integrated turbine controller
- Integrated support structure modelling
- Offshore modelling capabilities
- Option for separate frequency domain analysis of modal characteristics

HAWC2 model developed as part of the OC4 project DTU-I-0240(EN)
Typical full-IEC load setup for design

All possible situations are simulated

Various combinations of mean wind and turbulence

...and fault conditions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>WSP</th>
<th>Wdir</th>
<th>Gust</th>
<th>Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLCxxx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None, EDC, NTM</td>
</tr>
<tr>
<td>DLC12</td>
<td>Normal production</td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>DLC13</td>
<td>Normal production</td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>DLC14</td>
<td>Normal production</td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>DLC15</td>
<td>Normal production</td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>DLC21</td>
<td>Grid loss</td>
<td></td>
<td></td>
<td></td>
<td>Grid loss at 10s</td>
</tr>
<tr>
<td>DLC22y</td>
<td>Extreme yaw error</td>
<td></td>
<td></td>
<td></td>
<td>Abnormal yaw error</td>
</tr>
<tr>
<td>DLC22b</td>
<td>One blade stuck at min. angle</td>
<td></td>
<td></td>
<td></td>
<td>Grid loss at fine pitch</td>
</tr>
<tr>
<td>DLC23</td>
<td>Grid loss</td>
<td></td>
<td></td>
<td></td>
<td>Grid loss at three diff. times</td>
</tr>
<tr>
<td>DLC24</td>
<td>Production in large yaw error</td>
<td></td>
<td></td>
<td></td>
<td>Large yaw error</td>
</tr>
<tr>
<td>DLC31</td>
<td>Start-up</td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>DLC32</td>
<td>Start-up at four diff. times</td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>DLC33</td>
<td>Start-up in EDC</td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>DLC41</td>
<td>Shut-down</td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>DLC42</td>
<td>Shut-down at site</td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>DLC51</td>
<td>Emergency shut-down</td>
<td>Vr+2/Vr-2/Vout</td>
<td>0</td>
<td>NTM</td>
<td>12</td>
</tr>
<tr>
<td>DLC61</td>
<td>Parked in extreme wind</td>
<td>V50</td>
<td>-8/8</td>
<td>0.11</td>
<td>6</td>
</tr>
<tr>
<td>DLC62</td>
<td>Parked grid loss</td>
<td>V50</td>
<td>0:15:345</td>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>DLC63</td>
<td>Parked with large yaw error</td>
<td>V1</td>
<td>-20/20</td>
<td>0.11</td>
<td>6</td>
</tr>
<tr>
<td>DLC64</td>
<td>Parked</td>
<td>4:2:0.7*Vref</td>
<td>-8/8</td>
<td>NTM</td>
<td>7</td>
</tr>
<tr>
<td>DLC81</td>
<td>Maintenance</td>
<td>Vmaint</td>
<td>-8/8</td>
<td>NTM</td>
<td>6</td>
</tr>
</tbody>
</table>

In total 1-2000 simulations onshore

Will we continue to see development towards more complex models and more requirements?

Yes, but for Systems Engineering the answer could be different
How simple can a load model be?

• Sometimes we need a fast estimate on main load signals – typical for product scoping, conceptual evaluation or for systems engineering/optimization

• How low can we go?

• **Rated power** and **diameter** combined with some engineering experience?
Thrust and power coefficients

\[C_t = 4a(1 - a)F \quad C_p = 4a(1 - a)^2F \]
Power, thrust force and its gradient

\[P = \frac{1}{2} \rho A V^3 C_p \]

\[T = \frac{1}{2} \rho A V^2 C_t \]

\[\frac{dT}{dV} \approx \frac{T_{i+1} - T_i}{V_{i+1} - V_i} \]
Flapwise moment and its gradient

Assuming triangular blade load distribution:

\[
M_x \approx \int_0^R \frac{2}{3} \frac{T}{R^2} r^2 dr = \frac{2}{9} TR
\]

\[
\frac{dM_x}{dV} \approx \frac{M_{x,i+1} - M_{x,i}}{V_{i+1} - V_i}
\]
From turbulence to load variation

\[\sigma_{M_x} \approx \sigma_{V} \frac{dM_x}{dV} \]
From std. dev. of loads to extreme loads

![Graph showing Flap moment vs Wind speed with Flap, FlapMax, and FlapMin data points marked]
From std. dev. of loads to STEL

Assuming that flapwise moment has a dominating 1P component with period T_{1P} and adjusting its range with the factor a_σ:

$$R_{eq} = \left(2a_\sigma \sigma_{M_x} \frac{m}{T_{1P}} \right)^{\frac{1}{m}}$$

STEL:

$$R_{eq} = \left(2a_\sigma \sigma_{M_x} \frac{m}{T_{1P}} \right)^{\frac{1}{m}}$$
Simplified model and full model

<table>
<thead>
<tr>
<th></th>
<th>Full</th>
<th>Simple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum flap</td>
<td>22435</td>
<td>19070</td>
</tr>
<tr>
<td>Life time fat. flap</td>
<td>12380</td>
<td>11755</td>
</tr>
<tr>
<td>Maximum tower</td>
<td>168500</td>
<td>123300</td>
</tr>
<tr>
<td>Life time fat. tower</td>
<td>61280</td>
<td>61088</td>
</tr>
</tbody>
</table>
Needed modelling level depends on the task
Development drivers and future perspective

Development drivers
- Turbine technology
- System requirements – e.g. grid requirements, flexibility, etc.
- Design optimization/design to limit – experience from field

Future perspectives
- One-system-design-process: integration of component and ‘system’ design
- Further coupling between aero-elastic and electrical modelling
- Inflow modelling – further development of turbulence models (and other external conditions)
- Validation methods, formal quantification of success criteria
- For different tasks we need different fidelity levels – both simple fast robust models but also high fidelity models with all details