

Design drivers Siemens Gamesa Renewable Energy

13 September 2017

We are stronger than ever

Order Book €20b Products and technology in **90+** countries

close to **27,000** employees

Annual revenue

Installed capacity 75GW

Market capitalization €14b

Figures as of May 2017

A message from Markus Tacke, CEO

"Our company, Siemens Gamesa Renewable Energy, has tremendous capabilities. We have a unique opportunity to establish ourselves as a market leader and a technology leader, while at the same time delivering sustainable value to our many stakeholders. I am proud to lead this effort."

Markus Tacke, CEO

SIEMENS Gamesa

A broad and versatile Product Portfolio

May 2017

SIEMENS Gamesa

Page 4

© Siemens Gamesa Renewable Energy A/S

Market update

There is a market for renewables

1) IEA WEO 2016 NPS 2) 450 scenario - Required scenario for 2°c Paris target 3) Other RE incl. Hydro

Significant growth of renewables beyond all current FC required to reach the ambitious 2°C target

© Siemens Gamesa Renewable Energy A/S

Market update

Wind power needs to be competitive with all energy sources

Levelized Cost of Electricity – Wind

Unsubsidized Levelized Cost of Energy Comparison

Source: Lazard – Levelized Cost of Electricity ver 10.0, December 2016

Continuous focus on cost required to compete with alternative energy sources

© Siemens Gamesa Renewable Energy A/S

Market update

Wind market is characterized by high development cost and complexity

- High R&D cost
- Short product life cycle
- High volume
- Fast development

- High R&D cost
- Long product life cycle
- Low volume
- Slow development

- High R&D cost
- Short product life cycle
- Low volume
- Fast development

Innovation is required to handle the wind market development conditions

Introduction

How do we deliver best design solutions to customers?

Understand and meet **CUSTOMER NEEDS**

© Siemens Gamesa Renewable Energy

© Siemens Gamesa Renewable Energy

Customer needs

What matters to the customer?

Customer focus is key – and broader than LCoE

© Siemens Gamesa Renewable Energy

Holistic view on the costs and performance is the key for success

© Siemens Gamesa Renewable Energy

Innovative thinking is necessary to further increase the capacity factor

Onshore wind capacity factor

Capacity factor drivers

- Some subsidy schemes (PTC)
- Auction based tender system
- Large scale integration in utility system

Source: Bloomberg New Energy Outlook 2017

Capacity constraints in some onshore and offshore markets drives development towards larger rotor size

© Siemens Gamesa Renewable Energy

Customer Needs

Total Cost Of Ownership (TCO)

De-risk of TCO

- Low CAPEX
- Known O&M cost
- Long Term Program LTP ®
- Proven technology

Net present value (NPV)

Leading edge protection example

Initial CAPEX is certain, whereas NPV of future energy production (AEP) and O&M is uncertain

© Siemens Gamesa Renewable Energy

© Siemens Gamesa Renewable Energy

Value chain

Product development value chain consist of various elements

Value Chain

Product development and the global footprint has to be aligned

Transporting 6MW nacelle to test site in Høvsøre

© Siemens Gamesa Renewable Energy

Manufacturing concepts for safe and innovative product portfolio

Why Integral Blades?

- One-shot manufacturing technology
- No adhesive joints
- Vacuum-assisted epoxy resin transfer molding (VARMT)
- Unrivaled strength and performance
- Reduced EHS risk

© Siemens Gamesa Renewable Energy

Product platform strategy that increases flexibility and minimizes cost

Different rotors with same nacelle, generator and hub

Modularization enables shorter time-to-market and lower CAPEX

© Siemens Gamesa Renewable Energy

Value Chain

Product platform strategy that increases flexibility and minimizes cost

Same rotor for further developed machine

Modularization enables higher flexibility and larger volume

© Siemens Gamesa Renewable Energy

Most of the development costs are committed in the early design phases

- The product cost is determined by
 - Development costs
 - Capital costs
 - Manufacturing costs
- The return of investment is governed by capital cost and time-to-market
- All cost factors tie back to the product development early phases

© Siemens Gamesa Renewable Energy

Value Chain

TD planning and integration into the PD ensures short Time-to-Market

Time-to-Market

© Siemens Gamesa Renewable Energy

© Siemens Gamesa Renewable Energy

Design Approach

There are various elements to consider regading the design approach

© Siemens Gamesa Renewable Energy

Initial design choices are governed by the design strategy

- Overall vision and marketing sets the direction
- Innovation and R&D profile sets the bar
- History and capability is the foundation

Design strategy is the foundation, it sets the bar and the direction for design choices

© Siemens Gamesa Renewable Energy

Design Approach

Technology Roadmap example - blades

The demand for technology must come from product needs... ...therefore products must drive the technology development

© Siemens Gamesa Renewable Energy

Modularization approach allows to save cost and increase flexibility

Product architecture:

- Allocate product function to physical components
- Specify interfaces between physical components
- Design modules independently

© Siemens Gamesa Renewable Energy

Technology readiness level (TRL) is the key factor in risk management

Basic principles observed and reported
Technology concept and/or application formulated
Analytical and experimental critical function and/or characteristic proof-of-concept
Component and/or breadboard validation in a laboratory environment
Component and/or breadboard validation in a relevant environment
System/subsystem model or prototype demonstration in a relevant environment
System prototype demonstration in a space environment
Actual system completed and "flight qualified" through test and demonstration
Actual system "flight proven" through successful mission operations

Source: NASA, Technology Readiness Level (TRL), Oct. 28, 2012

 \odot Siemens Gamesa Renewable Energy

Manufacturing has to be integrated into the design

Design to Manufacture (DFM) best practice:

- Focus on manufacturing and product life cycle
- Focus on concept phase
- Use cost modelling to understand direct & indirect cost
- Set common objectives for product & manufacturing
- Use balanced scorecard to drive product design choices

Design for Manufacture

1. Do the right thing \longrightarrow 2. Do things right

© Siemens Gamesa Renewable Energy

Design Approach

Design knowledge hand over plays a crucial role

Designers make a difference when combining results from tools with their design knowledge

© Siemens Gamesa Renewable Energy

Summary

- Understand how Market and Customer link to products and technology
- Optimize the value chain not the turbine
- Design for manufacture and cost
- Have a clear design approach from strategy to design tools
- There is not a single grand tool out there Use your own toolbox!

What are **YOUR** design drivers?

© Siemens Gamesa Renewable Energy

Thanks

© Siemens Gamesa Renewable Energy

