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What is uncertainty? 
What we are really interested in is financial risk. 
The way we commonly model financial risk is with sensitivity 

cases based around probability of exceedance (P-values) 
Since that’s a lot of information, we commonly use a generic 

term ‘uncertainty’ to describe the risk. 
 In wind assessment, we usually define uncertainty to be the 

standard deviation of a normal error distribution.  Because of 
climate variability, we attach a time frame to our uncertainty 
estimates (ie monthly, 1-year, 10-year) 
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Simple Uncertainty Explanation 
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Error Distribution 

There is a 68% chance that the truth is within the uncertainty (1 
standard deviation) of the primary estimate. 

+/- standard deviation 
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So how do we often calculate 
uncertainty? 
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Met tower Met 1 Met 2 Met 3 
Avg Wind Speed (m/s) 6.5 6.8 6.9 
Wind Energy Sensitivity 1.8 1.8 1.8 
Long term reference length (years) 18 18 18 
Future prediction period(years) 10 10 10 
Inter-annual variability (%) 4.0% 4.0% 4.0% 
Energy Predicted per Met Tower 
(GWh) 35 150 180 

• Average wind speed used to scale uncertainties that are in percent 
when combining 

• Wind energy sensitivity is the percent change in energy to a one 
percent change in wind speed.  Used to translate between wind 
speed & energy 

• Length of reference & inter-annual variability used for climate 
uncertainties 

• Prediction period and inter-annual variability used for future climate 
uncertainty 
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Wind speed uncertainties at the met 
tower 
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Met tower Met 1 Met 2 Met 3 
Measurement uncertainty 2.0% 2.2% 2.1% 
Historic variability 0.9% 0.9% 0.9% 
Correlations (intra/reference) 1.9% 2.1% 2.3% 
Vertical Extrapolation 1.2% 1.2% 0% 
Met Tower Historic Uncertainty 
(% wind speed) 3.2% 3.4% 3.3% 

• Measurement is often related to uncertainty of anemometer calibration 
and can be varied if local conditions like poor quality data exist. 

• Historic variability derived from inter-annual variability.  Usually IAV / 
sqrt(number of years).  In this example 4% 18⁄ = 0.9 

• Little standardization in correlation uncertainties.  Usually function of 
training period and error statistics. 

• Vertical extrapolation usually a function of vertical extrapolation 
distance and shear exponents 
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Project uncertainties in terms of energy 
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Project (%) GWh / year 
P50 365 
Measurement uncertainty 3.8% 14.0 
Historic variability 1.7% 6.2 
Correlations (intra/reference) 3.9% 14.3 
Vertical Extrapolation 1.1% 4.0 
Met Tower Historic Uncertainty 
(% wind speed) 5.8% 21.3 

Topographic 3.0% 11.0 
Wake losses 2.0% 7.3 
Other loss factors 3.0% 11.0 
Future wind variability (10 years) 2.3% 8.3 
Energy uncertainty (10 years) 7.8% 28.6 

• Wind speed as a percent is aggregated to the project level and 
converted to energy using wind speed energy sensitivity. 

• Other uncertainties applied at the energy level like wake and 
losses 

Uncertainty 
combinations using 
root sum square. 
 
Future variability 
calculated same 
way as historic. 
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Assumptions 

Normal distributions 
Root sum square combinations imply that uncertainty 

categories are independent 
Often complete dependence assumed between uncertainties 

derived at each met tower 
Rules of thumb for many  complex parameters 

(measurement uncertainty, inter annual variability, spatial 
uncertainty, losses) 
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Things we do with measurements 
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• Quality control of data 
• Selective averaging of sensors at multiple 

heights 
• Intra-tower data synthesis 
• Intra-project data synthesis 
• Vertical extrapolation to hub height 
• Extrapolation to long term 
• Spatial extrapolation to turbine locations 

where they are used as input to a turbine 
simulation 
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Propagation of uncertainty through 
shear calculation 
Power law formula for wind shear 

∝=
ln (𝑣𝑣

𝑣𝑣� )

ln (ℎ1
ℎ2� )

 

 
Extrapolation of wind to hub height using calculated shear 

𝑣ℎℎ = 𝑣1
ℎ1
ℎ2

∝

 

Error of each of the inputs (v1, v2, h1, h2) have to be propagated 
through the above formulas. 
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Hub height uncertainty as a function of 
measurement heights and uncertainty 

1/29/2015 [Name] 10 

Assumptions 
• 2% measurement uncertainty when not specified 
• 60m mast height, 90m hub height 
• 20m lower sensor height when not specified 
• Simple propagation of single upper & lower anemometer error through power law 
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Result Statement 

Simple changes to met tower configuration can have impact 
on propagation of measurement uncertainty of several 
percent in wind speed.  Which is usually increased when 
converted to energy. 
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Covariance between met towers in MCP 
process 
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Ref data similar to site data 

• 2 met towers correlated to the same reference over the same period will 
share error of reference data. 

• 2 met towers correlated against a reference over different period will have 
independent correlation error 
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Demonstrating MCP covariance 
 Study used 3 wind speed datasets: 2 targets and 1 reference 
 Each dataset had over 4 years of concurrent data 
 Simple MCP process using concurrent 12 month periods to develop 

monthly ratios that are applied to the average wind speeds at the 
reference 
 Simulated data is compared to target data across 4+ year period 
 MCP run 13,000 times choosing 12 random months at both target 

datasets.   
 Each met not required to be trained on same months. 
 4 year average of both targets chosen as target metric 
 Simulated data compared to actual as a function of overlapping 

months within 12 selected months 
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Simulation Results 
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Overlapping 
Months 

R2  of 
Met1 & 
Met2 
Error Count Avg Error 

0 0.193 38 1.36% 
1 0.043 199 1.47% 
2 0.031 486 1.43% 
3 0.000 831 1.60% 
4 0.018 1065 1.72% 
5 0.065 1193 1.68% 
6 0.093 1236 1.72% 
7 0.163 1225 1.75% 
8 0.276 1267 1.85% 
9 0.379 1251 1.87% 
10 0.574 1256 2.01% 
11 0.697 1147 1.95% 
12 0.899 1806 2.06% 

• Correlation of error between 
target data increased as period 
of overlap increased 

• Average error increased as 
correlations increased 
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MCP Result Statement 

Assumptions on covariance of overlapping training period 
error in an MCP process can impact project wind uncertainty 
results by up to 1%. 
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Summary 
Classical uncertainty methods have been used for many 

years.  While simple to calculate these methods have very 
simple assumptions  with regards to how uncertainties 
combine. 
Two examples show that improperly treated covariance 

between uncertainties can lead to a misstatement of total 
project uncertainty 
Many more examples exist for other parts of process 

(selective averaging, vertical extrapolation spatial modeling, 
etc…) 
Uncertainty models that do not deal with these covariance 

layers will have less sensitivity and hence less ability to 
capture true uncertainty 
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