
Exceptional service in the national interest

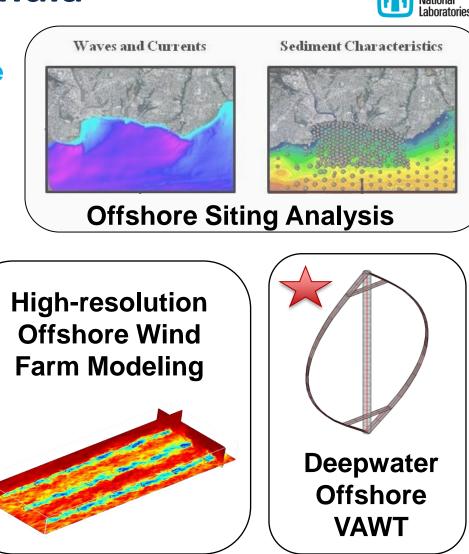
Cost Reductions in Offshore Wind through Technology Innovation

D. Todd Griffith Sandia National Laboratories

January 14, 2015 3rd NREL/DTU Wind Energy Systems Engineering Workshop

Characteristics of Offshore Wind

- Opportunities
 - Better winds
 - Vast resource
 - Proximity to load
- Challenges
 - High LCOE
 - High BOS costs
 - Accessibility
 - Inexperience, Immaturity


Offshore Wind @ Sandia

- Vision: Promote & accelerate the commercial OW industry and reduce costs through technical innovation:
 - Siting/Permitting: Sediment Transport & Radar
 - Large offshore HAWT rotors
 - Deepwater VAWT system
 - Structural health and prognostics management
 - Offshore wind farm modeling

100 meters = 328°

150 meters = 4

60 meters = 196'

Structural Health and Prognostics Management

Summary/LCOE Impact

- Mitigate rising costs for offshore O&M (estimated to be 2-5 times of land-based)
- Maximize energy capture by increasing availability

Focus Areas

Simulation of Damage:

- 1. Identify best operating signatures (sensors) : Damage Detection
- 2. Analyze effects of damage (state of health and remaining life): Prognostics

Key Blade Downtime Issues

- Rotor imbalance
- Trailing edge disbonds
- Leading edge cracks
- Edge-wise vibration
- Erosion
- Lighting
- Icing

SANDIA REPORT SAND212-0109 Unimited Release Printed December 2012
Structural Health and Prognostics Management for Offshore Wind Turbines: An Initial Roadmap
D. Todd Griffith, Nathanael C. Yoder, Brian R. Resor, Jonathan R. White, and Joshua / Paquette

Sandia National Laboratories

Initial Roadmap Report

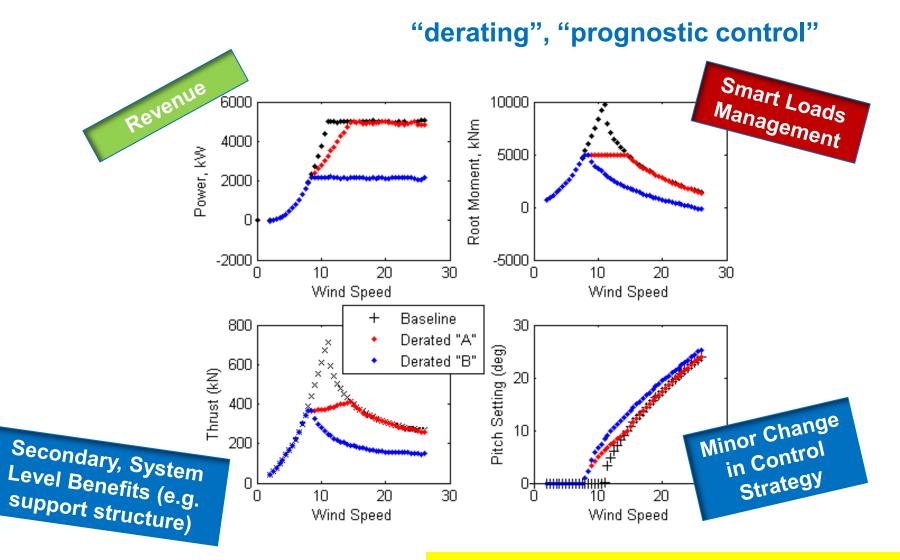
Damage (Reliability) is a:

- (1) Design issue?
- (2) Monitoring and Inspection issue?
- (3) Combination tradeoffs in design cost versus operational costs

"Design with Inspection, Monitoring, and Maintenance"

Motivations for a Structural Health and Prognostics Management System

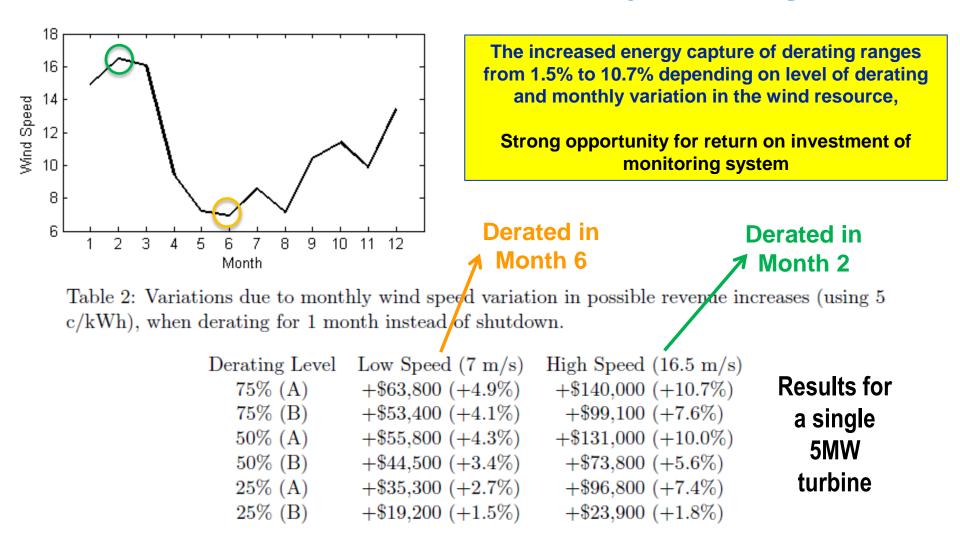
A SHPM system that can be used to:


- 1. Ensure operations in a desired safe state of health
- 2. Avoid catastrophic failures through advanced warning
- 3. Aid in planning of maintenance processes versus more costly unplanned servicing
- 4. Improve energy capture by avoiding unnecessary shutdown

COE affected	$COE = \frac{ICC*FCR + LRC}{AEP_{net}} + O&M$			↑ ₩
in 3 areas	COE- Cost of Energy (\$/kWh) ICC- Initial Capital Cost (\$) FCR- Fixed Charge Rate (%/yr)	LRC- Levelized Replacement Cost (\$/year) O&M- Operations and Maintenance Costs(\$/kWh) AEP- Annual Energy Production (kWh/yr)	AEP	111

Greater motivation offshore with accessibility issues. Reduce O&M costs and Maximize Energy Capture

Smart Loads Management



Increase energy capture and reduce O&M costs with planned maintenance

SHPM Economics: Effects of Monthly Wind Resource Variation and level of derating

- Is a "Baby Boomer" generation of aging turbines coming?
 - 71% of worldwide installations are less than 6 years old
 - Varies by region
 - 54% European Market
 - 74% North American Market
 - 87% Asian Market
- Current maturity of SHPM technology?

Inflow Variability Study

Goal: Quantify effect of variable wind inflow on robustness of damage detection with a POD simulations campaign

	Healthy	1m Dis- bond	2m Dis- bond	3m Dis- bond	4m Dis- bond	5m Dis- bond	10m Dis- bond
Wind Speed (3 - 25 m/s)	101	101	101	101	101	101	101
Horizontal Shear (30%, 60%, 90%)	303	303	303	303	303	303	303
Turbulence (A, B, KHTEST)	303	303	303	303	303	303	303

Table 3: FAST Simulation Matrix for Each Blade Damage Type.

- >16,000 simulations with varied extent of damage and varied inflow
- Sensitivities to varying inflow:
 - Wind speed, horizontal shear, and turbulence
- Effect on POD
 - POD improved in certain wind speed ranges (SHM optimization!)

Waked flow is a subset of the varied inflow conditions: <u>increased</u> <u>turbulence</u>, <u>horizontal shear</u>, <u>and velocity deficit</u>

POD = **Probability of Detection**

Large Offshore Rotor Development (100-meter Blade Project)

Summary

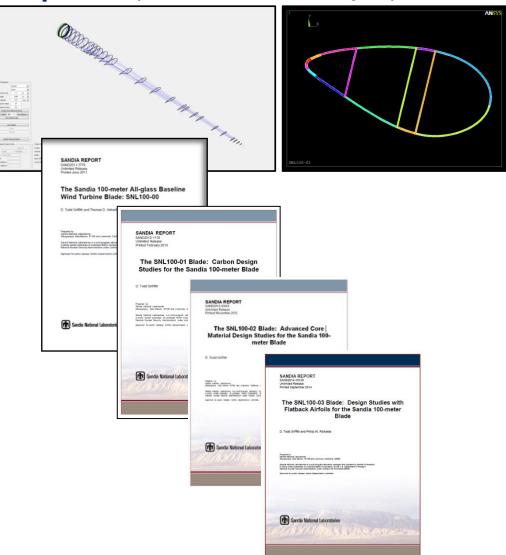
- Large blade design studies
- Public domain blade project
- Reference Models

Objectives/Focus Areas

- Identify trends and challenges
- Detailed 100-meter reference designs
- Targeted follow-on studies: advanced concepts, materials, flutter, manufacturing cost trends, thick airfoils, CFD, optimization

Products

- Design reports
- 100-m blade and 13.2 MW turbine reference models


100 meters = 328'

150 meters =

http://largeoffshorerotor.sandia.gov Partners:

- None funded, In-kind
- 70+ users

60 meters = 196

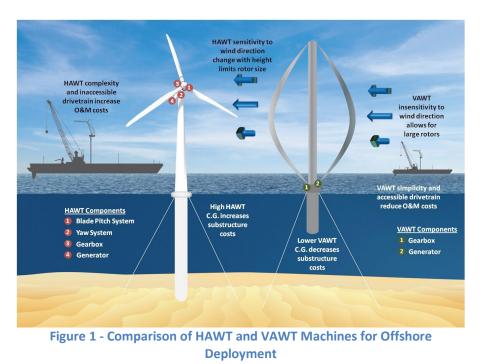
Sandia Blade Manufacturing Cost Model: <u>Approach</u>

- Components of the Model:
 - Materials, Labor, Capital Equipment
 - Reports: SAND2013-2733 & SAND2013-2734
- Input the design characteristics
 - Geometry and BOM from blade design software (NuMAD)
 - Materials cost based on weight or area
 - Labor scaled based on geometry associated with the subtask
 - Capital equipment scaled from typical on-shore blades

Two principal questions:

Trends in principal cost components for larger blades? Cost trade-offs for SNL100 meter design variants?

Exceptional service in the national interest


Innovative Offshore Vertical-Axis Wind Turbine Rotors Project

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2014-4845P

A VAWT in deep-water has several inherent advantages. Large reduction in offshore costs requires nonincremental solutions.

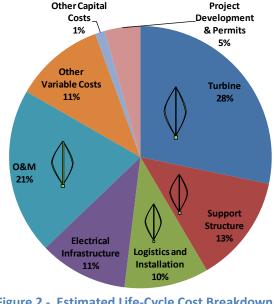
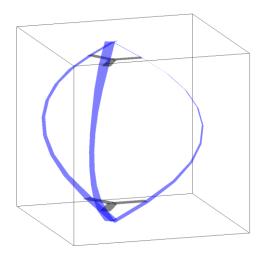


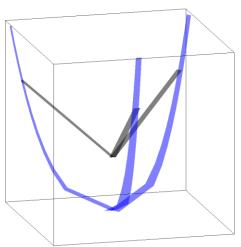
Figure 2 - Estimated Life-Cycle Cost Breakdown for an Offshore Wind Project, and Areas that VAWTs Improve

Rotor Structural Design Configurations

Parameter	Values Considered	180 Darrieus V, n=1 160 V, n=2	
Architecture	Darrieus, V	V, n=3 V, n=4 140 - V, n=5	
Number of Blades	2, 3	120	
Tip Chord Length	2m, 3m		
Composite Material:	Glass/Epoxy, Carbon/Epoxy	норания 100 - На На На На На На На На На На На На На	
Tapering Scheme (Darrieus only, V- VAWTS used Single Taper)	No Taper, Single Taper, Double Taper	60 - 40 - 20 -	
Curvature or Power Law Exponent (V- VAWT)	n=1, n=3, n=5	0 20 40 60 Radius (m)	
		D and V VAWT	ANSYS Bea

Shapes


ANSYS Beam Models of D and V VAWTS



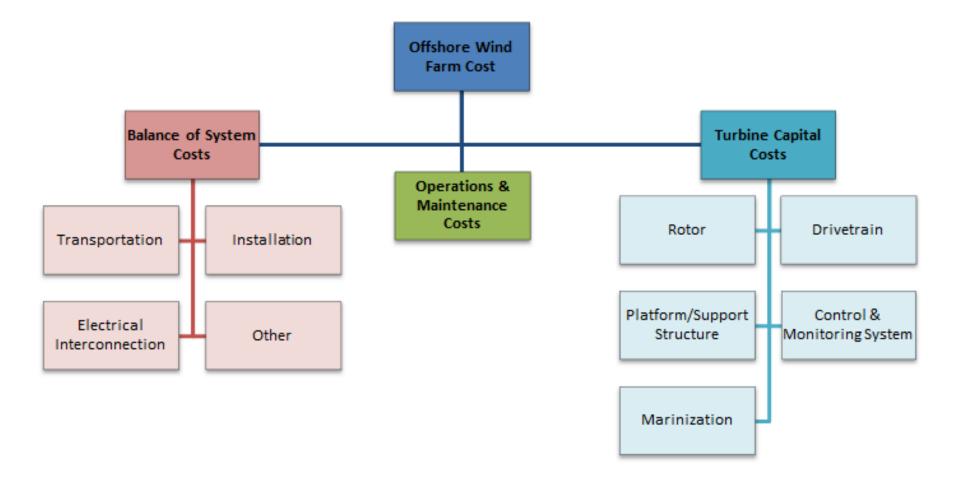
Rotor Aero Design Population

- 24 Candidate Rotor Design External Shapes
 - 12 Darrieus :
 - Iarge/small chord
 - single/double/no blade taper
 - two/three blades
 - 12 "V"-Rotors :
 - Iarge/small chord
 - power law shape exponent = 1/3/5
 - two/three blades
- Constraints
 - Max radius = 54 m
 - Same capture area
 - NACA 0021 airfoil section

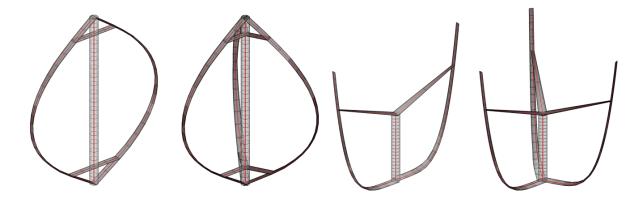
Platform Options

Evaluate two main platform designs:

WindFloat Semi-Submersible


Hywind Spar

Alter size as a function of the VAWT topside input.


Cost Analysis Components

Total of 31 offshore VAWT rotors analyzed

- A number of turbine, platform, drive-train configurations were considered (5 MW rotors)
 - Rotor mass a critical parameter for rotor and platform costs
 - Rotor RPM another key parameter

20

System Trade-offs:

AEP, RPM, Drivetrain

Rotor vs Platform

Parameter	DC_3B_LCDT	DC_2B_LCDT	DG_3B_SCDT	DG_2B_SCDT	VC_2B_LCN5
	Carbon	Carbon	Glass	Glass	Carbon
	3 blades	2 blades	3 blades	2 blades	2 blades
	Large chord	Large chord	Small chord	Small chord	Large chord
Turbine AEP (MW-hr)	20069	18443	18880	17004	18992
Rotor Speed (RPM)	6.30	7.20	7.20	8.25	7.40
Drive-train Cost (M USD)	3.7	3.2	3.2	2.8	3.1
Rotor Cost (M USD)	++	++	+	+	+++
Spar Platform Cost (M USD)	+	+	++	++	++

Concluding Remarks

- Cost reductions are needed to unlock vast potential for offshore wind.
- Sandia performing R&D in targeted technology areas.
- A systems approach to integrating technology solutions would be beneficial to explore the lowest cost area of the (offshore) wind design space.
- "System" not only the capital equipment but also include the important decisions and costs of the operating system during their lifetime.