Application of Systems Engineering to Wind Farm Design
A Focus on Meteorology & Tools

Scott Haynes
Meteorologist/Technical Services
December 14, 2010
Wind goes in, money comes out!

Don’t forget the other externals

Other Weather
Snow & Ice
Electricity
Data
Overview

Systems Engineering

- Analyzing Customer Needs/Requirements
- Design Synthesis

Meteorology

- Geography – where’s the windiest spot near a given market opportunity?
 - Define a project boundary
 - Estimate NCF
- Design preliminary turbine array and observation campaign
 - Internal Constraints Analysis
 - Site suitability
 - Near-site surface data
Overview (Continued)

Systems Engineering

• Design Validation & Iteration

Meteorology

• Meteorological Observation & Modeling
 – Observations: MET towers, Sodar, Lidar
 – Long Term Data
 – Spatial Models: WAsP / WindFarmer / WRF/OpenFOAM
 – Internal Control Documents (ICDs) provide consistency as well as dictate project advancements & milestones
Overview (Continued)

Systems Engineering

- Iteration & Tradeoff analysis
- Construction
- Operations

Meteorology

- Evaluate production & maximize
 - Rough crosswind / downwind spacing
 - Individual turbine placement
 - Analysis of complex turbine / terrain interactions
 - Implementation of lessons from operations
- Identify root cause of excessive faulting or failures
 - Due to meteorological conditions
 - Due to complex interactions
Tools (Early Stage)

- Nearby Observations
- Wind Map
- Slope
- Deviation From Fitted Plane
Tools (Mid-Stage)

- NCAR / NCEP Global Reanalysis
 - WRF (dynamic downscaling)
 - Multivariate regression

- On-site Observations
 - MET towers (lots and lots of MET towers!)
 - Sodar & Lidar
 - Captures scales relevant to terrain and turbines
Tools (Mid-Stage)

• Spatial Modeling
 – WAsP (Jackson & Hunt Flow Model, 1975)
 – 2D Navier–Stokes equations
 – Assumes log velocity profile
 – Polar grid
 – Quick
 – Validated for numerous types of terrain
 – Including terrain where it shouldn’t be applied
 – Black box
 – Windfarmer
 – Used to calculate turbine wake impacts & energy yield
 – Includes eddy viscosity wake model
 – Can be initialized from many flow models
Tools (Late Stage)

- OpenFOAM (CFD)
 - FOAM (F)ield (O)perations (A)nd (M)anipulation library
 - OpenFOAM is an Open Source C++ library and collection of solvers (executables)
 - OpenFOAM is particularly well suited for interface tracking problems (i.e. two or more fluids).
 - OpenFOAM is not specifically designed for atmospheric flows like WRF but is easily modified by comparison.
Tools (Late Stage)

- **OpenFOAM Solver**
 - **buoyantPimpleFoam** - Transient solver for buoyant, turbulent flow of compressible fluids
 - Includes the gravitational body force
 - **buoyantBoussinesqPimpleFoam** - Transient solver for buoyant, turbulent flow of incompressible fluids
 - Includes the gravitational body force
 - Uses Boussinesq approximation
 - **simpleWindFoam** – Steady-state solver for incompressible, turbulent flow
 - Does not include the gravitational body force
 - Includes external source in the momentum equation to approximate wind turbines
Tools (Late Stage)

- Wakes due to terrain are visible
- Complex flows can be visualized
Tools (Beginning to End)

- Application of tools to real example
 - Layout Revision
 - Setback analysis
 - Input from observational campaign
- As-Builts
Tools (Operational)

• Retrospective Study (Monthly / Quarterly)
 – Permanent on-site meteorological facility
 – Past climate (Global reanalysis)
 – Helpful to have overlapping observation periods with development METs
Tools (Operational)

- Performance
 - Analysis of faulting
 - Is it based on turbine placement or something else?

- Does faulting display a directional dependence?
 - Placement?
Summary

• Systems engineering enables one to optimally managing a technically complex system such as wind farm development and operations
• Numerous wind farm design tools are available to help the meteorologist with most tasks
• When wind farm development through operations is viewed as a whole, successive wind farms will have higher performance
• Application of these tools, plus continuous updating tools and methodology, will ultimately yield higher performing wind farms