Systems engineering in wind energy at DNV

Some thoughts on the approach to wind turbine design, choice, and deployment

David Malcolm
14 December 2010
Overview

- One of the largest wind energy consulting and certification companies in the world
 - ~200 employees dedicated to wind
 - Many others technical specialists contributing to wind projects from other business units
 - Wind energy competence in offices in the Americas, Europe, and Asia
Wind energy expertise around the world
DNV Services to the Wind Industry

Advisory Services

- Wind Resource Assessment
- Project Development Support
- Due Diligence
- Marine Advisory Services
- Asset Risk Management
- Health, Safety, and Environmental Risk Management
- Wind Turbine Technology
- Training and educational programs

Accredited Services

- Project Certification
- Type Certification
- Accredited Testing Services
 - Power Performance Testing
 - Loads Testing
 - Acoustic Testing
The holistic approach

- Some subjects / disciplines
 - Basic research
 - Resource assessment
 - Design and component testing
 - Quality assurance
 - Code development
 - Certification
 - Field loads measurements
 - Field health / condition monitoring
 - Client needs, COE
 - Utility needs – reliability, power quality, control
 - Operations & maintenance
 - Onshore / offshore applications
 - Transmission
 - Health and safety

- As an industry matures, different groups and subject areas can become isolated.
- Communication between the groups and disciplines is essential.
- Analogies with the aviation industry.
 - Continuous monitoring enables immediate diagnostics – a spare part available at the next landing. FAA and similar agencies have access to data.
- Emphasis on
 - Condition monitoring & evaluation
 - Diagnostic tools
 - Feedback to manufacturer
 - Feedback to operator
 - Feedback to inform a systems engineering tool
Some relationships

- Example:
 - If a blade breaks, the response needs to have information about the loading history, the maintenance log, the site conditions, data on similar blades, the manufacturing quality, etc.
 - While this information need not be public, it must be collected and may be important to inform a systems engineering tool.
Good information and tools leads to better choices

- Good information is required for a client to choose the most appropriate turbine, or a manufacture to optimize a turbine configuration or product line,
- Tools to facilitate this process will help the industry.
- Separate tools are needed for onshore and offshore applications.

Systems Engineering Tools - Informed Decisions

- Site conditions (atmospheric, topographic, geologic)
- O&M, reliability and cost data
- BOP costs and characteristics
- Client and utility needs
- Turbine and component costs and characteristics
Safeguarding life, property and the environment

www.dnv.com
DNV in the wind energy market

- 25 years in the wind industry
- 2nd largest wind technical advisory company in the world
- Global presence: long established in Europe and North America; expanding operations in Asia and South America
- Services address the whole value chain - from early phase wind energy assessment and project risk to asset risk management and marine operations.
- Leading certification agency in the industry
 - Market leader in project certification for offshore wind
 - Type certification for largest turbine manufacturers in the world
- Comprehensive engagement – DNV has played a role in the majority of the world’s offshore wind projects and more than 75% of North America’s onshore projects.
- DNV develops international rules and standards for the wind industry
Examples of Services Across the Entire Life Cycle
Offshore wind – three short facts

… over 100 GW offshore wind projects under development

… will produce more than 10% of EU’s electricity, if realised

… round 3 alone involve a CAPEX investment of >156 billion USD