Synergistic Partnership of Standards and Design Process: But What’s Next

2015 Wind Energy Systems Engineering Workshop

Sandy Butterfield
Founder & President
Boulder Wind Consulting
TC88 Chairman
IECRE Chairman

January 13, 2015
Standards History: Defining the Path to Turbine Reliability

- **The 1980's**
 - Altamont Pass, CA Kenetech 33-300kW 17m Rotor
 - 50kW

- **The 1990's**
 - Altamont Pass, CA Kenetech 56-100kW 17m Rotor
 - 130kW
 - Buffalo Ridge, MN Zond Z-750kW 46m Rotor
 - 300kW
 - 500kW

- **2000 & Beyond**
 - Arklow, Scotland GE 3.6MW 104m Rotor
 - 750kW
 - 2.5 MW
 - 1.5 MW
 - 3.6 MW
 - 5 MW
 - Medicine Bow, WY Clipper 2.5MW 93m Rotor

- **Suite of Standards**
 - Design Process
 - Testing
 - IEC Standards
 - IEA Guidelines
 - Irrational Exuberance

- **International Certification - IECRE**
Standards Successes / Failures

- Blades experience few failures (due to design process and testing required by IEC standards)
- Gears no longer fail (because of implementation of AGMA 6006 standard - DOE/NREL supported)
- Gears no longer fail (because of implementation of AGMA 6006 standard - DOE/NREL supported)

Bearings still fail (Design Process?)
Some blade series failures (Mfg. QA?)
Still many gaps in the suite of standards
Standards needed to help End Users?
Certification not trusted by Owner/Operators (broader participation?)
What’s working

• Turbine design Framework
 – Fatigue?
 – Uncertainty?
• Coupled turbine aeroelastic analysis reasonable(?)
• Turbine test standards
 – Design support
 – Validation for End Users (?)
• Major component design
 – Blades
 – Drive Train
 – “Minor” components?

What’s Not

• Broad stakeholder engagement
• Need standards for:
 • facilitate wind plant design
 • Operations
 • Plant performance benchmarking
 • Integration requirements
• Wind specific component standards (“minor” components)
• Little formal collaboration between R&D and standards committees to solve technical challenges.
Possible TC88 New Framework

- Logical vertically organized groupings?
- Reduced scope standards for responsive revision time
- Managed & maintained by groups with common interest/expertise?
- Meeting broad industry sector needs (system compatibility framework)?
IEC leads international standards for wind plants.

- Multiple national standards.
- Multiple independent certification organization “rules”
- Harmonization is needed
What is needed from R&D

- More formal relationship that is informed by and informs standards.
- Broader stakeholder relevance
- Long-term (examples):
 - Accurate comprehensive flow understanding (inflow, plant and local atmospheric coupling)
 - Validated system design tools
 - Methods for quantifying uncertainties
 - Reference data sets
- Short-term (examples):
 - Robust fatigue design process
 - Reference models
 - System oriented design framework
 - More accurate wake models
 - Accurate benchmarking of performance
 - Turbines within a wind plant
 - Full wind plant (“wind plant Cp”)
Role of Standards and Certification in Wind Industry Maturation

• Public / investor confidence
 – Design safety requirements (implied reliability)
 – Credible performance verification
 – Permitting requirements clarity (international harmonization)
 – Credible community impact measures (noise)

• Technology development
 – Standardized (accurate / consistent) testing techniques
 – Defined design process
 – Design verification testing
 – Common definition of external conditions
 – Design goals (20 year life, redundant safety systems, etc)
 – Level playing field in international market
 – Common design vocabulary (design load cases, coordinate systems, safety factors, etc)