Test Site & Certification Testing Requirements

Dean Davis, Windward Engineering
NREL CIP Workshop
29 November 2023

Background - Dean

CIP Topic Areas

- Prototype Design Development
- Prototype Manufacture & Installation
- Prototype Testing
- Component Innovation
- System Optimization
- Small Wind Testing & Certification (<200 m² RSA or up to 150 kW for ACP 101-1)
- Type Certification (>200 m² RSA or > 150 kW)
- Manufacturing Process Innovation

CIP and Testing

Prototype Testing (PT)

Small Wind Certification Testing (CT)

Type Certification (TC)

20% Price **Project** NREL **Test Participation** Cost (2022)\$312.5k \$250k* \$62.5k PT \$250k \$200k** \$50k CT \$1,000k TC \$800k \$200k

Before: <200 m²

Now: up to 150 kW

Before: >200 m²

Now: >150 kW

Or if extra effort/cost warranted for specific reason or market

^{*}or \$150k for testing plus \$20k + \$1/W for installation (<80 kW units)

^{**}Additional \$80k for loads, \$80k for UL 6142, \$200k for inverter listing

Certification Requirements

Certification Testing (CT)

- Design Evaluation
- Required Field Tests
 - Power Performance
 - Acoustic
 - Safety and Function
 - Duration

Type Certification (TC)

- Design Basis Evaluation
- Design Evaluation
- Required Tests
 - Power Performance
 - Safety & Function
 - Mechanical Loads
 - Blade Structural
- Optional Tests
 - Acoustics
- Manufacturing Evaluation
- Final Evaluation

Standards

- Power Performance (IEC 61400-12-1 ed 2.0)
- Acoustics (IEC 61400-11 ed 3)
- Small wind turbine design (IEC 61400-2)
- AWEA 9.1-2009 (up to 200 m²)
- ACP-101-1_2021 (Up to 150 kW)
- Large wind turbine design (IEC 61400-1)
- Mechanical loads (IEC 61400-13)
- Structural testing of rotor blades (IEC 61400-23)
- Conformity testing & certification (IECRE ODs)
- Competence of testing and calibration laboratories (ISO/IEC 17025)
- Quality management system (ISO 9001)
- Others if needed (gearbox, electrical, lightning, power quality, low voltage ride through, etc.)

INTERNATIONAL STANDARD

IEC 61400-2

Second edition 2006-03

Wind turbines -

Part 2:

Design requirements for small

wind turbines

Prices from \$320 - \$650 each

This English-language version is derived from the original bilingual publication by leaving out all French-language pages. Missing page numbers correspond to the Frenchlanguage pages.

Reference number IEC 61400-2:2006(E)

Certification Bodies

- ICC-SWCC
- Intertek
- UL (Underwriters Laboratory)
- DNV
- BSI (UK)
- ClassNK

- SGS
- ClassNK (Japan)
- Accredited to ISO 17065

Engage early to avoid surprises

Existing Test Facilities

Certification Body Due Diligence

- If an accredited testing laboratory:
 - Review paperwork
- If not accredited, they will need to review:
 - Quality assurance procedures/manuals
 - Testing related procedures/manuals
 - Interviews of personnel
 - Round robin (or other method) for evaluation of data processing
 - Test site visit (witnessing)
- Goal is to make sure the data from the test facility meets their standards as well as the guidelines set forth in ISO 17025

Ideal Test Site Attributes

- All Field Tests
 - Regular & non seasonal winds
 - Favorable zoning and permitting laws
 - The ideal site may not exist, but most shortfalls can be mitigated with ingenuity, time and money
 - Undustructed ground
 - Flat terrain
 - Occasional high winds

- Acoustics
 - o Quiet site
 - Unidirectional winds
 - No nearby reflective surfaces
 - Unchanging ground cover

ducing winds

ambient

temperature

- Loads
 - Occasional high winds
 - Regular times of calm (for calibrations)
 - Variability in turbulence

Power Performance

Power Performance (test site evaluation)

Some sites will pass all requirements easily

- Some will require a bit of analysis but will pass
- Others (like ours) will require a site calibration ACP 101-1

Power Performance (met. tower instrumentation)

Power Performance (down tower instrumentation)

Data Acquisition (chassis and modules)

Power, VA, Volts transducer (external CT's)

Data Acquisition Computer

Power Performance (other instrumentation)

- RPM
- Turbine status
- Pitch angle
- Wetness
- Rotor Azimuth
- etc...

Example of RPM and Azimuth sensors (3D printed mounts)

Power Performance (instrumentation costs)

Subsystem	Description	Instrumentation type or detailed description	Qty	price/ea	Total Cost	
Rotor	Rotor speed	Gen voltage or encoder	1	\$ 250	\$	250
Electrical	Power, VA, Volts	Ohio Semitronics DWV	1	\$ 1,284	\$	1,284
	Wind speed (primary & secondary)	Thies First Class Anemometers	2	\$ 1,530	\$	3,060
Ambient	Wind direction	Met One 020C	1	\$ 1,080	\$	1,080
Ambient	Temperature	Met One T-200	1	\$ 855	\$	855
	Barometric pressure	Vaisala PTB101B	1	\$ 620	\$	620
	Wetness	Wetness sensor	1	\$ 145	\$	145
	Data shed	Construction trailer	1	\$ 3,600	\$	3,600
Ancillary	Met tower	Climatronics	1	\$ 2,985	\$	2,985
Ancillary	Instrumentation Wire	Belden 12 pair, 24 AWG	1	\$ 1,500	\$	1,500
	Power Supply, DC-DC	12V, 24V	2	\$ 150	\$	300
	LabView software	National Instruments (NI)	1	\$ 2,800	\$	2,800
	Data acquisition computer	Dell	1	\$ 700	\$	700
Data	Uninterruptable power supply	APC	1	\$ 120	\$	120
Collection	DAQ CompacDaq chassis	NI cDAQ-9188	1	\$ 1,399	\$	1,399
	Voltage module	NI 9229	2	\$ 1,328	\$	2,656
	RTD module	NI 9217	1	\$ 500	\$	500

Total estimated cost \$ 23,854

Power Performance (calibration sheets)

- All instrumentation requires current calibrations sheets
- Calibration constants used in data acquisition system
- Uncertainty required in data processing
- Calibration sheets included in final report
- Ask certifying body if specific details are required – such as ISO 17025 accredited.

CALIBRATION LABORATORN

AC-1746

SOH Wind Engineering LLC

141 Largy Road - Williaton, VT 05495 - USA Tel 882.316.4368 - Fax 882.735.9106 - www.sofwind.com

CERTIFICATE FOR CALIBRATION OF CUP ANEMOMETER

Certificate number: 16.US1.04325

Date of issue: May 23, 2016 Serial number: 03155300

Type: Thies 4.3351.10.000

Manufacturer: ADOLF THIES Gmihlt & Co.KG, Hnaptstrasse 76, 37083 Göttingen, Germany Client: Endurance Wind Power, 10768 S.Covered Bridge Canyon, Spanish Fork, UT 84660

Anemometer received: May 5, 2016

Anemometer calibrated: 14:54 May 23, 2016

Calibrated by: mci

Procedure: MEASNET, IEC 61400-12-1:2005(E) Armox F

Certificate prepared by: Software Revision 7

Approved by: Calibration engineer, rds

Calibration equation obtained: v[m/s] = 0.04632Standard uncertainty, slope: 0.00160 THaT = 0.22843

Covariance: -0.0000012 (m/s)²/Hz

Standard uncertainty, offset: 0.07316 Coefficient of correlation: p = 0.99936

Absolute maximum deviation: 0.032 m/s at 4.276 m/s

Barometric pressure: 1000.5 hPa

Relative humidity: 32.1%

Succession	Velocity	Temperature is		Wind	Frequency.	Deviation.	Uncertainty	
	pressure, q. [Pa]	wind tunnel [°C]	d.p. box [°C]	velocity, v. [m/s]	f. [Hz]	d. [m/s]	u _c (k=2) [m/s]	
2	10.67	24.6	32.3	4.276	88.0763	-0.032	0.024	
4	15.17	24.6	32.3	5.100	104,5287	0.030	0.025	
6	20.80	24.7	32.3	5,973	123.6026	0.018	0.027	
8	28.28	24.7	32.3	6.965	145.7340	-0.015	0.030	
10	37.57	24.7	32.3	8.027	168.6130	-0.012	0.033	
12	47.56	24.7	32.3	9.032	189.3919	0.030	0.036	
13-last	58.21	24.7	32.3	9,992	211.1869	-0.020	0.039	
11	70.62	24.7	32.4	11.006	232.2662	0.018	0.042	
9	83.98	24.7	32.3	12.003	254.3694	-0.009	0.045	
7	97.39	24.7	32.3	12.925	274.4884	-0.018	0.049	
5	113.29	24.6	32.3	13.940	295.8765	0.006	0.052	
. 3	131.31	24.6	32.3	15.008	319.2293	-0.009	0.055	
1-first	147,44	24.5	32.3	15.901	338.0479	0.013	0.058	

Page Lot 2

Power Performance (database requirements)

- IEC 61400-12-1 ed2.0 (Annex H SWT)
 - Minimum of 10 minutes in each bin
 - 1-minute data sets
 - Bin width is 0.5 m/s
 - Bins range to fill
 - 1 m/s below cut-in to 14 m/s
 - Total database at least 60 hours
- IEC 61400-12-1 ed2.0
 - Minimum of 30 minutes in each bin
 - 10-minute data sets
 - Bin width is 0.5 m/s
 - Bins range to fill
 - 1 m/s below cut-in to
 - 1.5x WS at 85% of rated power
 - Total database at least 180 hours

Power Performance (how long does it take)

- Timing dependent on:
 - Percent of time blowing from valid wind direction sectors
 - ACP 101-1 exclusion sectors allowed if anno not affected
 - Time to capture higher winds
- NREL suggests:
 - o 3-6 months
- Can be performed in parallel with <u>Duration Testing</u>

Power Performance (data processing)

- Can be performed in Excel
 - Need array functions
 - Could be slow on some computers
- Standard uses clear and well-defined equations

```
C_{\mathsf{P},i} = \frac{P_i}{\frac{1}{2} \rho_0 A V_i^3} where C_{\mathsf{P},i} = \frac{P_i}{\frac{1}{2} \rho_0 A V_i^3} is the power coefficient in bin i; V_i = \frac{P_i}{1} is the normalized and averaged wind speed in bin i; P_i = \frac{P_i}{1} is the normalized and averaged power output in bin i; P_i = \frac{P_i}{1} is the swept area of the wind turbine rotor; P_0 = \frac{P_i}{1} is the reference air density.
```

- Lots of details Difficult to imagine not having errors in equations or interpretation if not reviewed by more than one person
- Uncertainty portion not trivial
 - Old NREL reports have details on their uncertainty analysis

Old NREL presentations are also a useful resource

Power Performance (reporting)

- Standard has a section on what must be reported
- NREL reports great template
- Example NREL report:
 - ~50 pages total length
 - ~27 pages of report
 - ~23 pages in appendices

TABLE OF CONTENTS	
1. BACKGROUND	6
2. TEST SUMMARY	6
3. TEST TURBINE CONFIGURATION	9
4. TEST SITE DESCRIPTION	13
5. SITE CALIBRATION	18
6. DESCRIPTION OF TEST EQUIPMENT	21
7. DESCRIPTION OF TEST PROCEDURE	23
8. MEASURED DATA	
9. TEST RESULTS	
3. 1131 NEGOLIS	20
TABULAR RESULTS OF THE POWER PERFORMANCE TEST	28
GRAPHICAL RESULTS OF THE POWER PERFORMANCE TEST	33
10. DEVIATIONS AND EXCEPTIONS	35
DEVIATIONS FROM THE STANDARD	25
EXCEPTIONS TO WINDWARD RTC QUALITY ASSURANCE SYSTEM	
APPENDIX A - CALIBRATION DATA SHEETS FOR EWP S-343 TEST INSTRUMENTS	36
PRIMARY ANEMOMETER – PRE-TEST CALIBRATION	26
PRIMARY ANEMOMETER - IN SITU ANEMOMETER COMPARISON	
SECONDARY AND SITE CALIBRATION ANEMOMETER	
WIND DIRECTION VANE.	
TEMPERATURE PROBE	
PRESSURE TRANSDUCER.	
POWER TRANSDUCER	
DAS BOARDS.	
APPENDIX B – UNCERTAINTY ASSUMPTIONS AND CALCULATIONS	66
POWER	66
WIND SPEED	67
TEMPERATURE	68
Pressure	69
APPENDIX C – SITE CALIBRATION VERIFICATION	80
APPENDIX D – SITE CALIBRATION COMPARISONS TO QUANTIFY INFLUENCE OF NEIGHBORING TU	RBINE83
BACKGROUND	
SITE LAYOUT	83
Unidirectional Wind Behavior	
	85

Power Performance

Acoustic Testing

The good news:

- Most of the instrumentation is now in place (from PP test)
- Test times are much shorter
- The bad news:
 - There are significant challenges in data collection
 - Data post processing is much more difficult and time consuming
 - New and expensive instrumentation is required
 - We spent more than \$11,000 on microphone, calibrator, Noiselab software, and DAQ equipment

Acoustic (data requirements Power < 100 kW)

- See Annex F (Small Wind Turbine) [<100 kW]
- Wind speed range
 - Cut-in to 11 m/s minimum
 - If possible up to cut-out (especially for speed control mechanisms)
- Measurements are 10 second each
- In each wind speed bin (1 m/s bin widths)
 - At least 12 measurements (turbine operating)
 - At least 12 measurements (background)
- Not a ton of data but can be challenging to get!
- Likely weeks not months

Acoustic Testing (data collection challenges)

- Microphone has to be +/-15° from downwind (> 100 kW)
- Microphone has to be +/-45° from downwind (< 100 kW)
- Measurement chain needs to be calibrated before and after measurement
- In the same conditions the background noise needs to be measured
- It has to be quiet with few other noises:
 - People, traffic, birds, planes, trains, grass, crickets, etc.
 - You soon realize what a noisy world we live in

Acoustic Testing (data post-processing)

- Software
 - Noiselab (or other software) to process the recorded data
 - For full automation need something more powerful than Excel
 - Can use Excel (complicated spreadsheets) with manual manipulations
 - I built a powerful desktop computer to help speed-up Excel
- Standard uses clear and well defined equations but...
 - Equations are complicated and easy to make errors
 - Interpretation of words can be challenging
 - Most of us won't have a strong background for this analysis
- Data analysis absolutely needs to be validated
 ACP 101-1
- Tonality is laborious and requires lots of manual clipping of recordings
- Significantly more difficult than Power Performance

 $u_{L_{WA,k}} = \frac{\sum_{i=1}^{L} \left[u_{c,i,k} 10^{(10)} \right]}{\sum_{i=1}^{28} 10^{\left(\frac{L_{WA,i,k}}{10}\right)}}$

Duration Testing (simplified in ACP 101-1)

- Purpose
 - Structural integrity
 - Material & performance degradation
 - Quality of environmental protection
 - Dynamic behavior
- Requirements
 - Reliable operation (>90% availability)
 - At least 6 months of operation
 - → 2,500 1,000 hours of power production
 - → 250 hours operating in winds above 1.2V_{avg}
 (10.2 m/s for Class II)
 - 25 hours operating in winds above 1.8V_{avg} (15.3 m/s for Class II)
 - → 15 10 hours greater than 15 m/s
- "Major failure" will restart test
- Operational Time Fraction & Analysis of power degradation not required

No new instrumentation needed

SWT	Class	- 1	П	III	IV	s
V _{ref}	(m/s)	50	42,5	37,5	30	Values to be
Vave	(m/s)	10	8,5	7,5	6	specified
I ₁₅	(-)	0,18	0,18	0,18	0,18	by the
a	(-)	2	2	2	2	designer

Safety & Function

Safety

- Review of O&M procedures and other manuals
- Review of personnel safety topics
 - Warnings, safety labels
 - Climbing related safety

Function

- Similar to a commissioning procedure but with some instrumentation available
- Includes some fault condition testing
 - Grid fault
 - But also may include things such as loss of critical sensors
- May include some specific events
 - Condition related (example: high wind startup or shutdown)
- Demonstrate
 - Peak Power
 - Power limitation
 - Rotor speed limitation

Safety & Function – Peak Power

ACP-101-1

This will also demonstrate Power Limitation

Safety & Function – Max Rotor Speed

IEC 61400-2 section 13.2.4

2 hours of winds between 10 & 20 m/s

interpolation or extrapolation to V_{ref}

SWT	Class	- 1	Ш	III	IV	s
V _{ref}	(m/s)	50	42,5	37,5	30	Values to be
V _{ave}	(m/s)	10	8,5	7,5	6	specified
I ₁₅	(-)	0,18	0,18	0,18	0,18	by the
a	(-)	2	2	2	2	designer

15 m/s

Mechanical Loads (overview)

- Not typically needed for small wind (CT)
 - Unless validated load model does not exist (VAWT, ducted, etc.)
- Necessary for large wind (TC)
- Significant undertaking (time, money and effort)
 - >\$100,000 and many months
- Use Power Performance instrumentation but add...
 - Tower moments
 - Rotor moments
 - Blade moments
 - Sliprings or telemetry for rotating measurements
 - Anti-aliasing modules required
 - Others (such as rotor azimuth, yaw angle, etc.)

Slipring transmitting data from rotor through main shaft

Mechanical Loads (guidance)

Standard IEC 61400-13 defines:

- Minimum required data channels
- Recommended additional data channels
- Transient load cases
 - Braking
 - High wind shutdown
 - Grid loss
 - Start-up, etc.
- Normal operating load conditions
 - Number of datasets per wind speed bin
 - Range of required wind speed bins
 - Turbulence variability in wind speed bins
- In-situ calibrations
- Data processing and reporting

Main shaft strain gauges

Summary

Test	Time	Cost	Additional Equipment Costs
Field test setup	few months	\$20k	\$25k
Power Performance	3 – 6 months	\$30k	
Acoustic	1 – 2 months	\$50k	\$10k
Safety & Function	weeks – months	\$15k	
Duration testing	6 – 12 months	\$25k	
Mechanical Loads	5 – 12 months	\$140k	\$20k
Blade testing	6 months	\$235k	
Manufacturing Evaluation	weeks – months	\$65k	

Time and costs could vary significantly

Summary

Certification Testing (CT)

Description	Costs
Field testing	\$175k
Certification body	\$35k
TOTAL	\$210k

Time and costs could vary significantly

Type Certification (TC)

Description		Costs
Field testing		\$250k
Other tests		\$300k
Certification body		\$350k
	TOTAL	\$900k

Dean Davis ddavis@windwardengineering.com

