

Higher Fidelity Analysis in Wind Turbine Multi-disciplinary Design Optimization

Michael McWilliam

Danish Technical University

DTU Wind Energy
Department of Wind Energy

Outline

- Direct Optimization at Higher Fidelity
 - Medium Fidelity Analysis Tools
 - The FE Based Vortex Dynamics
 - Optimization Results
- Multi-fidelity Design Optimization
 - The AMMF Algorithm
 - Structural Design Case Study
- Closing Statements

Direct Optimization with Higher Fidelity Analysis

DTU

Multidisciplinary Design Optimization of Wind Turbines

- Trends show wind turbines are getting larger
 - Higher turbines better winds
 - Improved economies of scale (e.g. offshore)
- Future growth will require advanced designs
 - Bend-twist coupling, curved blades, active load alleviation, winglets, coning, etc.
- Multidisciplinary Design Optimization (MDO)
 - Simultaneously optimize multiple disciplines (e.g. aero, structural, control, etc.)
 - Optimization based on holistic metrics (e.g. cost of electricity)
 - Wind turbine design constrained by unsteady loads (*i.e.* strong gusts and fatigue)

Medium Fidelity Analysis Tools

Direct Optimization with Higher Fidelity Analysis

Analysis Tools

- Conventional preliminary design tools
 - Blade Element Momentum Theory and Linear beam theory
 - Fast and efficient, but lacks the fidelity required by advanced designs
- High fidelity analysis
 - Grid-based CFD and Shell and Brick based FEM
 - Excellent fidelity, very expensive for optimization
- Need medium fidelity analysis (improved fidelity, still efficient)
 - Vortex Dynamics (VD)
 - Nonlinear beam theory (GEBT)
 - Anisotropic Cross Section Analysis (VABS)

DTU

Aero-elastic Optimization with Conventional VD

Figure from Lawton and Crawford 2015

- Aeroelastic model with Conventional VD, GEBT and VABS
- Obtained optimization results with
 - Pure aerodynamic
 - Aero-elastic with fixed wake
- Failed to obtain aeroelastic results with free wake simulations
 - Pure vortex methods are fundamentally chaotic
 - Numerical noise spoils the gradients and optimization
- Conventional VD not suitable for aero-elastic optimization

Michael K. McWilliam, Stephen Lawton, and Curran Crawford. "Towards a framework for aero-elastic multidisciplinary design optimization of horizontal axis wind turbines" In AIAA Annual Sciences Meeting, 2013

The Finite Element Based Vortex Dynamics

FEM Parameterization of the Wake

 Vortex position in the wake defined by interpolating splines:

$$oldsymbol{x} = \sum_j \eta_j(au) oldsymbol{X}_{xj} \quad \ \dot{oldsymbol{x}} = \sum_j \dot{\eta}_j(au) oldsymbol{X}_{xj}$$

- Can have an arbitrary number of influence elements and control points
 - Can add more influence elements to improve accuracy
 - Can remove control points to accelerate calculations

Direct Optimization with Higher Fidelity Analysis

FEM Solution Algorithm

• Convergence defined by a residual:

$$oldsymbol{r}_x \equiv \dot{oldsymbol{x}} + oldsymbol{\Omega} imes (oldsymbol{x} - oldsymbol{x}_0) - oldsymbol{u}_{\infty} - oldsymbol{u}_{\gamma}$$

Mapped to control points through Galerkin projection:

$$m{R}_{xj} = \int\limits_{ au_0}^{ au_f} \zeta_j(au) m{r}_x(au) d au$$

- Solved with a Newton iteration
 - Adaptive relaxation required to get reliable convergence
 - See Video for example
- Best results with a far-wake model
 - Avoids singularities
 - Eliminates wake-truncation errors

Optimization Results

Direct Optimization with Higher Fidelity Analysis

DTU

Optimization Convergence with FEM-Based VD

- Used analytic gradients
 - Explicit VD residual definition predicts changes in state
- Tight optimization tolerances
- Small changes avoid singularities

Direct Optimization with Higher Fidelity Analysis

Optimization with FEM-Based VD

Aerodynamic Only Optimization:

Aero-elastic Optimization:

Aeroelastic optimization created more efficient designs

Multi-fidelity Design Optimization

The Multi-Fidelity concept

- Uses both a high fidelity and low fidelity model
 - Less expensive by using fewer high fidelity results
 - Reduces surrogate error with low-fidelity results
- Fidelity could be based on:
 - Formulation (e.g. RANS vs. BEM)
 - Grid resolution (e.g. fine vs. course)
 - Type of simulation (e.g. unsteady vs. steady)
 - etc.
- Low fidelity just needs to show similar trends

The AMMF Algorithm

The AMMF Algorithm

- High fidelity used for accuracy
- Low fidelity is used for speed
- Correction for first order consistency

$$\tilde{f}(\boldsymbol{x}) = f_l(\boldsymbol{x}) + \beta(\boldsymbol{x})$$

$$\beta(\boldsymbol{x}) = f_{h0} - f_{l0} + (\nabla f_{h0} - \nabla f_{l0}) \Delta \boldsymbol{x}$$

• Trust-region for robustness

The Trust Region Algorithm

- The trust-region defines the region where we can "trust" our approximation
- Constrained to stay within the trust-region
- Re-centered at every major iteration
 - Only when an improved is found
- Trust region is resized
 - If the approximation gives excellent agreement then it grows
 - If the trust region gives poor agreement then it shrinks
 - If the inner optimization fails to find an improvement, it will repeat within the smaller trust region
 - Similar to the line search algorithm
 - Otherwise maintain the trust region

Constraints in the AMMF Algorithm

- Constraints are corrected in the same way
- The constraints are present in the low fidelity optimization
- Constraints receive special treatment in Approximation and Model Management Framework (AMMF)
- First an estimated Lagrangian is calculated

$$\Phi = f + \tilde{\lambda}_e \cdot |\boldsymbol{c}| + \tilde{\lambda}_i \cdot \max(0, -\boldsymbol{c}_i)$$

- ullet $\tilde{\lambda}$ are the Lagrange multipliers estimated from previous iterates.
- $\hat{\lambda}$ is specified for the first iteration
- New iterate only accepted when $\Phi_i < \Phi_{i-1}$
- Trust region is expanded or contracted based on M:

$$M = \frac{\Phi_{i-1} - \Phi_i}{\Phi_{i-1} - \tilde{\Phi}_i}$$

- Trust region expanded if M is close to 1
- ullet Trust region contracts if M is far from 1

Multi-fidelity Structural Design Optimization

Summary of Low Fidelity Tools

Position	EA	Elx	Ely	GJ
0.05	0.0	2.6	-4.9	-5.4
0.15	0.5	1.1	-3.0	-0.8
0.25	-0.4	-1.8	2.1	-1.4
0.35	-0.7	-2.6	1.7	-3.1
0.45	-0.7	-3.1	1.0	-5.5
0.55	-0.9	-3.1	-0.3	-7.7
0.65	-0.8	-2.9	-1.7	-9.3
0.75	-0.6	-2.2	-2.2	-9.2
0.85	-0.6	-1.7	-3.5	-5.9
0.95	-0.1	-1.2	-2.0	-2.0

Table: Percent Error with BECAS

- Low fidelity cross section tool
 - Thin-walled cross section assumption
 - Rigid cross section (Euler-Bernoulli)
 - Classic laminate theory
 - Written in C++
 - Python bindings with Swig
 - Will have analytic gradients
 - Within 10% compared to BECAS
- High fidelity cross section tool
 - Based on BECAS
 - BECAS uses an FE formulation
 - Solves the warping field
 - Gives fully populate matrix

Summary of Low Fidelity Tools

Operation	Calculation time [s]
Linear Beam Model	0.0035
LF cross section model	0.0074
BECAS	200.1866

Table: Speed Comparison of Low Fidelity Tools

- Linear Beam Model
 - C++ code from my PhD
 - Analytic gradients wrt.
 - Positions
 - Orientation
 - Cross section properties
 - Applied forces
 - Solves equivalent forces for given deflection

- Speed comparison:
 - With python bindings
 - Calculation for whole blade
 - 19 elements
 - DTU 10MW

Problem Description

- Minimize DTU 10MW Blade Mass
- Varying spar cap thickness
- Subject to:
 - Tip deflection constraint
- Analysis based on the equivalent static problem (i.e. Frozen loads)
- Compared pure BECAS, pure CLT and AMMF
- Looked at various AMMF configurations:
 - Additive vs. Multiplicative corrections
 - Trust region size
 - Initial Lagrange multiplier (i.e. Penalty parameter)

Optimization Results

- Low fidelity model is not conservative
 - Will produce infeasible solutions
- AMMF reproduced the BECAS solution
 - AMMF had better constraint resolution
- AMMF gives accurate corrections
- Additive vs multiplicative corrections:
 - Gives similar solutions
 - Similar performance

Optimization Convergence

- AMMF converges 12 times faster
 - Just 2 major iterations
- AMMF had smoother convergence
 - Only 1 iteration with constraint violation
 - BECAS optimization ended due to maximum iterations
- Low fidelity models more suitable for optimization

AMMF Robustness

AMMF guards against poor approximations

- Unconstrained has all protections disabled
 - Large violations
 - Fails to converge
- Trust region is most robust
 - Same progress as ideal configuration
- Large penalties work without trust region
 - No large violations
 - More searching

Closing Statements

Conclusions

- Higher fidelity in direct optimization is challenging but possible
 - Underlying tools may be non-smooth
 - Tools may need to be re-written or re-formulated (optimization proof)
 - Developed a totally new formulation for vortex methods based on FEM
 - Successfully obtained aero-elastic optimization results with vortex methods
- Higher fidelity through multi-fidelity design optimization is promising
 - Effective when low fidelity gives similar trends much faster
 - Achieved a 12 times speed up using multi-fidelity techniques
 - The AMMF algorithm is robust in handling errors
 - Ongoing case studies focusing on difficult problems

Acknowledgments

This work was supported by

- The University of Victoria
- Natural Sciences and Engineering Research Council of Canada
- The Technical University of Denmark
- The Danish Energy Technology Development and Demonstration Program

Thank-you for your interest

Comments or Questions?